Abstract
Hydrogen sulfide (H2S) is the endogenously produced gasotransmitter involved in the regulation of nervous system, cardiovascular functions, inflammatory response, gastrointestinal system and renal function. Together with nitric oxide and carbon monoxide, H2S belongs to a family of gasotransmitters. H2S is synthesized from l-cysteine and/or l-homocysteine by cystathionine β-synthase, cystathionine γ-lyase and cysteine aminotransferase together with 3-mercaptopyruvate sulfurtransferase. Significant progress has been made in recent years in our understanding of H2S biochemistry, signaling mechanisms and physiological role. H2S-mediated signaling may be accounted for not only by the intact compound but also by its oxidized form, polysulfides. The most important signaling mechanisms include reaction with protein thiol groups to form persulfides (protein S-sulfhydration), reaction with nitric oxide and related species such as nitrosothiols to form thionitrous acid (HSNO), nitrosopersulfide (SSNO−) and nitroxyl (HNO), as well as reaction with hemoproteins. H2S is enzymatically oxidized in mitochondria to thiosulfate and sulfate by specific enzymes, sulfide:quinone oxidoreductase, persulfide dioxygenase, rhodanese and sulfite oxidase. H2S donors have therapeutic potential for diseases such as arterial and pulmonary hypertension, atherosclerosis, ischemia–reperfusion injury, heart failure, peptic ulcer disease, acute and chronic inflammatory diseases, Parkinson’s and Alzheimer’s disease and erectile dysfunction. The group of currently available H2S donors includes inorganic sulfide salts, synthetic organic slow-releasing H2S donors, H2S-releasing non-steroidal antiinflammatory drugs, cysteine analogs, nucleoside phosphorothioates and plant-derived polysulfides contained in garlic. H2S is also regulated by many currently used drugs but the mechanism of these effects and their clinical implications are only started to be understood.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 1996;16(3):1066–71.
Kimura H. Hydrogen sulfide and polysulfides as biological mediators. Molecules 2014;19(10):16146–57. https://doi.org/10.3390/molecules191016146.
Wang R. Gasotransmitters: growing pains and joys. Trends Biochem Sci 2014;39(5):227–32. https://doi.org/10.1016/j.tibs.2014.03.003.
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012;92(2):791–896. https://doi.org/10.1152/physrev.00017.2011.
Łowicka E, Bełtowski J. Hydrogen sulfide H2S – the third gas of interest for pharmacologists. Pharmacol Rep 2007;59(1):4–24.
Li Q, Lancaster Jr JR. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 2013;35:21–34. https://doi.org/10.1016/j.niox.2013.07.001.
Iciek M, Włodek L. Biosynthesis and biological properties of compounds containing highly reactive: reduced sulfane sulfur. Pol J Pharmacol 2001;53(3):215–25.
Toohey JI, Cooper AJ. Thiosulfoxide (sulfane) sulfur: new chemistry and new regulatory roles in biology. Molecules 2014;19(8):12789–813. https://doi.org/10.3390/molecules190812789.
Toohey JI. Sulfur signaling: is the agent sulfide or sulfane? Anal Biochem 2011;413(1):1–7. https://doi.org/10.1016/j.ab.2011.01.044.
Kabil O, Banerjee R. Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal 2014;20(5):770–82. https://doi.org/10.1089/ars.2013.5339.
Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R. Relative contributions of cystathionine β-synthase and γ-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 2009;284(33):22457–66. https://doi.org/10.1074/jbc.M109.010868.
Vicente JB, Colaço HG, Mendes MI, Sarti P, Leandro P, Giuffrè A. NO* binds human cystathionine β-synthase quickly and tightly. J Biol Chem 2014;289(12):8579–87. https://doi.org/10.1074/jbc.M113.507533.
Carballal S, Cuevasanta E, Marmisolle I, Kabil O, Gherasim C, Ballou DP, et al. Kinetics of reversible reductive carbonylation of heme in human cystathionine β-synthase. Biochemistry 2013;52(26):4553–62. https://doi.org/10.1021/bi4004556.
Morikawa T, Kajimura M, Nakamura T, Hishiki T, Nakanishi T, Yukutake Y, et al. Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci USA 2012;109(4):1293–8. https://doi.org/10.1073/pnas.1119658109.
Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R. H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 2009;284(17):11601–12. https://doi.org/10.1074/jbc.M808026200.
Jurkowska H, Kaczor-Kamińska M, Bronowicka-Adamska P, Wróbel M. Cystathionine γ-lyase. Postepy Hig Med Dosw (Online) 2014;68:1–9. https://doi.org/10.5604/17322693.1085372.
Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, et al. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA 2014;111(21):7606–11. https://doi.org/10.1073/pnas.1321232111.
Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, et al. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 2009;11(4):703–14. https://doi.org/10.1089/ARS.2008.2253.
Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 2009;146(5):623–6. https://doi.org/10.1093/jb/mvp111.
Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 2011;439(3):479–85. https://doi.org/10.1042/BJ20110841.
Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R. Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 2013;288(27):20002–13. https://doi.org/10.1074/jbc.M113.466177.
Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, et al. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 2013;4:1366. https://doi.org/10.1038/ncomms2371.
Nagy P, Pálinkás Z, Nagy A, Budai B, Tóth I, Vasas A. Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta 2014;1840(2):876–91. https://doi.org/10.1016/j.bbagen.2013.05.037.
Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am J Physiol Regul Integr Comp Physiol 2008;294(6):R1930–37. https://doi.org/10.1152/ajpregu.00025.2008.
Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenergy Biomembr 2008;40(5):533–9. https://doi.org/10.1007/s10863-008-9166-6.
Hildebrandt TM, Grieshaber MK. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 2008;275(13):3352–61. https://doi.org/10.1111/j.1742-4658.2008.06482.x.
Bouillaud F, Blachier F. Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid Redox Signal 2011;15(2):379–91. https://doi.org/10.1089/ars.2010.3678.
Lagoutte E, Mimoun S, Andriamihaja M, Chaumontet C, Blachier F, Bouillaud F. Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta 2010;1797(8):1500–11. https://doi.org/10.1016/j.bbabio.2010.04.004.
Jackson MR, Melideo SL, Jorns MS. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 2012;51(34):6804–15.
Olson KR. Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling. J Comp Physiol B 2012;182(7):881–97.
Libiad M, Yadav PK, Vitvitsky V, Martinov M, Banerjee R. Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem 2014;289(45):30901–10. https://doi.org/10.1074/jbc.M114.602664.
Helmy N, Prip-Buus C, Vons C, Lenoir V, Abou-Hamdan A, Guedouari-Bounihi H, et al. Oxidation of hydrogen sulfide by human liver mitochondria. Nitric Oxide 2014;41:105–12. https://doi.org/10.1016/j.niox.2014.05.011.
Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 2009;15(2):200–5. https://doi.org/10.1038/nm.1907.
Ackermann M, Kubitza M, Maier K, Brawanski A, Hauska G, Piña AL. The vertebrate homolog of sulfide-quinone reductase is expressed in mitochondria of neuronal tissues. Neuroscience 2011;199:1–12. https://doi.org/10.1016/j.neuroscience.2011.10.044.
Szabo C, Ransy C, Módis K, Andriamihaja M, Murghes B, Coletta C, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol 2014;171(8):2099–122. https://doi.org/10.1111/bph.12369.
Módis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 2014;171(8):2123–46. https://doi.org/10.1111/bph.12368.
Blachier F, Davila AM, Mimoun S, Benetti PH, Atanasiu C, Andriamihaja M, et al. Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids 2010;39(2):335–47. https://doi.org/10.1007/s00726-009-0445-2.
Kabil O, Banerjee R. Characterization of patient mutations in human persulfide dioxygenase (ETHE1) involved in H2S catabolism. J Biol Chem 2012;287(53):44561–67. https://doi.org/10.1074/jbc.M112.407411.
Hildebrandt TM, Di Meo I, Zeviani M, Viscomi C, Braun HP. Proteome adaptations in Ethe1-deficient mice indicate a role in lipid catabolism and cytoskeleton organization via post-translational protein modifications. Biosci Rep 2013;33(4). https://doi.org/10.1042/BSR20130051.pii:e00052.
Vitvitsky V, Kabil O, Banerjee R. High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Redox Signal 2012;17(1):22–31. https://doi.org/10.1089/ars.2011.4310.
Olson KR. Hydrogen sulfide and oxygen sensing: implications in cardiorespiratory control. J Exp Biol 2008;211(Pt 17):2727–34. https://doi.org/10.1242/jeb.010066.
Olson KR. Hydrogen sulfide is an oxygen sensor in the carotid body. Respir Physiol Neurobiol 2011;179(2–3):103–10. https://doi.org/10.1016/j.resp.2011.09.010.
Olson KR. Hydrogen sulfide as an oxygen sensor. Clin Chem Lab Med 2013;51(3):623–32. https://doi.org/10.1515/cclm-2012-0551.
Bełtowski J. Hypoxia in the renal medulla: implications for hydrogen sulfide signaling. J Pharmacol Exp Ther 2010;334(2):358–63. https://doi.org/10.1124/jpet.110.166637.
Bos EM, van Goor H, Joles JA, Whiteman M, Leuvenink HG. Hydrogen sulfide – physiological properties and therapeutic potential in ischaemia. Br J Pharmacol 2014. https://doi.org/10.1111/bph.12869. [in press]
Bełtowski J. Endogenous hydrogen sulfide in perivascular adipose tissue: role in the regulation of vascular tone in physiology and pathology. Can J Physiol Pharmacol 2013;91(11):889–98. https://doi.org/10.1139/cjpp-2013-0001.
Maenhaut N, Boydens C, Van de Voorde J. Hypoxia enhances the relaxing influenceof perivascular adipose tissue in isolated mice aorta. Eur J Pharmacol 2010;641(2–3):207–12. https://doi.org/10.1016/j.ejphar.2010.05.058.
Schleifenbaum J, Köhn C, Voblova N, Dubrovska G, Zavarirskaya O, Gloe T, et al. Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. J Hypertens 2010;28(9):1875–82. https://doi.org/10.1097/HJH.0b013e32833c20d5.
Módis K, Panopoulos P, Coletta C, Papapetropoulos A, Szabo C. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem Pharmacol 2013;86(9):1311–9. https://doi.org/10.1016/j.bcp.2013.08.064.
Módis K, Coletta C, Erdé lyi K, Papapetropoulos A, Szabo C. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 2013;27(2):601–11. https://doi.org/10.1096/fj.12-216507.
Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, et al. H2S signals through protein S-sulfhydration. Sci Signal 2009;2(96):ra72. https://doi.org/10.1126/scisignal.2000464.
Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 2011;109(11):1259–68. https://doi.org/10.1161/CIRCRESAHA.111.240242.
Krishnan N, Fu C, Pappin DJ, Tonks NK. H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal 2011;4(203):ra86. https://doi.org/10.1126/scisignal.2002329.
Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, et al. Hydrogen sulfidelinked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 2012;45(1):13–24. https://doi.org/10.1016/j.molcel.2011.10.021.
Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, et al. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 2013;18(15):1906–19. https://doi.org/10.1089/ars.2012.4645.
Guo C, Liang F, Shah Masood W, Yan X. Hydrogen sulfide protected gastric epithelial cell from ischemia/reperfusion injury by Keap1 S-sulfhydration, MAPK dependent anti-apoptosis and NF-κB dependent anti-inflammation pathway. Eur J Pharmacol 2014;725:70–8. https://doi.org/10.1016/j.ejphar.2014.01.009.
Altaany Z, Ju Y, Yang G, Wang R. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal 2014;7(342):ra87. https://doi.org/10.1126/scisignal.2005478.
Vandiver MS, Paul BD, Xu R, Karuppagounder S, Rao F, Snowman AM, et al. Sulfhydration mediates neuroprotective actions of parkin. Nat Commun 2013;4:1626. https://doi.org/10.1038/ncomms2623.
Mazza R, Pasqua T, Cerra MC, Angelone T, Gattuso A. Akt/eNOS signaling and PLN S-sulfhydration are involved in H2S-dependent cardiac effects in frog and rat. Am J Physiol Regul Integr Comp Physiol 2013;305(4):R443–51. https://doi.org/10.1152/ajpregu.00088.2013.
Liu DH, Huang X, Meng XM, Zhang CM, Lu HL, Kim YC, et al. Exogenous H2S enhances mice gastric smooth muscle tension through S-sulfhydration of Kv4.3, mediating the inhibition of the voltage-dependent potassium current. Neurogastroenterol Motil 2014;26(12):1705–16. https://doi.org/10.1111/nmo.12451.
Zhao K, Ju Y, Li S, Altaany Z, Wang R, Yang G. S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair. EMBO Rep 2014;15(7):792–800. https://doi.org/10.1002/embr.201338213.
Stubbert D, Prysyazhna O, Rudyk O, Scotcher J, Burgoyne JR, Eaton P. Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide. Hypertension 2014;64(6):1344–51. https://doi.org/10.1161/HYPERTENSIONAHA.114.04281.
Ono K, Akaike T, Sawa T, Kumagai Y, Wink DA, Tantillo DJ, et al. Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic Biol Med 2014. https://doi.org/10.1016/j.freeradbiomed.2014.09.007 [in press], pii:S0891-5849(14)00426-2.
Greiner R, Pálinkás Z, Bäsell K, Becher D, Antelmann H, Nagy P, et al. Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal 2013;19(15):1749–65. https://doi.org/10.1089/ars.2012.5041.
Koike S, Ogasawara Y, Shibuya N, Kimura H, Ishii K. Polysulfide exerts a protective effect against cytotoxicity caused by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett 2013;587(21):3548–55. https://doi.org/10.1016/j.febslet.2013.09.013.
Filipovic MR, Miljkovic JLJ, Nauser T, Royzen M, Klos K, Shubina T, et al. Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J Am Chem Soc 2012;134(29):12016–27. https://doi.org/10.1021/ja3009693.
Bruce King S. Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides. Free Radic Biol Med 2013;55:1–7. https://doi.org/10.1016/j.freeradbiomed.2012.11.005.
Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, et al. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulfide. Biochem Biophys Res Commun 2006;343(1):303–10.
Ondrias K, Stasko A, Cacanyiova S, Sulova Z, Krizanova O, Kristek F, et al. H2S and HS~ donor NaHS releases nitric oxide from nitrosothiols, metal nitrosyl complex, brain homogenate and murine L1210 leukaemia cells. Pflugers Arch 2008;457(2):271–9. https://doi.org/10.1007/s00424-008-0519-0.
Cortese-Krott MM, Fernandez BO, Santos JL, Mergia E, Grman M, Nagy P, et al. Nitrosopersulfide (SSNO~) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide. Redox Biol 2014;2:234-44. https://doi.org/10.1016/j.redox.2013.12.031 [eCollection 2014].
Yong QC, Hu LF, Wang S, Huang D, Bian JS. Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc Res 2010;88(3):482–91. https://doi.org/10.1093/cvr/cvq248.
Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V, Zhou L, et al. HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization. Antioxid Redox Signal 2013;19(11):1185–97. https://doi.org/10.1089/ars.2012.5057.
Gao WD, Murray CI, Tian Y, Zhong X, DuMond JF, Shen X, et al. Nitroxylmediated disulfide bond formation between cardiac myofilament cysteines enhances contractile function. Circ Res 2012;111(8):1002–11.
Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, et al. H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 2014;5:4381. https://doi.org/10.1038/ncomms5381.
Castiglione N, Rinaldo S, Giardina G, Stelitano V, Cutruzzola F. Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012;17(4):684–716. https://doi.org/10.1089/ars.2011.4196.
Miljkovic JLJ, Kenkel I, Ivanović-Burmazović I, Filipovic MR. Generation of HNO and HSNO from nitrite by heme-iron-catalyzed metabolism with H2S. Angew Chem Int Ed Engl 2013;52(46):12061–64. https://doi.org/10.1002/anie.201305669.
Nishida M, Toyama T, Akaike T. Role of 8-nitro-cGMP and its redox regulation in cardiovascular electrophilic signaling. J Mol Cell Cardiol 2014;73:10-7. https://doi.org/10.1016/j.yjmcc.2014.02.003.
