Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Carbapenemasas en especies del género Pseudomonas
Información de la revista
Vol. 28. Núm. S1.
Programa Externo de Control de Calidad SEIMC. Año 2008
Páginas 19-28 (Enero 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 28. Núm. S1.
Programa Externo de Control de Calidad SEIMC. Año 2008
Páginas 19-28 (Enero 2010)
Acceso a texto completo
Carbapenemasas en especies del género Pseudomonas
Carbapenemases in Pseudomonas spp
Visitas
10047
Carlos Juan Nicolau
Autor para correspondencia
carlos.juan@ssib.es

Autor para correspondencia.
, Antonio Oliver
Servicio de Microbiología, Hospital Son Dureta, Palma de Mallorca; Área de Microbiología, Universitat de les Illes Balears (UIB), Institut Universitari d’ Investigació en Ciències de la Salut (IUNICS), Palma de Mallorca, España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

Pseudomonas aeruginosa es uno de los patógenos nosocomiales más relevantes, así como una de las principales causas de infección respiratoria crónica en pacientes con enfermedades de base, como la fibrosis quística o la enfermedad pulmonar obstructiva crónica. Su elevado nivel de resistencia intrínseca a los antibióticos, unido a su extraordinaria capacidad para desarrollar resistencias adicionales por mutaciones cromosómicas, hacen de este patógeno uno de los más difíciles de tratar. Aún es más preocupante, si cabe, la creciente detección en este microorganismo de múltiples determinantes de resistencia, frecuentemente localizados en integrones, adquiridos por transferencia horizontal a través de plásmidos o transposones. Entre estos mecanismos destacan las carbapenemasas, por el abanico de antibióticos afectados (pues en conjunto hidrolizan a prácticamente todos los betalactámicos), variedad y capacidad de dispersión. En el presente trabajo se revisa la epidemiología, el impacto y la detección de las carbapenemasas descritas hasta la fecha en el género Pseudomonas, que pertenecen principalmente a la clase B (metalo-β-lactamasas [MBL]: IMP, VIM, SPM, GIM, AIM o DIM]), pero también, en menor medida, a las clases A (GES y KPC) y D (OXA). La presencia de estas carbapenemasas transferibles no sólo es importante en P. aeruginosa, sino también en otras especies clínicamente menos relevantes dentro del género, pero que pueden actuar como reservorio y vector de dispersión de estos determinantes de resistencia. La frecuencia creciente de cepas clínicas portadoras de carbapenemasas apremia a la puesta a punto de estrategias que faciliten su detección y reduzcan la expansión de estas cepas multirresistentes y de los mecanismos transferibles implicados.

Palabras clave:
Género Pseudomonas
Carbapenemasas
Metalo-β-lactamasas
Abstract

Pseudomonas aeruginosa is one of the most relevant nosocomial pathogens, as well as one of the main causes of chronic respiratory infections in patients with underlying diseases such as cystic fibrosis or chronic obstructive pulmonary disease. The high intrinsic antibiotic resistance of this pathogen, together with its extraordinary capacity for acquiring additional resistances through chromosomal mutations, determines a major threat for antimicrobial therapy in hospitals worldwide. Even more concerning is the increasing detection of multiple antimicrobial resistance determinants in this microorganism, frequently located on integrons, acquired by horizontal transfer through plasmids and/or transposons. Among these mechanisms, the carbapenemases are particularly relevant, due to the wide spectrum of antibiotics affected. This work reviews the epidemiology, impact, and detection of the carbapenemases described so far in the Pseudomonas spp., that mainly include class B enzymes (metallo-β-lactamases [MBL]: IMP, VIM, SPM, GIM, AIM, or DIM), but also, to a lower extent, class A (GES y KPC) and D (OXA) beta-lactamases. The presence of transferable carbapenemases is not only important in P. aeruginosa, but also in other less clinically-relevant species of the genus, since they can act as reservoires and dispersion vectors of these resistance determinants. The growing prevalence of carbapenemase-producing clinical isolates calls for the implementation of multidisciplinary strategies to optimize the detection and minimize the dissemination of these multidrug resistant strains and the involved transferable genetic elements.

Keywords:
Pseudomonas spp
Carbapenemases
Metallo-β-lactamases
El Texto completo está disponible en PDF
Bibliografía
[1.]
M. Pollack.
Pseudomonas aeruginosa.
Principles and practice of infectious diseases, 5.ª ed., pp. 1980-2003
[2.]
