Skip to main content
Log in

Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian Areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Natural fibers can play a major role in composite industry due to its renewable, biodegradable, and eco-friendly properties. Areca Fruit Husk (AFH) is rich in fiber, but is wasted in large quantity from tobacco industries. Comprehensive characterization of AFH fiber is done to examine its morphological, physical, mechanical, chemical and thermal properties. High cellulose content of the fiber (57.35 wt%) provides better tensile strength (231.66 MPa) whereas the porous surface morphology (40.8 %) ensures better bonding with the matrix. Moreover, the low density of the fiber (0.78 g×cm−3) makes it an attractive alternative for hazardous synthetic fibers. The semi-crystalline nature and large crystalline size of the fiber reduce the water absorption characteristics. The thermo gravimetric analysis confirms its stability up to 240 °C, which is higher than the polymerization temperature. The results confirm the potential of AFH fibers as a reinforcement in bio-reinforced polymer composites for automotive and structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thakur V K, Singha A S. Physico-chemical and mechanical characterization of natural fiber reinforced polymer composites. Iranian Polymer Journal, 2010, 19, 3–16.

    Google Scholar 

  2. Swamy R P, Mohan Kumar G C, Vrushabhendrappa Y. Study of aeca-reinforced phenol formaldehyde composites. Journal of Reinforced Plastics and Composites, 2004, 23, 1373–1382.

    Article  Google Scholar 

  3. Fornasieri M, Alves J W, Muniz E C, Ruvolo-Filho A, Otaguro H, Rubira A F, Carvalho G M D. Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet. Composites Part A: Applied Science and Manufacturing, 2011, 42, 189–195.

    Article  Google Scholar 

  4. Alawar A, Hamed A M, Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering, 2009, 40, 601–606.

    Article  Google Scholar 

  5. Jayaramudu J, Guduri B R, Varada Rajulu A. Characterization of new natural cellulosic fabric grewia tilifolia. Carbohydrate Polymers, 2010, 79, 847–851.

    Article  Google Scholar 

  6. Uma Maheswari C, Obi Reddy K, Muzenda E, Guduri B R, Varada Rajulu, A. Extraction and characterization of cellulose microfibrils from agricultural residue-Cocos Nucifera L. Biomass and Bioenergy, 2012, 1–9.

    Google Scholar 

  7. Ben Sghaier A E O, Chaabouni Y, Msahli S, Sakli F. Morphological and crystalline characterization of NAOH and NAOCL treated agave americana L. fiber. Industrial Crops and Products, 2012, 36, 257–266.

    Article  Google Scholar 

  8. Sreenivasan V S, Somasundaram S, Ravindran D, Manikandan V, Narayanasamy R. Microstructural, physico- chemical and mechanical characterization of sansevieria cylindrica fibers-an exploratory investigation. Materials and Design, 2011, 32, 453–461.

    Article  Google Scholar 

  9. Mazhari Mousavi S M, Hosseini S Z, Resalati H, Mahdavi S, Rasooly Garmaroody E. Papermaking potential of rapeseed straw, a new agricultural-based fiber source. Journal of Cleaner Production, 2013, 52, 420–424.

    Article  Google Scholar 

  10. Shahid-ul-Islam, Shahid M, Mohammad F. Perspectives for natural product based agents derived from industrial plants in textile applications-a review. Journal of Cleaner Production, 2013, 57, 2–18.

    Article  Google Scholar 

  11. Kidalova L, Stevulova N, Terpakova E, Sicakova A. Utilization of alternative materials in lightweight composites. Journal of Cleaner Production, 2012, 34, 116–119.

    Article  Google Scholar 

  12. Lai W L, Mariatti M. The properties of woven betel palm (areca catechu) reinforced polyester composites. Journal of Reinforced Plastics and Composites, 2008, 27, 925–935.

    Article  Google Scholar 

  13. Lai W L, Mariatti M, Mohamad Jani S. The properties of woven kenaf and betel palm (areca catechu) reinforced unsaturated polyester composites. Polymer-plastics Technology and Engineering, 2008, 47, 1193–1199.

    Article  Google Scholar 

  14. Sampathkumar D, Punyamurthy R, Bennehalli B, Venkateshappa S C. Effect of esterification on moisture absorption of single areca fiber. International Journal of Agriculture Sciences, 2012, 4, 227–229.

    Article  Google Scholar 

  15. Zhao H, Kwak J H, Zhang Z C, Brown H M, Arey B W, Holladay J E. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 2007, 68, 235–241.

    Article  Google Scholar 

  16. Yusriah L, Sapuan S M, Zainudin E S, Mariatti M. Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (areca catechu.) husk fiber. Journal of Cleaner Production, 2014, 72, 174–180.

    Article  Google Scholar 

  17. Chakrabarty J, Hassan M M, Khan M A. Effect of surface treatment on betel nut (areca catechu) fiber in polypropylene composite. Journal of Polymers and Environment, 2012, 20, 501–506.

    Article  Google Scholar 

  18. Boopathi L, Sampath P S, Mylsamy K. Investigation of physical, chemical and mechanical properties of raw and alkali treated borassus fruit fiber. Composites Part B: Engineering, 2012, 43, 3044–3052.

    Article  Google Scholar 

  19. Coskuner Y, Karababa E. Physical properties of coriander seeds (coriandrum sativum L). Journal of Food Engineering, 2007, 80, 408–416.

    Article  Google Scholar 

  20. Padmaraj N H, Vijay Kini M, Raghuvir Pai B, Satish Shenoy B. Development of short areca fiber reinforced biodegradable composite material. Procedia Engineering, 2013, 64, 966–972.