Tokutomi Y1, Kataoka K, Yamamoto E, Nakamura T, Fukuda M, Nako H, et al. Vascular responses to 8-nitro-cyclic GMP in non-diabetic and diabetic mice. Br J Pharmacol 2011;162(8):1884–93. https://doi.org/10.1111/j.1476-5381.2011.01201.x.
Sawa T, Zaki MH, Okamoto T, Akuta T, Tokutomi Y, Kim-Mitsuyama S, et al. Protein S-guanylation by the biological signal 8-nitroguanosine 3′,5′-cyclic monophosphate. Nat Chem Biol 2007;3(11):727–35.
Nishida M, Sawa T, Kitajima N, Ono K, Inoue H, Ihara H, et al. Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol 2012;8(8):714–24. https://doi.org/10.1038/nchembio.1018.
Pietri R, Román-Morales E, López-Garriga J. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid Redox Signal 2011;15(2):393–404. https://doi.org/10.1089/ars.2010.3698.
Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice. Science 2005;308(5721):518.
Blackstone E, Roth MB. Suspended animation-like state protects mice from lethal hypoxia. Shock 2007;27(4):370–2.
Bos EM, Leuvenink HG, Snijder PM, Kloosterhuis NJ, Hillebrands JL, Leemans JC, et al. Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury. J Am Soc Nephrol 2009;20(9):1901–5. https://doi.org/10.1681/ASN.2008121269.
Collman JP, Ghosh S, Dey A, Decréau RA. Using a functional enzyme model to understand the chemistry behind hydrogen sulfide induced hibernation. Proc Natl Acad Sci USA 2009;106(52):22090–95. https://doi.org/10.1073/pnas.
Pálinkás Z, Furtmüller PG, Nagy A, Jakopitsch C, Pirker KF, Magierowski M, et al. Interactions of hydrogen sulfide with myeloperoxidase. Br J Pharmacol 2014. https://doi.org/10.1111/bph.12769 [in press].
Searcy DG. HS−:O2 oxidoreductase activity of Cu, Zn superoxide dismutase. Arch Biochem Biophys 1996;334(1):50–8.
Szabo C, Coletta C, Chao C, Módis K, Szczesny B, Papapetropoulos A, et al. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci USA 2013;110(30):12474–79. https://doi.org/10.1073/pnas.1306241110.
Ostrakhovitch EA, Akakura S, Sanokawa-Akakura R, Goodwin S, Tabibzadeh S. Dedifferentiation of cancer cells following recovery from a potentially lethal damage is mediated by H2S-Nampt. Exp Cell Res 2014. https://doi.org/10.1016/j.yexcr.2014.09.027.. pii:S0014-4827(14)00432-7.
Coletta C, Szabo C. Potential role of hydrogen sulfide in the pathogenesis of vascular dysfunction in septic shock. Curr Vasc Pharmacol 2013;11(2):208–21.
Ang AD, Rivers-Auty J, Hegde A, Ishii I, Bhatia M. The effect of CSE gene deletion in caerulein-induced acute pancreatitis in the mouse. Am J Physiol Gastrointest Liver Physiol 2013;305(10):G712–21. https://doi.org/10.1152/ajpgi.00044.2013.
Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 2013;85(5):689–703. https://doi.org/10.1016/j.bcp.2012.10.019.
Mijušković A, Oreščanin-Dušić Z, Nikolić-Kokić A, Slavić M, Spasić MB, Spasojević I, et al. Comparison of the effects of methanethiol and sodium sulphide on uterine contractile activity. Pharmacol Rep 2014;66(3):373–9. https://doi.org/10.1016/j.pharep.2013.12.012.
Bekpinar S, Unlucerci Y, Uysal M, Gurdol F. Propargylglycine aggravates liver damage in LPS-treated rats: possible relation of nitrosative stress with the inhibition of H2S formation. Pharmacol Rep 2014;66(5):897–901. https://doi.org/10.1016/j.pharep.2014.05.014.
Sikora M, Drapala A, Ufnal M. Exogenous hydrogen sulfide causes different hemodynamic effects in normotensive and hypertensive rats via neurogenic mechanisms. Pharmacol Rep 2014;66(5):751–8. https://doi.org/10.1016/j.pharep.2014.04.004.
Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 2010;12(10):1147–54. https://doi.org/10.1089/ars.2009.2899.
https://doi.org/clinicaltrials.gov/ct2/results?term=hydrogen+sulfide&Search=Searchct2/results?term=hydrogen+sulfide&Search=Search [accessed 29.11.14].
Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 2008;117(18):2351–60. https://doi.org/10.1161/CIRCULATIONAHA.107.753467.
Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 2009;47(1):103–13. https://doi.org/10.1016/j.free-radbiomed.2009.04.014.
Kashfi K. Anti-cancer activity of new designer hydrogen sulfide-donating hybrids. Antioxid Redox Signal 2014;20(5):831–46. https://doi.org/10.1089/ars.2013.5308.
Wei WB, Hu X, Zhuang XD, Liao LZ, Li WD. GYY4137, a novel hydrogen sulfide-releasing molecule, likely protects against high glucose-induced cytotoxicity by activation of the AMPK/mTOR signal pathway in H9c2 cells. Mol Cell Biochem 2014;389(1–2):249–56. https://doi.org/10.1007/s11010-013-1946-6.
Li L, Fox B, Keeble J, Salto-Tellez M, Winyard PG, Wood ME, et al. The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J Cell Mol Med 2013;17(3):365–76. https://doi.org/10.1111/jcmm.12016.