V. Aloush, S. Navon-Venezia, Y. Seigman-Igra, S. Cabili, Y. Carmeli.
Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact.
Antimicrob Agents Chemother, 50 (2006), pp. 43-48
[3.]
J.P. Lynch.
Hospital-acquired pneumonia: risk factors, microbiology, and treatment.
Chest, 119 (2001), pp. S373-S384
[4.]
J.L. Vincent.
Nosocomial infections in adult intensive-care units.
Lancet, 361 (2003), pp. 2068-2077
[5.]
H.A. Mousa.
Aerobic, anaerobic and fungal burn wound infections.
J Hosp Infect, 37 (1997), pp. 317-323
[6.]
P.H. Gilligan.
Microbiology of airway disease in patients with cystic fibrosis.
Clin Microbiol Rev, 4 (1991), pp. 35-51
[7.]
L. Martinez-Solano, M.D. Macia, A. Fajardo, A. Oliver, J.L. Martinez.
Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease.
Clin Infect Dis, 47 (2008), pp. 1526-1533
[8.]
C. Juan, M.D. Macia, O. Gutierrez, C. Vidal, J.L. Perez, A. Oliver.
Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains.
Antimicrob Agents Chemother, 49 (2005), pp. 4733-4738
[9.]
B. Moya, A. Dötsch, C. Juan, J. Blazquez, L. Zamorano, S. Haussler, et al.
Beta-lactam resistance response triggered by inactivation of a non-essential penicillin-binding protein.
PLoS Pathog, 5 (2009), pp. e1000353
[10.]
D.M. Livermore.
Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?.
Clin Infect Dis, 34 (2002), pp. 634-640
[11.]
N. Mesaros, P. Nordmann, P. Plesiat, M. Roussel-Delvallez, J. van Eldere, Y. Glupczynski, et al.
Pseudomonas aeruginosa: resistance and therapeutics options in the turn of the new millennium.
Clin Microbiol Infect, 13 (2007), pp. 560-578
[12.]
M.D. Macia, D. Blanquer, B. Togores, J. Sauleda, J.L. Perez, A. Oliver.
Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections.
Antimicrob Agents Chemother, 49 (2005), pp. 3382-3386
[13.]
A. Oliver, R. Cantón, P. Campo, F. Baquero, J. Blazquez.
High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection.
Science, 288 (2000), pp. 1251-1254
[14.]
S.S. Pedersen.
Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis.
APMIS, (1992), pp. S1-S79
[15.]
M.B. Souza Dias, A.B. Habert, V. Borrasca, V. Stempliuk, A. Ciolli, M.R. Araujo, et al.
Salvage of long-term central venous catheters during an outbreak of Pseudomonas putida and Stenotrophomonas maltophilia infections associated with contaminated heparin catheter-lock solution.
Infect Control Hosp Epidemiol, 29 (2008), pp. 125-130
[16.]
C. Aumeran, C. Paillard, F. Robin, J. Kanold, O. Baud, R. Bonnet, et al.
Pseudomonas aeruginosa and Pseudomonas putida outbreak associated with contaminated water outlets in an oncohaematology paediatric unit.
J Hosp Infect, 65 (2007), pp. 47-53
[17.]
Juan C, Zamorano L, Mena A, Albertí S, Perez JL, Oliver A. Metallo-β-lactamase (MBL)-producing Pseudomonas putida as a reservoir of multidrug-resistance elements that are efficiently amplified by transference to successful P. aeruginosa clones. J Antimicrob Chemother. 2009 (En prensa).
[18.]
O. Gutiérrez, C. Juan, E. Cercenado, F. Navarro, E. Bouza, P. Coll, et al.
Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals.
Antimicrob Agents Chemother, 51 (2007), pp. 4329-4335
[19.]
P.D. Lister, D.J. Wolter, N.D. Hanson.
Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms.
Clin Microbiol Rev, 22 (2009), pp. 582-610
[20.]
S. Mushtaq, Y. Ge, D.M. Livermore.
Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential.
Antimicrob Agents Chemother, 48 (2004), pp. 3086-3092
[21.]
J. Quale, S. Bratu, J. Gupta, D. Landman.
Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates.
Antimicrob Agents Chemother, 50 (2006), pp. 1633-1641
[22.]
R.P. Ambler.
The structure of beta-lactamases.
Philos Trans R Soc Lond B Biol Sci, 289 (1980), pp. 321-331
[23.]
T.R. Walsh, M.A. Toleman, L. Poirel, P. Nordmann.