    Article  Google Scholar 

  21. Nirmal U, Hashim J, TW Lau S, My Y, Yousif B F. Betelnut fibers as an alternative to glass fibres to reinforce thermoset composites: A comparative study. Textile Research Journal, 2012, 82, 1107–1120.

    Article  Google Scholar 

  22. Faruka O, Bledzkia A K, Fink H P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 2012, 37, 1552–1596.

    Article  Google Scholar 

  23. Jawaid M, Abdul Khalil H P S. Cellulosic/synthetic fiber reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 2011, 86, 1–18.

    Article  Google Scholar 

  24. Azwa Z N, Yousif B F, Manalo A C, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Materials and Design, 2013, 47, 424–442.

    Article  Google Scholar 

  25. Ishak M R, Sapuan S M, Leman Z, Rahman M Z A, UAnwar U M K. Characterization of sugar palm (Arenga Pinnata) fibers. Journal of Thermal Analysis Calorimetry, 2012, 109, 981–989.

    Article  Google Scholar 

  26. Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 2011, 42, 856–873.

    Article  Google Scholar 

  27. Pacheco-Torgal F, Jalali S. Cementitious building materials reinforced with vegetable fibres: A review. Construction and Building Materials, 2011, 25, 575–581.

    Article  Google Scholar 

  28. Dittenber D B, GangaRao H V S. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1419–1429.

    Article  Google Scholar 

  29. Saravanakumar S S, Kumaravel A, Nagarajan T, Sudhakar P, Baskaran R. Characterization of a novel natural cellulosic fiber from prosopis juliflora bark. Carbohydrates Polymers, 2013, 92, 1928–1933.

    Article  Google Scholar 

  30. Paiva M C, Ammar I, Campos A R, Cheikh R B, Cunha A M. Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology, 2007, 67, 1132–1138.

    Article  Google Scholar 

  31. Spinace M A S, Lambert C S, Fermoselli K K G, De Paoli M-A. Characterization of lignocellulosic curaua fibers. Carbohydrate Polymers, 2009, 77, 47–53.

    Article  Google Scholar 

  32. De Rosa I M, Santulli C, Sarasini F. Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated phormium tenax leaf fibers. Materials and Design, 2010, 31, 2397–2405.

    Article  Google Scholar 

  33. Guimaraes J L, Frollini E, Da Silva C G, Wypych F, Satyanarayana K G. Characterization of banana, sugarcane bagasse and sponge gourd fibers of brazil. Industrial Crops and Products, 2009, 30, 407–415.

    Article  Google Scholar 

  34. Almeida D J R M, Aquino R C M P, Monteiro S N. Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1473–1479.

    Article  Google Scholar 

  35. Tabet T A, Aziz F A. Cellulose microfibril angle in wood and its dynamic mechanical significance, In: van de Ven T, Godbout L (eds), Cellulose-Fundamental Aspects, InTech, USA, 2013, 113–142.

    Google Scholar 

  36. Herman M, Dutilleul P, Avella-Shawl T. Growth rate effects on intra-ring and inter-ring trajectories of micro fibril angle in Norway spruce (Picea abies). IAWA Journal, 1999, 20, 3–21.

    Article  Google Scholar 

  37. Eldho Abraham B, Deepa L A, Pothan Maya John S S, Narin S, Anandjiwala T R. Physico mechanical properties of nano-composites based on cellulose nanofibre and natural rubber latex. Cellulose, 2013, 20, 417–427.

    Article  Google Scholar 

  38. Rao S S, Jeyapal S G, Rajiv S. Biodegradable electro spun nano composite fibers based on poly (2-Hydroxy Ethyl Methacrylate) and bamboo cellulose. Composites Part B: Engineering, 2014, 60, 43–48.

    Article  Google Scholar 

  39. Park S, Baker J O, Himmel M E, Parilla P A, Johnson D K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulose performance. Biotechnology for Biofuels, 2010, 3, 10.

    Article  Google Scholar 

  40. Rambo M K D, Ferreira M M C. Determination of cellulose crystallinity of banana residues using near infrared spectroscopy and multivariate analysis. Journal of Brazilian Chemical Society, 2015, 26, 1491–1499.

    Google Scholar 

  41. Naguleswaran S, Vasanthan T, Hoover R, Liu Q. Structure and physicochemical properties of palmyrah (Borassus flabellifer L.) seed-shoot starch grown in Sri Lanka. Food Chemistry, 2010, 118, 634–640.

    Article  Google Scholar 

  42. Madsen B. Properties of Plant Fiber Yarn Polymer Composites. BYG.DTU R-082, 2004.

    Google Scholar 

  43. De Rosa I M, Kenny J M, Puglia D, Santulli C, Sarasini F. Morphological, thermal and mechanical characterization of okra (abelmoschus esculentus) fibers as potential reinforcement in polymer composites. Composites Science and Technology, 2010, 70, 116–122.

    Article  Google Scholar 

  44. Tejado A, Pena C, Lagidis J, Echeverria J M, Mondragon I. Physico-chemical characterization of lignin from different sources for use in phenol-formaldehyde resin synthesis. Bioresource Technology, 2007, 98, 1655–1663.

    Article  Google Scholar 

  45. Sudha L K, Sukumar R, Uma Rao K. Evaluation of activation energy (Ea) profiles of nanostructured alumina polycarbonate composite insulation materials. International Journal of Materials, Mechanics and Manufacturing, 2014, 2, 96–100.

    Google Scholar 

  46. Indran S, Edwin Raj R, Sreenivasan V S. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymers, 2014, 110, 423–429.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Edwin Raj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binoj, J.S., Edwin Raj, R., Sreenivasan, V.S. et al. Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian Areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. J Bionic Eng 13, 156–165 (2016). https://doi.org/10.1016/S1672-6529(14)60170-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60170-0

Keywords

Navigation