Grambow E, Mueller-Graf F, Delyagina E, Frank M, Kuhla A, Vollmar B. Effect of the hydrogen sulfide donor GYY4137 on platelet activation and microvascular thrombus formation in mice. Platelets 2014;25(3):166–74. https://doi.org/10.3109/09537104.2013.786823.
Yang HY, Wu ZY, Wood M, Whiteman M, Bian JS. Hydrogen sulfide attenuates opioid dependence by suppression of adenylate cyclase/cAMP pathway. Antioxid Redox Signal 2014;20(1):31–41. https://doi.org/10.1089/ars.2012.5119.
Wang K, Ahmad S, Cai M, Rennie J, Fujisawa T, Crispi F, et al. Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation 2013;127(25):2514–22. https://doi.org/10.1161/CIRCULATIONAHA.113.001631.
Liu Z, Han Y, Li L, Lu H, Meng G, Li X, et al. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E−/−mice. Br J Pharmacol 2013;169(8):1795–809. https://doi.org/10.1111/bph.12246.
Vadivel A, Alphonse RS, Ionescu L, Machado DS, O’Reilly M, Eaton F, et al. Exogenous hydrogen sulfide (H2S) protects alveolar growth in experimental O2-induced neonatal lung injury. PLOS ONE 2014;9(3):e90965. https://doi.org/10.1371/journal.pone.0090965 [eCollection 2014].
Wang Q, Liu HR, Mu Q, Rose P, Zhu YZ. S-propargyl-cysteine protects both adult rat hearts and neonatal cardiomyocytes from ischemia/hypoxia injury: the contribution of the hydrogen sulfide-mediated pathway. J Cardiovasc Pharmacol 2009;54(2):139–46. https://doi.org/10.1097/FJC.0b013e3181ac8e12.
Wang Q, Wang XL, Liu HR, Rose P, Zhu YZ. Protective effects of cysteine analogues on acute myocardial ischemia: novel modulators of endogenous H2S production. Antioxid Redox Signal 2010;12(10):1155–65. https://doi.org/10.1089/ars.2009.2947.
Gong QH, Pan LL, Liu XH, Wang Q, Huang H, Zhu YZ. S-propargyl-cysteine (ZYZ-802), a sulfur-containing amino acid, attenuates beta-amyloid-induced cognitive deficits and pro-inflammatory response: involvement of ERK1/2 and NF-ΚB pathway in rats. Amino Acids 2011;40(2):601–10. https://doi.org/10.1007/s00726-010-0685-1.
Gong QH, Wang Q, Pan LL, Liu XH, Xin H, Zhu YZ. S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: involvement of TNF signaling and NF-KB pathway in rats. Brain Behav Immun 2011;25(1):110–9. https://doi.org/10.1016/j.bbi.201009.001.
Ma K, Liu Y, Zhu Q, Liu CH, Duan JL, Tan BK, et al. H2S donor, S-propargylcysteine, increases CSE in SGC-7901 and cancer-induced mice: evidence for a novel anti-cancer effect of endogenous H2S? PLoS ONE 2011;6(6):e20525. https://doi.org/10.1371/journal.pone.0020525.
Pan LL, Liu XH, Gong QH, Zhu YZ. S-propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism. Amino Acids 2011;41(1):205–15. https://doi.org/10.1007/s00726-011-0834-1.
Pan LL, Liu XH, Zheng HM, Yang HB, Gong QH, Zhu YZ. S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuated tumor necrosis factor-α-induced inflammatory signaling and dysfunction in endothelial cells. Int J Cardiol 2012;155(2):327–32. https://doi.org/10.1016/j.ijcard.201112.059.
Sidhapuriwala JN, Hegde A, Ang AD, Zhu YZ, Bhatia M. Effects of S-propargylcysteine (SPRC) in caerulein-induced acute pancreatitis in mice. PLoS ONE 2012;7(3):e32574. https://doi.org/10.1371/journal.pone.0032574.
Huang C, Kan J, Liu X, Ma F, Tran BH, Zou Y, et al. Cardioprotective effects of a novel hydrogen sulfide agent-controlled release formulation of S-propargyl-cysteine on heart failure rats and molecular mechanisms. PLoS ONE 2013;8(7):e69205. https://doi.org/10.1371/journal.pone.0069205.
Kan J, Guo W, Huang C, Bao G, Zhu Y, Zhu YZ. S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid Redox Signal 2014;20(15):2303–16. https://doi.org/10.1089/ars.2013.5449.
Sparatore A, Perrino E, Tazzari V, Giustarini D, Rossi R, Rossoni G, et al. Pharmacological profile of a novel H2S-releasing aspirin. Free Radic Biol Med 2009;46(5):586–92. https://doi.org/10.1016/j.freeradbiomed.2008.11.013.
Wallace JL, Caliendo G, Santagada V, Cirino G, Fiorucci S. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 2007;132(1):261–71.
Liu L, Cui J, Song CJ, Bian JS, Sparatore A, Soldato PD, et al. H2S-releasing aspirin protects against aspirin-induced gastric injury via reducing oxidative stress. PLoS ONE 2012;7(9):e46301. https://doi.org/10.1371/journal.pone.0046.301.
Chan MV, Wallace JL. Hydrogen sulfide-based therapeutics and gastrointestinal diseases: translating physiology to treatments. Am J Physiol Gastrointest Liver Physiol 2013;305(7):G467–73. https://doi.org/10.1152/ajpgi.00169.2013.