Metallo-beta-lactamases: the quiet before the storm?.
Clin Microbiol Rev, 18 (2005), pp. 306-325
[24.]
A.M. Queenan, K. Bush.
Carbapenemases: the versatile beta-lactamases.
Clin Microbiol Rev, 20 (2007), pp. 440-458
[25.]
L. Poirel, J.D. Pitout, P. Nordmann.
Carbapenemases: molecular diversity and clinical consequences.
Future Microbiol, 2 (2007), pp. 501-512
[26.]
J.M. Rodriguez-Martinez, L. Poirel, P. Nordmann.
Extended-spectrum cephalosporinases in Pseudomonas aeruginosa.
Antimicrob Agents Chemother, 53 (2009), pp. 1766-1771
[27.]
Rodriguez-Martinez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009 Sep 8 [Epub ahead of print].
[28.]
H. Giamarellou, G. Poulakou.
Multidrug-resistant Gram-negative infections: What are the treatment options?.
[29.]
A.C. Gales, R.N. Jones, H.S. Sader.
Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004).
Clin Microbiol Infect, 12 (2006), pp. 315-321
[30.]
E. Bouza, F. Garcia-Garrote, E. Cercenado, M. Marin, M.S. Diaz.
Pseudomonas aeruginosa: a survey of resistance in 136 hospitals in Spain.
Antimicrob Agents Chemother, 43 (1999), pp. 981-982
[31.]
I. Sanchez-Romero, E. Cercenado, O. Cuevas, N. Garcia-Escribano, J. Garcia-Martinez, E. Bouza, et al.
Evolution of the antimicrobial resistance of Pseudomonas aeruginosa in Spain: second national study.
Rev Esp Quimioter, 20 (2003), pp. 222-229
[32.]
C. Suarez, C. Peña, A. Campo, J. Murillas, B. Almirante, V. Pomar, et al.
Impact of carbapenem-resistance on Pseudomonas aeruginosa (PA) bloodstream infections outcome.
49th Interscience Conference on Antimicrobial Agents and Chemotherapy,
[33.]
G.M. Rossolini, F. Luzzaro, R. Migliavacca, C. Mugnaioli, B. Pini, F. de Luca, et al.
First countrywide survey of acquired metallo-beta-lactamases in gram-negative pathogens in Italy.
Antimicrob Agents Chemother, 52 (2008), pp. 4023-4029
[34.]
K. Lee, A.J. Park, M.Y. Kim, H.J. Lee, J.H. Cho, J.O. Kang, et al.
Metallo-beta-lactamaseproducing Pseudomonas spp. in Korea: high prevalence of isolates with VIM-2 type and emergence of isolates with IMP-1 type.
Yonsei Med J, 50 (2009), pp. 335-339
[35.]
T.R. Fritsche, H.S. Sader, M.A. Toleman, T.R. Walsh, R.N. Jones.
Emerging metallo-betalactamase-mediated resistances: a summary report from the worldwide SENTRY antimicrobial surveillance program.
Clin Infect Dis, 41 (2005), pp. S276-S278
[36.]
K. Bush, G.A. Jacoby, A.A. Medeiros.
A functional classification scheme for beta-lactamases and its correlation with molecular structure.
Antimicrob Agents Chemother, 39 (1995), pp. 211-233
[37.]
J. Walther-Rasmussen, N. Høiby.
Class A carbapenemases.
J Antimicrob Chemother, 60 (2007), pp. 470-482
[38.]
H. Yigit, A.M. Queenan, G.J. Anderson, A. Domenech-Sanchez, J.W. Biddle, C.D. Steward, et al.
Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenemresistant strain of Klebsiella pneumoniae.
Antimicrob Agents Chemother, 45 (2001), pp. 1151-1161
[39.]
M.V. Villegas, K. Lolans, A. Correa, J.N. Kattan, J.A. Lopez, J.P. Quinn, et al.
First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenemhydrolyzing beta-lactamase.
Antimicrob Agents Chemother, 51 (2007), pp. 1553-1555
[40.]
D.J. Wolter, P.M. Kurpiel, N. Woodford, M.F. Palepou, R.V. Goering, N.D. Hanson.
Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4.
Antimicrob Agents Chemother, 53 (2009), pp. 557-562
[41.]
L. Poirel, I. Le Thomas, T. Naas, A. Karim, P. Nordmann.
Biochemical sequence analyses of GES-1, a novel class A extended-spectrum beta-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae.
