Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Modelo de identificación de fuentes sonoras. Aplicación al ruido del motor de ...
Información de la revista
Vol. 7. Núm. 3.
Páginas 34-41 (Julio 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 7. Núm. 3.
Páginas 34-41 (Julio 2010)
Open Access
Modelo de identificación de fuentes sonoras. Aplicación al ruido del motor de un automóvil
Visitas
3696
M.D. Redel-Macías
, D. Berckmans**, A.J. Cubero-Atienza*
* Universidad de Córdoba, Escuela Politécnica Superior, Campus de Rabanales, Edificio Leonardo da Vinci, Ctra. Madrid km 396, 14071, Córdoba, España
** Dt. Mechanical Engineering Katholieke Universiteit Leuven, Celestijnenlaan 300B, B-3001 Leuven, Belgium
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen

La Directiva 49/2002/CE de la UE obliga a los fabricantes de vehículos a certificar las emisiones de ruido al exterior, estableciendo importantes restricciones al respecto. Por lo tanto, resulta imperativo establecer modelos que identifiquen las fuentes de ruido en un vehículo, así como la exactitud de los mismos. En este artículo se presenta un modelo de identificación de fuentes sonoras para el estudio y caracterización del ruido del motor en vehículos. El ruido es experimentalmente caracterizado mediante la técnica de substitución de monopolos adaptado al método general de síntesis de sonido. La técnica de identificación resultante se ilustra mediante varios casos en estudio variando el número de monopolos y la posición del receptor, determinando la precisión del sistema en cada caso.Los resultados indican que el error cometido en el caso más desfavorable es inferior a 15 dB.

Palabras Clave:
Síntesis de sonido
Identificación
“Loudness”
Calidad del Sonido
ASQ
El Texto completo está disponible en PDF
Referencias
[Bai, 1992]
M.R. Bai.
Application of bem (boundary element method)-based acoustic holography to radiation analisys of sound sources with arbitrarily shaped geometries.
Journal of the Acoustical Society of America, 92 (1992), pp. 533-549
[Berckmans et al., 2008]
D. Berckmans, K. Janssens, H. Van der Auweraer, P. Sas, W. Desmet.
Model-based synthesis of aircraft noise to quantify human perception of sound quality and annoyance.
Journal of Sound and Vibration, 311 (2008), pp. 1175-1195
[Berckmans et al., 2010]
D. Berckmans, P. Kindt, P. Sas, W. Desmet.
Evaluation of substitution monopole models for tire noise sound synthesis.
Mechanical Systems and Signal Processing, 24 (2010), pp. 240-255
[Biagiola and Figueroa, 2009]
S.I. Biagiola, J.L. Figueroa.
Identificación robusta de modelos Wiener y Hammerstein.
Revista Iberoamericana de Automática e Informática Industrial, 6 (2009), pp. 98-107
[Billingsley and Kinns, 1976]
J. Billingsley, R. Kinns.
The acoustic telescope.
Journal of Sound and Vibration, 48 (1976),
[Crocker, 1983]
M.J. Crocker.
Experimental methods for identifying sound sources on a machine.
Archiver of Acoustic, 8 (1983), pp. 293-316
[DeLillo et al., 2003]
T. DeLillo, V. Isakov, N. Valdivia, L.J. Wang.
The detection of surface vibrations from interior acoustical pressure.
Inverse Problems, 19 (2003), pp. 507-524
[Dumbacher and Brown, 1996]
S.M. Dumbacher, D.L. Brown.
Source imaging of irregularly sharped surfaces using inverse FRF method, Proceeding of ISMA21,
[Fedorov, 1972]
V.V. Fedorov.
Theory of optimal experiments.
Academic Press, (1972),
[García-Nieto et al., 2009]
S. García-Nieto, J.V. Salcedo, X. Blasco, M. Martinez.
Sistema de Control Borroso para el Proceso de Renovación de la carga en motores turbodiesel.
Revista Iberoamericana de Automática e Informática Industrial, 6 (2009), pp. 36-48
[Gelfand, 1998]
S.A. Gelfand.
Hearing: An Introduction to Psychological and Physiological Acoustic, Marcel Dekker, (1998),
[Goodwin and Payne, 1977]
G.C. Goodwin, R.L. Payne.
Dynamic system identification: Experiment design and data analysis.
Academic Press, (1977),
[Haro and E, 2008]
E. Haro.
Estimación de los parámetros físicos de un automóvil.
Revista Iberoamericana de Automática e Informática Indstrial, 5 (2008), pp. 28-35
[Hildebrand and Gervers, 2003]
R. Hildebrand, M. Gervers.
Identification for control: Optimal input design with respect to a worst case ν-gap cost function.
SIAM Journal on Control and Optimization, 41 (2003), pp. 1586-1608
[Holland and Nelson, 2003]
K.R. Holland, P.A. Nelson.
Sound source characterisation: the focussed beamformer vs the inverse method.
Proceeding of ICSV 10,
[Isakov and Wu, 2002]
V. Isakov, S.F. Wu.
On theory and application of the helmholtz equation least squares method in inverse acoustic.
Inverse Problems, 18 (2002), pp. 1147-1159
[Jacobsen and Liu, 2005]
F. Jacobsen, Y. Liu.
Nearfield acoustic holography with particle velocity transducers.