Pircher J, Fochler F, Czermak T, Mannell H, Kraemer BF, Wörnle M, et al. Hydrogen sulfide-releasing aspirin derivative ACS14 exerts strong antithrombotic effects in vitro and in vivo. Arterioscler Thromb Vasc Biol 2012;32(12):2884–91. https://doi.org/10.1161/ATVBAHA.112.3006.27.
Gao L, Cheng C, Sparatore A, Zhang H, Wang C. Hydrogen sulfide inhibits human platelet aggregation in vitro in part by interfering gap junction channels: effects of ACS14, a hydrogen sulfide-releasing aspirin. Heart Lung Circ 2014. https://doi.org/10.1016/j.hlc.2014.05.019 [in press], pii:S1443–9506(14)00515-0.
Giustarini D, Del Soldato P, Sparatore A, Rossi R. Modulation of thiol homeostasis induced by H2S-releasing aspirin. Free Radic Biol Med 2010;48(9):1263–72. https://doi.org/10.1016/j.freeradbiomed.2010.02.014.
Rossoni G, Manfredi B, Tazzari V, Sparatore A, Trivulzio S, Del Soldato P, et al. Activity of a new hydrogen sulfide-releasing aspirin (ACS14) on pathological cardiovascular alterations induced by glutathione depletion in rats. Eur J Pharmacol 2010;648(1–3):139–45. https://doi.org/10.1016/j.ejphar.2010.08.039.
Osborne NN, Ji D, Majid AS, Del Soldata P, Sparatore A. Glutamate oxidative injury to RGC-5 cells in culture is necrostatin sensitive and blunted by a hydrogen sulfide (H2S)-releasing derivative of aspirin (ACS14). Neurochem Int 2012;60(4):365–78. https://doi.org/10.1016/j.neuint.2012.01.015.
Zhang H, Guo C, Zhang A, Fan Y, Gu T, Wu D, et al. Effect of S-aspirin, a novel hydrogen-sulfide-releasing aspirin (ACS14), on atherosclerosis in apoE-deficient mice. Eur J Pharmacol 2012;697(1–3):106–16. https://doi.org/10.1016/j.ejphar.2012.10.005.
Huang Q, Sparatore A, Del Soldato P, Wu L, Desai K. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells. PLOS ONE 2014;9(6):e97315. https://doi.org/10.1371/journal.pone.0097315 [eCollection 2014].
Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic Biol Med 2007;42(5):706–19.
Sidhapuriwala J, Li L, Sparatore A, Bhatia M, Moore PK. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. Eur J Pharmacol 2007;569(1–2):149–54.
Bhatia M, Sidhapuriwala JN, Sparatore A, Moore PK. Treatment with H2S-releasing diclofenac protects mice against acute pancreatitis-associated lung injury. Shock 2008;29(1):84–8.
Rossoni G, Sparatore A, Tazzari V, Manfredi B, Del Soldato P, Berti F. The hydrogen sulfide-releasing derivative of diclofenac protects against ischaemia-reperfusion injury in the isolated rabbit heart. Br J Pharmacol 2008;153(1):100–9.
Baskar R, Sparatore A, Del Soldato P, Moore PK. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur J Pharmacol 2008;594(1–3):1–8. https://doi.org/10.1016/j.ejphar.2008.07.029.
Frantzias J, Logan JG, Mollat P, Sparatore A, Del Soldato P, Ralston SH, et al. Hydrogen sulphide-releasing diclofenac derivatives inhibit breast cancer-induced osteoclastogenesis in vitro and prevent osteolysis ex vivo. Br J Pharmacol 2012;165(6):1914–25. https://doi.org/10.1111/j.1476-5381.2011.0170.4.x.
Zhang H, Zhang A, Guo C, Shi C, Zhang Y, Liu Q, et al. S-diclofenac protects against doxorubicin-induced cardiomyopathy in mice via ameliorating cardiac gap junction remodeling. PLoS ONE 2011;6(10):e26441. https://doi.org/10.1371/journal.pone.0026.441.
Campolo M, Esposito E, Ahmad A, Di Paola R, Wallace JL, Cuzzocrea S. A hydrogen sulfide-releasing cyclooxygenase inhibitor markedly accelerates recovery from experimental spinal cord injury. FASEB J 2013;27(11):4489–99. https://doi.org/10.1096/fj.13-234716.
Ekundi-Valentim E, Mesquita FP, Santos KT, de Paula MA, Florenzano J, Zanoni CI, et al. A comparative study on the anti-inflammatory effects of single oral doses of naproxen and its hydrogen sulfide (H2S)-releasing derivative ATB-346 in rats with carrageenan-induced synovitis. Med Gas Res 2013;3(1):24. https://doi.org/10.1186/2045-9912-3-24.
Elsheikh W, Blackler RW, Flannigan KL, Wallace JL. Enhanced chemopreventive effects of a hydrogen sulfide-releasing anti-inflammatory drug (ATB-346) in experimental colorectal cancer. Nitric Oxide 2014;41:131–7. https://doi.org/10.1016/j.niox.2014.04.006.
Distrutti E, Sediari L, Mencarelli A, Renga B, Orlandi S, Russo G, et al. 5-Amino-2-hydroxybenzoic acid 4-(5-thioxo-5H-[1,2]dithiol-3yl)-phenyl ester (ATB-429), a hydrogen sulfide-releasing derivative of mesalamine, exerts antinociceptive effects in a model of postinflammatory hypersensitivity. J Pharmacol Exp Ther 2006;319(1):447–58.