Antimicrob Agents Chemother, 44 (2000), pp. 622-632
[42.]
P. Giakkoupi, L.S. Tzouvelekis, A. Tsakris, V. Loukova, D. Sofianou, E. Tzelepi.
IBC-1, a novel integron-associated class A beta-lactamase with extended-spectrum properties produced by an Enterobacter cloacae clinical strain.
Antimicrob Agents Chemother, 44 (2000), pp. 2247-2253
[43.]
S.H. Lee, S.H. Jeong.
Nomenclature of GES-type extended-spectrum beta-lactamases.
Antimicrob Agents Chemother, 49 (2005), pp. 2148
[44.]
G.A. Jacoby.
Beta-lactamase nomenclature.
Antimicrob Agents Chemother, 50 (2006), pp. 1123-1129
[45.]
L. Poirel, G.F. Weldhagen, T. Naas, C. de Champs, M.G. Dove, P. Nordmann.
GES-2, a class A beta-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem.
Antimicrob Agents Chemother, 45 (2001), pp. 2598-2603
[46.]
C. Wang, P. Cai, D. Chang, Z. Mi.
A Pseudomonas aeruginosa isolate producing the GES-5 extended-spectrum beta-lactamase.
J Antimicrob Chemother, 57 (2006), pp. 1261-1262
[47.]
C.J. Labuschagne, G.F. Weldhagen, M.M. Ehlers, M.G. Dove.
Emergence of class 1 integron-associated GES-5 and GES-5-like extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in South Africa.
Int J Antimicrob Agents, 31 (2008), pp. 527-530
[48.]
E. Viedma, C. Juan, J. Acosta, L. Zamorano, J.R. Otero, F. Sanz, et al.
Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum beta-lactamases GES-1 and GES-5 in Spain.
Antimicrob Agents Chemother, 53 (2009), pp. 4930-4933
[49.]
L. Poirel, L. Brinas, N. Fortineau, P. Nordmann.
Integron-encoded GES-type extended-spectrum beta-lactamase with increased activity toward aztreonam in Pseudomonas aeruginosa.
Antimicrob Agents Chemother, 49 (2005), pp. 3593-3597
[50.]
Yong D, Bell JM, Ritchie B, Pratt R, Toleman MA, Walsh TR, et al. A novel subgroup Metallo-β-lactamases (MBL) AIM-1 emerges in Pseudomonas aeruginosa (PSA) from Australia. En: Abstracts of the 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, 2007. Abstract C1-593, p. 75. American Society for Microbiology. Washington, DC, USA.
[51.]
Poirel L, Rodríguez-Martínez J, Al Naiemi N, Debets-Ossenkopp Y, Nordmann P, et al. Characterization of blaDIM-1, a novel integron-located metallo-beta-lactamase gene from a Pseudomonas stutzeri clinical isolate in Netherlands. En: Oral sessions of the 19th European Congress of Clinical Microbiology and Infectious Diseases, Helsinki, 2009. Session 0309, p. 61. European Society of Clinical Microbiology and Infectious Diseases. Basel, Switzerland.
[52.]
J. Sekiguchi, K. Morita, T. Kitao, N. Watanabe, M. Okazaki, T. Miyoshi-Akiyama, et al.
KHM-1, a novel plasmid-mediated metallo-beta-lactamase from a Citrobacter freundii clinical isolate.
Antimicrob Agents Chemother, 52 (2008), pp. 4194-4197
[53.]
E. Osano, Y. Arakawa, R. Wacharotayankun, M. Ohta, T. Horii, H. Ito, et al.
Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance.
Antimicrob Agents Chemother, 38 (1994), pp. 71-78
[54.]
J.D. Docquier, M.L. Riccio, C. Mugnaioli, F. Luzzaro, A. Endimiani, A. Toniolo, et al.
IMP-12, a new plasmid-encoded metallo-beta-lactamase from a Pseudomonas putida clinical isolate.
Antimicrob Agents Chemother, 47 (2003), pp. 1522-1528
[55.]
C. Pellegrini, P.S. Mercuri, G. Celenza, M. Galleni, B. Segatore, E. Sacchetti, et al.
Identification of bla(IMP-22) in Pseudomonas spp. in urban wastewater and nosocomial environments: biochemical characterization of a new IMP metallo-enzyme variant and its genetic location.
J Antimicrob Chemother, 63 (2009), pp. 901-908
[56.]
K. Senda, Y. Arakawa, S. Ichiyama, K. Nakashima, H. Ito, S. Ohsuka, et al.
PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams.