Journal of the Acoustical Society of America, 118 (2005), pp. 3139-3144
[Jansson and Hjalmarsson, 2005]
H. Jansson, H. Hjalmarsson.
Input design via LMIs admitting frecuancy-wise model specifications in confidence regions.
IEEE Transactions on Automatic Control, 50 (2005), pp. 1534-1549
[Kim and Nelson, 2004]
Y. Kim, P.A. Nelson.
Optimal regularisation for acoustic source reconstruction by inverse methods.
Journal of Sound and Vibration, (2004), pp. 275
[Kim and Lee, 1990]
G.T. Kim, B.H. Lee.
3-D sound source reconstruction and field reprediction using the helmholtz integral-equation.
Journal of Sound and Vibration, 136 (1990), pp. 245-261
[Louis, 1999]
A.K. Louis.
A unified approach to regularization methods for linear ill-posed problems.
Inverse Problems, 15 (1999), pp. 489-498
[Magalhães and Tenenbaum, 2004]
M.B.S. Magalhães, R.A. Tenenbaum.
Sound sources reconstruction techniques: A review of their evolution and new trends.
Acta Acustica United with Acustica, 90 (2004), pp. 199-220
[Maynard et al., 1985]
J.D. Maynard, E.G. Williams, Y. Lee.
Nearfield acoustic holography. 1.theory of generalized holography and the development of NAH.
Journal of the Acoustical Society of America, 78 (1985), pp. 1395-1413
[Nelson and Yoon, 2000]
P.A. Nelson, P.C. Yoon.
Estimation of acoustic soure strength by inverse methods: part 1, conditioning of the problem.
Journal of Sound and Vibration, 233 (2000), pp. 643-668
[Ochmann, 2004]
M. Ochmann.
The complex equivalent source method for sound propagation over an impedance plane.
Journal of the Acoustical Society of america, 116 (2004), pp. 3304-3311
[Ochmann, 1999]
M. Ochmann.
The full-field equations for acoustic radiation and scattering.
Journal of the Acoustical Society of America, 105 (1999), pp. 2574-2584
[Oliveira et al., 2008]
L.P.R. Oliveira, K. Janssens, P. Gajdatsy, H. Van der Auweraer, S.V. Paolo, P. Sas, W. Desmet.
Active sound quality control of engine induced cavity noise.
Mechanical Systems and Signal Processing, 23 (2008), pp. 476-488
[Rayess and Wu, 2000]
N. Rayess, S.F. Wu.
Experimental validations of the hels method for reconstructing acoustic radiation from a complex vibrating structure.
Journal of the Acoustical Society of America, 107 (2000), pp. 2955-2964
[Schumacher and Hansen, 2001]
A.P. Schumacher, P.C. Hansen.
Sound source reconstruction using inverse bem.
Proceeding of Inter- Noise,
[Timoney et al., 2004]
J. Timoney, et al.
Implementing Loudness models in Matlab.
Procceding of the 7TH International Conference on Digital Audio Effects,
[Verheij et al., 1996]
J.W. Verheij, L.J.M. Hopmans, R.M.J. Liebregts.
Use of a new source descriptor for designing quieter heavy road vehicles.
Proceedings of International Conference on Noise and Vibration Engineering,
[Verheij et al., 1994]
J.W. Verheij, A.N.J. Hoebrichts, D.J. Thompson.
Acoustical source strength characterisation for heavy road vehicle engines in connection with pass-by noise.
Third International Congress on air-and structure-borne sound and vibration,
[Verheij, 1992]
J.W. Verheij.
Reciprocity method for quantification of airborne sound transfer form machinery.
Second International Congress on air- and structure-borne sound and vibration,
[Veronesi and Maynard, 1989]
W.A. Veronesi, J.D. Maynard.
Digital holography reconstruction of sources with arbitrarily shaped surfaces.
Journal of Acoustical Society of America, 85 (1989), pp. 588-598
[Visser, 2004]
Visser, R. (2004). A boundary element approach to acoustic radiation and source identification. Phd thesis.
[Wang and Wu, 1997]
Z.X. Wang, S.F. Wu.
Helmholtz equation leastsquares method for reconstructing the acoustic pressure field.
Journal of the Acoustical Society of america, 102 (1997), pp. 2020-2032
[Whittle, 1973]
P. Whittle.
Some general points in the theory of optimal experimental design.
Journal of the Royal Statistical Society, 35 (1973), pp. 123-130
[Williams, 1999]
E.G. Williams.
Fourier Acoustics: Sound radiation and Nearfield Acoustical Holography.
Academic Press, (1999),
[Williams et al., 1980]
E.G. Williams, J.D. Maynard, E. Skudrzyk.
Sound source reconstructions using a microphone array.
Journal of Acoustical Society of America, 68 (1980), pp. 340-344
[Wu and Yu, 1998]
S.F. Wu, J.Y. Yu.
Reconstructing interior acoustic pressure fields via helmholtz equation least-squares method.
Journal of the Acoustical Society of America, 104 (1998), pp. 2054-2060
[Zwicker et al., 1984]
Zwicker, E., Fastl, H., Dallmayr, C. (1984). Basic program for calculating the loudness of sounds from their 1/3 oct band spectra according to ISO 532 B, Acustica, 55, pp. 63–67
Copyright © 2010. Elsevier España, S.L.. Todos los derechos reservados
Opciones de artículo
Herramientas