Chattopadhyay M, Kodela R, Nath N, Dastagirzada YM, Velázquez-Martínez CA, Boring D, et al. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: a general property and evidence of a tissue type-independent effect. Biochem Pharmacol 2012;83(6):715–22. https://doi.org/10.1016/j.bcp.2011.12.018.
Lee M, Tazzari V, Giustarini D, Rossi R, Sparatore A, Del Soldato P, et al. Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation: potential for treating Parkinson disease. J Biol Chem 2010;285(23):17318–28. https://doi.org/10.1074/jbc.M110.1152.61.
Xie L, Hu LF, Teo XQ, Tiong CX, Tazzari V, Sparatore A, et al. Therapeutic effect of hydrogen sulfide-releasing L-DOPA derivative ACS84 on 6-OHDA-induced Parkinson’s disease rat model. PLOS ONE 2013;8(4):e60200. https://doi.org/10.1371/journal.pone.0060.200.
Shukla N, Rossoni G, Hotston M, Sparatore A, Del Soldato P, Tazzari V, et al. Effect of hydrogen sulfide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int 2009;103(11):1522–9. https://doi.org/10.1111/j.1464-410X.2009.0841.5.x.
Muzaffar S, Jeremy JY, Sparatore A, Del Soldato P, Angelini GD, Shukla N. H2S-donating sildenafil (ACS6) inhibits superoxide formation and gp91phox expression in arterial endothelial cells: role of protein kinases A and G. Br J Pharmacol 2008;155(7):984–94. https://doi.org/10.1038/bjp.2008.326.
Liaw RL, Srilatha B, Adaikan PG. Effects of hydrogen sulfide on erectile function and its possible mechanism(s) of action. J Sex Med 2011;8(7):1853–64. https://doi.org/10.1111/j.1743-6109.2011.0227.9.x.
Tang XQ, Chen RQ, Ren YK, Soldato PD, Sparatore A, Zhuang YY, et al. ACS6, a hydrogen sulfide-donating derivative of sildenafil, inhibits homocysteine-induced apoptosis by preservation of mitochondrial function. Med Gas Res 2011;1(1):20. https://doi.org/10.1186/2045-9912-1-20.
Tang XQ, Chen RQ, Dong L, Ren YK, Del Soldato P, Sparatore A, et al. Role of paraoxonase-1 in the protection of hydrogen sulfide-donating sildenafil (ACS6) against homocysteine-induced neurotoxicity. J Mol Neurosci 2013;50(1):70–7. https://doi.org/10.1007/s12031-012-9862-x.
Shouk R, Abdou A, Shetty K, Sarkar D, Eid AH. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr Res 2014;34(2):106–15. https://doi.org/10.1016/j.nutres.2013.12.005.
Khatua TN, Adela R, Banerjee SK. Garlic and cardioprotection: insights into the molecular mechanisms. Can J Physiol Pharmacol 2013;91(6):448–58. https://doi.org/10.1139/cjpp-2012-0315.
Capasso A. Antioxidant action and therapeutic efficacy of Allium sativum L.. Molecules 2013;18(1):690–700. https://doi.org/10.3390/molecules18010690.
Citi V, Martelli A, Testai L, Marino A, Breschi MC, Calderone V. Hydrogen sulfide releasing capacity of natural isothiocyanates: is it a reliable explanation for the multiple biological effects of Brassicaceae? Planta Med 2014;80(8–9):610–3. https://doi.org/10.1055/s-0034-1368591.
Wiliński J, Somogyi E, Góralska M, Wiliński B, Czarnecka D. Ramipril enhances the endogenous hydrogen sulfide tissue concentration in mouse heart and brain. Folia Med Cracov 2008;49(3–4):123–30.
Wiliński B, Wiliński J, Somogyi E, Góralska M, Piotrowska J. Ramipril affects hydrogen sulfide generation in mouse liver and kidney. Folia Biol (Krakow) 2010;58(3–4):177–80.
Wiliński B, Wiliński J, Somogyi E, Piotrowska J, Góralska M. Amlodipine affects endogenous hydrogen sulfide tissue concentrations in different mouse organs. Folia Med Cracov 2011;51(1–4):29–35.
Wiliński B, Wiliński J, Somogyi E, Piotrowska J, Góralska M. Atorvastatin affects the tissue concentration of hydrogen sulfide in mouse kidneys and other organs. Pharmacol Rep 2011;63(1):184–8.
Wiliński B, Wiliński J, Somogyi E, Piotrowska J, Góralska M. Digoxin increases hydrogen sulfide concentrations in brain, heart and kidney tissues in mice. Pharmacol Rep 2011;63(5):1243–7.
Wiliński B, Wiliński J, Somogyi E, Piotrowska J, Opoka W. Vitamin D3 (cholecalciferol) boosts hydrogen sulfide tissue concentrations in heart and other mouse organs. Folia Biol (Krakow) 2012;60(3–4):243–7.
Bilska A, Iciek M, Kwiecień I, Kaniecki K, Paliborek M, Somogyi E, et al. Effects of aspirin on the levels of hydrogen sulfide and sulfane sulfur in mouse tissues. Pharmacol Rep 2010;62(2):304–10.
Wiliński B, Wiliński J, Somogyi E, Piotrowska J, Opoka W. Metformin raises hydrogen sulfide tissue concentrations in various mouse organs. Pharmacol Rep 2013;65(3):737–42.
Xu Y, Du HP, Li J, Xu R, Wang YL, You SJ, et al. Statins upregulate cystathionine γ-lyase transcription and H2S generation via activating Akt signaling in macrophage. Pharmacol Res 2014;87:18–25. https://doi.org/10.1016/j.phrs.2014.06.006.
Wójcicka G, Jamroz-Wiśniewska A, Atanasova P, Chaldakov GN, Chylińska-Kula B, Bełtowski J. Differential effects of statins on endogenous H2S formation in perivascular adipose tissue. Pharmacol Res 2011;63(1):68–76. https://doi.org/10.1016/j.phrs.2010.10.011.
Bełtowski J, Jamroz-Wiśniewska A. Modulation of H2S metabolism by statins: a new aspect of cardiovascular pharmacology. Antioxid Redox Signal 2012;17(1):81–94. https://doi.org/10.1089/ars.2011.4358.
Wiliński B, Wiliński J, Somogyi E, Gó ralska M, Piotrowska J. Paracetamol (acetaminophen) decreases hydrogen sulfide tissue concentration in brain but increases it in the heart, liver and kidney in mice. Folia Biol (Krakow) 2011;59(1–2):41–4.
Wiliński B, Wiliński J, Somogyi E, Piotrowska J, Gó ralska M, Macura B. Carvedilol induces endogenous hydrogen sulfide tissue concentration changes in various mouse organs. Folia Biol (Krakow) 2011;59(3–4):151–5.
Salloum FN, Chau VQ, Hoke NN, Abbate A, Varma A, Ockaili RA, et al. Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase g-dependent generation of hydrogen sulfide. Circulation 2009;120(Suppl. 11):S31–6. https://doi.org/10.1161/CIRCULATIONAHA.108.843979.
Brancaleone V, Vellecco V, Matassa DS, d’Emmanuele di Villa Bianca R, Sorrentino R, Ianaro A, et al. Crucial role of androgen receptor in vascular H2S biosynthesis induced by testosterone. Br J Pharmacol 2014. https://doi.org/10.1111/bph.12740. [in press]
Fu X, Zhou K, Gao Q, Zheng S, Chen H, Li P, et al. 17β-Estradiol attenuates atherosclerosis development: the possible role of hydrogen sulfide. Int J Cardiol 2013;167(3):1061–3. https://doi.org/10.1016/j.ijcard.2012.10.071.
Zhou K, Gao Q, Zheng S, Pan S, Li P, Suo K, et al. 17β-Estradiol induces vasorelaxation by stimulating endothelial hydrogen sulfide release. Mol Hum Reprod 2013;19(3):169–76. https://doi.org/10.1093/molehr/gas044.
Bucci M, Vellecco V, Cantalupo A, Brancaleone V, Zhou Z, Evangelista S, et al. Hydrogen sulfide accounts for the peripheral vascular effects of zofenopril independently of ACE inhibition. Cardiovasc Res 2014;102(1):138–47. https://doi.org/10.1093/cvr/cvu026.
Olson KR, Deleon ER, Gao Y, Hurley K, Sadauskas V, Batz C, et al. Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Comp Physiol 2013;305(6):R592–603. https://doi.org/10.1152/ajpregu.00421.2012.
Sakaguchi M, Marutani E, Shin HS, Chen W, Hanaoka K, Xian M, et al. Sodium thiosulfate attenuates acute lung injury in mice. Anesthesiology 2014;121(6):1248–57. https://doi.org/10.1097/ALN.0000000000000456.
Snijder PM, Frenay AS, de Boer RA, Pasch A, Hillebrands J, Leuvenink HG, et al. Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats. Br J Pharmacol 2014. https://doi.org/10.1111/bph.12825. [in press]
Guranowski A, Wojdyła AM, Zimny J, Wypijewska A, Kowalska J, Łukaszewicz M, et al. Recognition of different nucleotidyl-derivatives as substrates of reactions catalyzed by various HIT-proteins. New J Chem 2010;34:888–93.
Ozga M, Dolot R, Janicka M, Kaczmarek R, Krakowiak A. Histidine triad nucleotide-binding protein 1 (HINT-1) phosphoramidase transforms nucleoside 5′-O-phosphorothioates to nucleoside 5′-O-phosphates. J Biol Chem 2010;285(52):40809–18. https://doi.org/10.1074/jbc.M110.162065.
Bretes E, Wojdyła-Mamoń AM, Kowalska J, Jemielity J, Kaczmarek R, Baraniak J, et al. Hint2, the mitochondrial nucleoside 5′-phosphoramidate hydrolase; properties of the homogeneous protein from sheep (Ovis aries) liver. Acta Biochim Pol 2013;60(2):249–54.
Krakowiak A, Pawłowska R, Kocoń-Rębowska B, Dolot R, Stec WJ. Interactions of cellular histidine triad nucleotide binding protein 1 with nucleosides 5′-O-monophosphorothioate and their derivatives – implication for desulfuration process in the cell. Biochim Biophys Acta 2014;1840(12):3357–66. https://doi.org/10.1016/j.bbagen.2014.08.016.
Bełtowski J, Guranowski A, Jamroz-Wiśniewska A, Korolczuk A, Wojtak A. Nucleoside monophosphorothioates as the new hydrogen sulfide precursors with unique properties. Pharmacol Res 2014;81:34–43. https://doi.org/10.1016/j.phrs.2014.01.003.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bełtowski, J. Hydrogen sulfide in pharmacology and medicine — An update. Pharmacol. Rep 67, 647–658 (2015). https://doi.org/10.1016/j.pharep.2015.01.005
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1016/j.pharep.2015.01.005