J Clin Microbiol, 34 (1996), pp. 2909-2913
[57.]
N. Shibata, Y. Doi, K. Yamane, T. Yagi, H. Kurokawa, K. Shibayama, et al.
PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron.
J Clin Microbiol, 41 (2003), pp. 5407-5413
[58.]
L. Lauretti, M.L. Riccio, A. Mazzariol, G. Cornaglia, A. Amicosante, R. Fontana, et al.
Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate.
Antimicrob Agents Chemother, 43 (1999), pp. 1584-1590
[59.]
S. Quinteira, H. Ferreira, L. Peixe.
First isolation of blaVIM-2 in an environmental isolate of Pseudomonas pseudoalcaligenes.
Antimicrob Agents Chemother, 49 (2005), pp. 2140-2141
[60.]
S. Pournaras, A. Ikonomidis, L.S. Tzouvelekis, D. Tokatlidou, N. Spanakis, A.N. Maniatis, et al.
VIM-12, a novel plasmid-mediated metallo-beta-lactamase from Klebsiella pneumoniae that resembles a VIM-1/VIM-2 hybrid.
Antimicrob Agents Chemother, 49 (2005), pp. 5153-5156
[61.]
J.D. Docquier, J. Lamotte-Brasseur, M. Galleni, G. Amicosante, J.M. Frère, G.M. Rossolini.
On functional and structural heterogeneity of VIM-type metallo-beta-lactamases.
J Antimicrob Chemother, 51 (2003), pp. 257-266
[62.]
A.P. Zavascki, P.B. Gaspareto, A.F. Martins, A.L. Gonçalves, A.L. Barth.
Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-(beta)-lactamase in a teaching hospital in southern Brazil.
J Antimicrob Chemother, 56 (2005), pp. 1148-1151
[63.]
A.F. Martins, A.P. Zavascki, P.B. Gaspareto, A.L. Barth.
Dissemination of Pseudomonas aeruginosa producing SPM-1-like and IMP-1-like metallo-beta-lactamases in hospitals from southern Brazil.
Infection, 35 (2007), pp. 457-460
[64.]
A. El Salabi, M.A. Toleman, J. Weeks, T. Bruderer, R. Frei, T.R. Walsh.
First report of the metallo-β-lactamase, SPM-1, in Europe.
Antimicrob Agents Chemother, (2009),
[65.]
M. Castanheira, M.A. Toleman, R.N. Jones, F.J. Schmidt, T.R. Walsh.
Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallobeta- lactamase.
Antimicrob Agents Chemother, 48 (2004), pp. 4654-4661
[66.]
K. Lee, J.H. Yum, D. Yong, H.M. Lee, H.D. Kim, J.D. Docquier, et al.
Novel acquired metallobeta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea.
Antimicrob Agents Chemother, 49 (2005), pp. 4485-4491
[67.]
J. Walther-Rasmussen, N. Høiby.
OXA-type carbapenemases.
J Antimicrob Chemother, 57 (2006), pp. 373-383
[68.]
D.L. Paterson, R.A. Bonomo.
Extended-spectrum beta-lactamases: a clinical update.
Clin Microbiol Rev, 18 (2005), pp. 657-686
[69.]
T. Naas, P. Nordmann.
OXA-type beta-lactamases.
Curr Pharm Des, 5 (1999), pp. 865-879
[70.]
R. Paton, R.S. Miles, J. Hood, S.G. Amyes, R.S. Miles, S.G. Amyes.
ARI 1: beta-lactamasemediated imipenem resistance in Acinetobacter baumannii.
Int J Antimicrob Agents, 2 (1993), pp. 81-87
[71.]
E. Sevillano, L. Gallego, J.M. Garcia-Lobo.
First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii.
Pathol Biol (Paris), 57 (2009), pp. 493-495
[72.]
D. Girlich, T. Naas, P. Nordmann.
Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa.
Antimicrob Agents Chemother, 48 (2004), pp. 2043-2048
[73.]
K.F. Kong, S.R. Jayawardena, A. del Puerto, L. Wiehlmann, U. Laabs, B. Tümmler, et al.
Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase.
[74.]
K. Lee, Y. Chong, H.B. Shin, Y.A. Kim, D. Yong, J.H. Yum.
Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species.
Clin Microbiol Infect, 7 (2001), pp. 88-91
[75.]
K. Lee, Y.S. Lim, D. Yong, J.H. Yum, Y. Chong.
Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp.
J Clin Microbiol, 41 (2003), pp. 4623-4629
[76.]
M.V. Jesudason, A.J. Kandathil, V. Balaji.
Comparison of two methods to detect carbapenemase & metallo-beta-lactamase production in clinical isolates.
Indian J Med Res, 121 (2005), pp. 780-783
[77.]
M.J. Noyal, G.A. Menezes, B.N. Harish, S. Sujatha, S.C. Parija.
Simple screening tests for detection of carbapenemases in clinical isolates of non-fermentative Gram-negative bacteria.
Indian J Med Res, 129 (2009), pp. 707-712
[78.]
D. Yong, K. Lee, J.H. Yum, H.B. Shin, G.M. Rossolini, Y. Chong.
Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp.
J Clin Microbiol, 40 (2002), pp. 3798-3801
[79.]
T.R. Walsh, A. Bolmström, A. Qwärnström, A. Gales.
Evaluation of a new Etest for detecting metallo-beta-lactamases in routine clinical testing.
J Clin Microbiol, 40 (2002), pp. 755-759
[80.]
J.J. Yan, J.J. Wu, S.H. Tsai, C.L. Chuang.
Comparison of the double-disk, combined disk, and Etest methods for detecting metallo-beta-lactamases in gram-negative bacilli.
Diagn Microbiol Infect Dis, 49 (2004), pp. 5-11
[81.]
N. Al Naiemi, Y.J. Debets-Ossenkopp, P.S. Lee, P. Savelkoul, C. Vandenbroucke-Grauls.
Appropriate Müller-Hinton agar is crucial for the performance of metallo-lactamase Etest.
19th European Congress of Clinical Microbiology and Infectious Diseases,
[82.]
G. Prats, E. Miro, B. Mirelis, L. Poirel, S. Bellais, P. Nordmann.
First isolation of a carbapenem-hydrolyzing beta-lactamase in Pseudomonas aeruginosa in Spain.
Antimicrob Agents Chemother, 46 (2002), pp. 932-933
[83.]
C. Peña, C. Suarez, F. Tubau, O. Gutierrez, A. Dominguez, A. Oliver, et al.
Nosocomial spread of Pseudomonas aeruginosa producing the metallo-beta-lactamase VIM-2 in a Spanish hospital: clinical and epidemiological implications.
Clin Microbiol Infect, 13 (2007), pp. 1026-1029
[84.]
C. Juan, A. Beceiro, O. Gutierrez, S. Alberti, M. Garau, J.L. Perez, et al.
Characterization of the new metallo-beta-lactamase VIM-13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate in Spain.
Antimicrob Agents Chemother, 52 (2008), pp. 3589-3596
[85.]
J. Empel, K. Filczak, A. Mrówka, W. Hryniewicz, D.M. Livermore, M. Gniadkowski.
Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum betalactamase in Warsaw, Poland: further evidence for an international clonal complex.
J Clin Microbiol, 45 (2007), pp. 2829-2834
[86.]
F. Lopez-Otsoa, L. Gallego, K.J. Towner, L. Tysall, N. Woodford, D.M. Livermore.
Endemic carbapenem resistance associated with OXA-40 carbapenemase among Acinetobacter baumannii isolates from a hospital in northern Spain.
J Clin Microbiol, 40 (2002), pp. 4741-4743
[87.]
O. Gutierrez-Urbon, M.J. Requena-Rodriguez, P. Diaz-Antolin, A. Oliver-Palomo.
Isolation of multi-resistant carbapenemase-producing Pseudomonas aeruginosa (VIM-2) and extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (SHV-2) in a perianal ulcer in a patient with hematological disease.
Enferm Infecc Microbiol Clin, 23 (2005), pp. 574-575
[88.]
M.C. Rodriguez, B. Ruiz del Castillo, C. Rodriguez-Mirones, M. Romo, I. Monteagudo, L. Martinez-Martinez.
Molecular characterization of Pseudomonas aeruginosa isolates in Cantabria, Spain, producing VIM-2 metallo-beta-lactamase.
Enferm Infecc Microbiol Clin, (2009),
[89.]
C. Juan, O. Gutierrez, F. Renom, M. Garau, C. Gallegos, S. Alberti, et al.
Chronic respiratory infections by mucoid carbapenemase-producing Pseudomonas aeruginosa strains, a new potential public health problem.
Antimicrob Agents Chemother, 52 (2008), pp. 2285-2286
Copyright © 2010. Elsevier España S.L.. Todos los derechos reservados
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos