Buscar en
Revista Española de Cirugía Ortopédica y Traumatología
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología El cartílago de crecimiento: biología y biomecánica del desarrollo
Información de la revista
Vol. 49. Núm. 1.
Páginas 55-67 (Enero 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 49. Núm. 1.
Páginas 55-67 (Enero 2005)
Acceso a texto completo
El cartílago de crecimiento: biología y biomecánica del desarrollo
Growth cartilage: developmental biology and biomechanics
Visitas
19887
F. Shapiroa, F. Forriolb,
Autor para correspondencia
fforriol@unav.es

Correspondencia Departamento de Cirugía Ortopédica y Traumatología. Clinica Universitaria. Avda. Pío XII, 32. 31008 Pamplona. Navarra.
a Orthopaedic Research Laboratory. Department of Orthopaedic Surgery. Children's Hospital Boston. Harvard Medical School. Boston. MA. EE.UU
b Laboratorio de Ortopedia Experimental. Departamento de Cirugía Ortopédica y Traumatología. Universidad de Navarra. Pamplona
Este artículo ha recibido
Información del artículo
Introducción

El crecimiento óseo precisa de una intensa actividad anabólica que se centra, sobre todo, en la síntesis proteica. Cualquier alteración que afecte a la multiplicación celular y su diferenciación, la síntesis del colágeno o la formación de proteoglicanos puede producir un cambio patológico.

Revisión de la bibliografía

Los autores han llevado a cabo una profunda revisión bibliográfica referente al cartílago de crecimiento.

Conclusiones

Las hormonas actúan según diferentes patrones sobre el desarrollo esquelético, cambiando el grosor de las fisis y el índice y magnitud de su crecimiento. Hay factores locales en y alrededor de las epífisis unidos a los factores sistémicos (hormona de crecimiento, hormona tiroidea, estrógenos y andrógenos, glucocorticoides y vitamina D) que influyen sobre la función fisaria, sin olvidar que la modificación de los factores mecánicos puede producir importantes alteraciones en la magnitud del crecimiento y en su orientación.

Palabras clave:
cartílago crecimiento
hormonas
factores de crecimiento
biomecánica
Introduction

Bone growth requires intense anabolic activity centering mainly on protein synthesis. Any disturbance affecting cell multiplication and differentiation, collagen synthesis, or proteoglycan formation can produce a pathologic disorder.

Literature review

The literature on the growth cartilage has been reviewed in depth.

Conclusions

Hormones act in different ways on skeletal development, changing the thickness of the growth cartilage and the index and magnitude of growth. Local factors act in and around the growth cartilage, together with systemic factors (growth hormone, thyroid hormone, estrogens and androgens, glucocorticoids and vitamin D) that influence growth cartilage function. In addition, modifications in mechanical factors can produce important disturbances in the magnitude and direction of growth.

Key words:
growth cartilage
hormones
growth factors
biomechanics
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.A. McMahon, J.T. Bonner.
Tamaño y vida. Biblioteca Scientific American.
[2.]
J.W. Prichett.
Growth and predictions of growth in the upper extremity.
J Bone Joint Surg Am, 70A (1988), pp. 520-525
[3.]
C.T. Brighton.
Structure and function of the growth plate.
Clin Orthop, 136 (1978), pp. 22-32
[4.]
R.T. Ballock, R.J. O'Keefe.
The biology of the growth plate.
J Bone Joint Surg Am, 85A (2003), pp. 715-726
[5.]
M.C. Van der Meulen, R. Huiskes.
Why mechanobiology? A survey article.
J Biomech, 35 (2002), pp. 401-414
[6.]
B. Cohen, G.S. Chorney, D.P. Phillips, H.M. Dick, J.A. Buckwalter, A. Ratcliffe, et al.
The microstructural tensile properties and biochemical composition of the bovine distal femoral growth plate.
J Orthop Res, 10 (1992), pp. 263-275
[7.]
M. Rang.
The growth plate and its disorders.
[8.]
J. Cañadell.
Lesiones del cartílago de crecimiento.
Ponencia Oficial SECOT, Torremolinos, 20-24, (septiembre 1976),
[9.]
R.S. Siffert.
Experiments in epiphyseal growth and repair.
J Bone Joint Surg Am, 38A (1956), pp. 1077-1088
[10.]
C.T. Brighton.
Morphology and biochemistry of the growth plate.
Rheum Dis Clin North Am, 1 (1987), pp. 75-100
[11.]
J.P. Iannotti.
Growth plate phisiology and pathology.
Orthop Clin North America, 21 (1990), pp. 1-17
[12.]
N.F. Kember, H.A. Sissons.
Quantitative histology of the human growth plate.
J Bone Joint Surg Br, 58B (1976), pp. 426-435
[13.]
E.B. Hunziker.
Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes.
Microsc Res Tech, 28 (1994), pp. 505-519
[14.]
E.B. Hunziker, R.K. Schenk, L.M. Cruz-Orive.
Quantitation of chondrocyte performance in growth plate cartilage during longitudinal bone growth.
J Bone Joint Surg Am, 69-A (1987), pp. 162-173
[15.]
C.E. Farnum, N.J. Wilsman.
Converting a differentiation cascade into longitudinal growth: stereology and analysis of transgenic animals as tools for understanding growth plate function.
Curr Opin Orthop, 12 (2001), pp. 428-433
[16.]
Y. Kato, D. Gospodarowicz.
Sulfated proteoglycan synthesis by confluent cultures of rabbit costa chondrocytes grown in the presence of Fibroblast Growth Factor.
J Cell Biol, 100 (1985), pp. 477-485
[17.]
M. Iwamoto, A. Shimazu, K. Nakashima, F. Suzuki.
Kato. Reduction in basic Fibroblast Growth Factor receptor is coupled with terminal differentation of chondrocytes.
J Biol Chem, 266 (1991), pp. 461-467
[18.]
Y. Kato, M. Iwamoto.
Fibroblast Growth Factor is an inhibitor of chondrocyte terminal differentation.
J Biol Chem, 265 (1990), pp. 5903-5909
[19.]
F. Shapiro.
Developmental patterns in lower-extremity length discrepancies.
J Bone Joint Surg Am, 64A (1982), pp. 639-651
[20.]
W.W. Robertson.
Newest knowledge of the growth plate.
Clin Orthop, 253 (1990), pp. 270-278
[21.]
Jee WSS.
The skeletal tissues.
Cell and tissue biology, pp. 213-253
[22.]
D. Quacci, C. Dell'Orbo, U.E. Pazzaglia.
Morphological aspects of rat metaphyseal cartilage pericellular matrix.
J Anat, 171 (1990), pp. 193-205
[23.]
J.R. Hinchliffe, D.R. Johnson.
Growth of cartilage.
Cartilage, pp. 255-295
[24.]
I.A. Stokes, P.L. Mente, J.C. Iatridis, C.E. Farnum, D.D. Aronsson.
Enlargement of growth plate chondrocytes modulated by sustained mechanical loading.
J Bone Joint Surg Am, 84A (2002), pp. 1842-1848
[25.]
F. Seinsheimer, C.B. Sledge.
Parameters of longitudinal growth rate in rabbit epiphyseal growth plates.
J Bone Joint Surg Am, 63A (1981), pp. 627-630
[26.]
J. Trueta, J.D. Morgan.
The vascular contribution to osteogenesis. I. Studies by the injection method.
J Bone Joint Surg Br, 42B (1960), pp. 97-109
[27.]
B.K. Hall.
The embryonic development of bone.
American Scientist, 76 (1988), pp. 174-181
[28.]
H.M. Kronenberg.
Developmental regulation of the growth plate.
Nature, 423 (2003), pp. 332-336
[29.]
G.S. Salvesen, V.M. Dixit.
Caspases: intracellular signaling by proteolysis.
Cell, 91 (1997), pp. 443-446
[30.]
G. Silvestrini, P. Ballanti, F.R. Patacchioli, P. Mocetti, R. DiGrezia, B.M. Wedard, et al.
Evaluation of apoptosis and the glucocorticoid receptor in the cartilage growth and metaphyseal bone cells of rates after high-dose treatment with corticoesterone.
Bone, 26 (2000), pp. 33-42
[31.]
D.B. Pateder, R.A. Eliseev, R.J. O'Keefe, E.M. Schwarz, P. Okunieff, L.S. Constine, et al.
The role of autocrine growth factors in radiation damage to the ephiphyseal growth plate.
Radiat Res, 155 (2001), pp. 847-857
[32.]
N.J. Wilsman, C.E. Farnum, E.M. Leiferman, M. Fry, C. Barreto.
Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics.
J Orthop Res, 14 (1996), pp. 927-936
[33.]
C.R. Howlett.
The fine structure of proximal growth plate and metaphysis of the avian tibia-enchondral osteogenesis.
J Anat, 130 (1980), pp. 745-768
[34.]
G. Baltadjiev.
Stereological characteristics of the mesenchymal complex in the degenerative-osteogenic zone of the growth cartilage of the tibia of premature neonates.
Anat Anz Jena, 163 (1987), pp. 243-248
[35.]
P. Lacroix.
The organization of bone.
[36.]
F. Shapiro, M.E. Holtrop, M.J. Glimcher.
Organization and cellular biology of the perichondrial ossification groove of Ranvier.
J Bone Joint Surg Am, 59A (1977), pp. 703-723
[37.]
A. Langeskiöld, W. Edgren.
Imitation of chondrodysplasia by localized roentgen ray injury. An experimental study of bone growth.
Acta Chir Scand, 99 (1950), pp. 353-373
[38.]
R.S. Siffert.
The growth plate and its affections.
J Bone Joint Surg Am, 48A (1966), pp. 546-563
[39.]
G.G. Dale, W.R. Harris.
Prognosis of epiphyseal separation. An experimental study.
J Bone Joint Surg Br, 40B (1958), pp. 116-122
[40.]
J. Trueta, V.P. Amato.
The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia.
J Bone Joint Surg Br, 42B (1960), pp. 571-587
[41.]
J. Trueta, A. Trias.
The vascular contribution to osteogenesis. IV. The effect of pressure upon the epiphyseal cartilage of the rabbit.
J Bone Joint Surg Br, 43B (1961), pp. 800-813
[42.]
A. Langenskiöld.
The possibilities of eliminating premature partial closure of an epiphyseal plate caused by trauma or disease.
Acta Orthop Scand, 38 (1967), pp. 267-279
[43.]
J. Trueta, K. Little.
The vascular contribution to osteogenesis. II. Studies with the electron microscope.
J Bone Joint Surg Br, 42B (1960), pp. 367-376
[44.]
W.R. Harris, K.W. Hobson.
Histological changes in experimentally displaced upper femoral epiphysis in rabbits.
J Bone Joint Surg Br, 38B (1956), pp. 914-921
[45.]
H.K.W. Kim, P.H. Su, Y.S. Qiu.
Histopathologic changes in growth-plate cartilage following ischemic necrosis of the capital femoral epiphysis.
J Bone Joint Surg Am, 83A (2001), pp. 688-697
[46.]
F. Shapiro.
Pediatric orthopedic deformities. Basic science, diagnosis, and treatment.
[47.]
J.M. Wattenbarger, H.E. Gruber, L.S. Phieffer.
Physeal fractures, part I: Histologic features of bone, cartilage, and bar formation in a small animal model.
J Pediatr Orthop, 22 (2002), pp. 703-709
[48.]
R.B. Salter, W.R. Harris.
Injuries involving the epiphyseal plate.
J Bone Joint Surg Am, 45A (1963), pp. 587-622
[49.]
H.E. Gruber, L.S. Phieffer, J.M. Wattenbarger.
Physeal fractures, part II: Fate of interposed periosteum in a physeal fracture.
J Pediatr Orthop, 22 (2002), pp. 710-716
[50.]
A.M. Kuijpers-Jagtman, J.C. Maltha, J.H.M. Bex, J.G. Daggers.
The influence of vascular and periosteal interferences on the histological structure of the growth plates of long bones.
Anat Anz Jena, 164 (1987), pp. 245-254
[51.]
J. Trueta.
The influence of the blood supply in controlling bone growth.
Bull Hosp Joint Dis, 14 (1953), pp. 147-157
[52.]
W. Taillard, E. Morscher.
Die Beinlängenunterscheide.
Basel, Karger, (1965),
[53.]
Y. Tomita, T-M. Tsai, C. Steyers, L. Ogden, J.B. Jupiter, J.E. Kutz.
The role of the epiphyseal and metaphyseal circulations on longitudinal growth in the dog: An experimental study.
J Hand Surg, 11A (1986), pp. 375-382
[54.]
J.P. Iannotti, S. Naidu, Y. Noguchi, R.M. Hunt, C.T. Brighton.
Growth plate matrix vesicle biogenesis. The role of intracellular calcium.
Clin Orthop, 306 (1994), pp. 222-229
[55.]
A. Bjurholm, A. Kreicsberg, L. Terenius, M. Goldstein, M. Schultzberg.
Neuropeptide Y-tyrosine hydroxylase-and vasoactive intestinal polypeptide-immunoreactive nerves in bone and surrounding tissues.
J Auton Nerv Syst, 25 (1988), pp. 119-125
[56.]
E.L. Hill, R. Elde.
Distribution of CGRP-, VIP-, DBH, SPand NPY-immunoreactive nerves in the periosteum of the rat.
Cell Tiss Res, 264 (1991), pp. 469-480
[57.]
M. Hukkanen, Y.T. Konttinen, R.G. Rees, S. Santavirta, G. Terenghi, J.M. Polak.
Distribution of nerve endings and sensory neuropeptides in rat synovium, meniscus and bone.
Int J Tissue React, 15 (1992), pp. 1-10
[58.]
S.D. Brain, T.J. Williams, J.R. Tippins, H.R. Morris, I. Mac Intyre.
Calcitonin gene-related peptide is a potent vasodilator.
Nature, 313 (1985), pp. 54-56
[59.]
G.L. Garcés, M.E. Santandreu.
Longitudinal bone growth after sciatic denervation in rats.
J Bone Joint Surg Br, 70B (1988), pp. 315-318
[60.]
F. Arriola, F. Forriol, J. Cañadell.
Comportamiento morfológico del cartílago de crecimiento sometido a diferentes condiciones mecánicas (compresión, tensión y neutralización). Estudio experimental en corderos.
Rev Ortop Traumatol, 43 (1999), pp. 149-157
[61.]
M. Hukkanen, Y.T. Konttinen, S. Santavirta, L. Nordsletten, J.E. Madsen, R. Almaas, et al.
Effect of sciatic nerve section on neural ingrowth into the rat tibial fracture callus.
Clin Orthop, 311 (1995), pp. 247-257
[62.]
F. Hara-Irie, N. Amizuka, H. Ozawa.
Immunohistochemical and ultrastructural localization of CGRP-positive nerve fibers at epiphyseal trabecules facing the growth plate of rat femurs.
Bone, 18 (1996), pp. 29-39
[63.]
C.W. Thesingh, C.G. Groot, A.M. Wassenaar.
Transdifferentiation of hypertrophic chondrocytes into osteoblasts in murine fetal metatarsal bones, induced by co-cultured cerebrum.
Bone Miner, 12 (1991), pp. 25-40
[64.]
K. Edoff, C. Hildebrand.
Neuropeptide effects on rat chondrocytes and perichondrial cells in vitro.
Neuropeptides, 37 (2003), pp. 316-318
[65.]
B.D. Boyan, D.D. Dean, V.L. Sylvia, Z. Schwartz.
Steroid hormone action in musculoskeletal cells involves membrane receptor and nuclear receptor mechanisms.
Connect Tissue Res, 44 (2003), pp. 130-135
[66.]
N.J. Boudreau, P.L. Jones.
Extracellular matrix and integrin signalling: the shape of things to come.
Biochem J, 339 (1999), pp. 481-488
[67.]
A. Uchida, Y. Shimomura.
Effect of vitamin D3 on proteoglycan degradation of growth cartilage.
Clin Orthop, 230 (1988), pp. 245-250
[68.]
E.P. Amento, A.K. Bhalla, J.T. Kurnik, T.L. Clemens, M.F. Holick, S.M. Krane.
1,25-dihidroxyvitamin D3 induces maturation of the human monocyte cell line, U 937, and in association with a soluble lymphocyte factor augments mononuclear cell factor production.
J Clin Invest, 73 (1984), pp. 731-739
[69.]
K. Krohn, D. Haffner, U. Hugel, R. Himmele, G. Klaus, O. Mehls, et al.
1,25(OH)(2)D(3) and dihydrotestosterone interact to regulate proliferation and differentiation of epiphyseal chondrocytes.
Calcif Tissue Int, 73 (2003), pp. 400-410
[70.]
H. Robson, T. Siebler, S.M. Shalet, G.R. Williams, G.H. Interactions between.
IGF-I, glucocorticoids, and thyroid hormones during skeletal growth.
Pediatr Res, 52 (2002), pp. 137-147
[71.]
B.C.J. Van der Eerden, M. Karperien, J.M. Wit.
Systemic and local regulation of the growth plate.
Endocrine Rev, 24 (2003), pp. 782-801
[72.]
M. Philip, O. Moran, L. Lazar.
Growth without growth hormone.
J Pediatr Endocrinol Metab, 15 (2002), pp. 1267-1272
[73.]
M. Weise, S. De-Levi, K. Barnes, R.I. Gafni, V. Abad, J. Baron.
Effects of estrogen on growth plate senescence and epiphyseal fusion.
Proc Natl Acad Sci (USA), 98 (2001), pp. 6871-6876
[74.]
K.W. Kan, R.L. Cruess, B.I. Posner, H.J. Guyda, S. Solomon.
Hormone receptors in the epiphysial cartilage.
J Endocrinol, 103 (1984), pp. 125-131
[75.]
Z. Hochberg.
Mechanisms of steroid impairment of growth.
Horm Res, 58 (2002), pp. 33-38
[76.]
K. Balough, A.S. Kunin.
The effect of cortisone on the metabolism of epiphyseal cartilage.
Clin Orthop, 80 (1971), pp. 208-215
[77.]
O. Butenandt.
Rhumatoid arthritis and growth retardation in children: treatment with human growth hormone.
Eur J Pediatr, 130 (1979), pp. 15-28
[78.]
M.G. Erlich, A.L. Armstrong, G.R. Newman, M.W. Davis, H.J. Mankin.
Patterns of proteoglycan degradation by a neutral protease from human growth plate epphyseal cartilage.
J Bone Joint Surg Am, 64A (1982), pp. 1350-1354
[79.]
L.C. Dearden, H.D. Mosier, T. Espinosa.
Cortisone induced alterations of costal cartilage in single and in parabiosed rats.
Cell Tissue Res, 189 (1978), pp. 67-89
[80.]
R.A. Brown, J.A. Rees, C.D. McFarland, D. Lewinson, S.Y. Ali.
Microvascular invasion of rabbit growth plate cartilage and the influence of dexamethasone.
Bone Mineral, 9 (1990), pp. 35-47
[81.]
E. Bonucci, L.C. Dearden.
Matrix vesicles in aging cartilage.
Fed Proc, 35 (1976), pp. 163-168
[82.]
N. Blumenkrantz, G. Asboe-Hansen.
Cortisol effects on collagen biosynthesis in embryonic explants and in vitro hydroxylation of protocollagen.
Acta Endocrinol, 83 (1976), pp. 665-672
[83.]
J.H. Henderson, D.R. Carter.
Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures.
Bone, 31 (2002), pp. 645-653
[84.]
S. Zoricic, I. Maric, D. Bobinac, S. Vukicevic.
Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans.
J Anat, 202 (2003), pp. 269-277
[85.]
M. Sato, T. Ochi, T. Nakase, S. Hirota, Y. Kitamura, S. Nomura, et al.
Mechanical tension-stress induces expression of bone morphogenetic protein BMP-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis.
J Bone Miner Res, 14 (1999), pp. 1084-1095
[86.]
M.F. Carlevaro, S. Cermelli, R. Cancedda, F. Cancedda.
Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation.
J Cell Sci, 113 (2000), pp. 59-69
[87.]
H.P. Gerber, N. Ferrara.
Angiogenesis and bone growth factor.
Trends Cardiovasc Med, 10 (2000), pp. 223-228
[88.]
G. Hausler, M. Helmreich, S. Marlovits, M. Egerbacher.
Integrins and extracellular matrix in the human childhood and adolescent growth plate.
Calcif Tissue Int, 71 (2002), pp. 212-218
[89.]
A.A. Biewener, S.M. Swartz, J.E.A. Bertram.
Bone modeling during growth: dynamic strain equilibrium in the chick tibiotarsus.
Calcif Tissue Int, 39 (1986), pp. 390-395
[90.]
J.M. Delpech.
De L'Orthomorphie. 2 vol.
[91.]
M.R. Simon, P. Papierski.
Effects of experimental bipedalism on the growth of the femur and tibia in normal and hypophysectomized rats.
Acta anat, 114 (1982), pp. 321-329
[92.]
I.A. Stokes, P.L. Mente, J.C. Iatridis, C.E. Farnum, D.D. Aronsson.
Enlargement of growth plate chondrocytes modulated by sustained mechanical loading.
J Bone Joint Surg Am, 84A (2002), pp. 1842-1848
[93.]
H. Gelbke.
The influence of pressure and tension on growing bone in experiments with animals.
J Bone Joint Surg Am, 33A (1951), pp. 947-954
[94.]
N.O. Christensen.
Growth arrest by stapling.
Acta Orthop Scand, (1973), pp. 151
[95.]
F. Arriola, F. Forriol, J. Cañadell.
Histomorphometric study of growth plate subjected to different mechanical conditions (compression, tension and neutralization). An experimental study in lambs.
J Pediatr Orthop-Part B, 10 (2001), pp. 334-338
[96.]
W.P. Blount, G.R. Clark.
Control of bone growth by epiphyseal stapling. Preliminary report.
J Bone Joint Surg Am, 31-A (1949), pp. 464-478
[97.]
C.J. Campbell, A. Grisolia, G. Zanconato.
The effects produced in cartilaginous epiphyseal plate of immature dogs by esperimental surgical traumata.
J Bone Joint Surg Am, 41A (1959), pp. 1221-1242
[98.]
E. Peruchon, F. Bonnel, P. Baldet, P. Rabischong.
Evaluation and control of growth activity of epiphyseal plate.
Med Biol Eng Comput, 18 (1980), pp. 396-400
[99.]
A.L. Lerner, J.L. Kuhn, S.J. Hollister.
Are regional variations in bone growth related to mechanical stress and strain parameters?.
J Biomech, 31 (1998), pp. 327-335
[100.]
E.C.B. Hall-Crags, C.A. Lawrence.
The effect of epiphyseal stapling on growth in length of the rabbit's tibia and femur.
J Bone Joint Surg Br, 51B (1969), pp. 359-365
[101.]
J. Wilson-Mac Donald, G.R. Houghton, J. Bradley, E. Morscher.
The relationship between periosteal division and compression or distraction of the growth plate. An experimental study in the rabbit.
J Bone Joint Surg Br, 72B (1990), pp. 303-308
[102.]
W.P. Blount.
A mature look at epiphyseal stapling.
Clin Orthop, 77 (1971), pp. 158-163
[103.]
S.H. Lee, G. Szöke, H. Simpson.
Response of the physis to leg lengthening.
J Pediatr Orthop, Part-B, 10 (2001), pp. 339-343
[104.]
G. De Bastiani, R. Aldegheri, L. Renzi-Brivio, G. Trivella.
Chondrodiastasis. Controlled symmetrical distraction of the epiphyseal plate. Limb lengthening in children.
J Bone Joint Surg Br, 66B (1986), pp. 550-556
[105.]
C.B. Sledge, J. Noble.
Experimental limb lengthening by epiphyseal distraction.
Clin Orthop, 136 (1978), pp. 111-119
[106.]
J.F. Connolly, W.W. Huurman, L. Lippello, R. Pankaj.
Epiphyseal traction to correct acquired growth deformities.
Clin Orthop, 202 (1986), pp. 258-268
[107.]
J. De Pablos, C. Villas, J. Cañadell.
Bone lengthening by physeal distraction. An experimental study.
Int Orthop, 10 (1986), pp. 163-170
[108.]
J. De Pablos, J. Cañadell.
Experimental physeal distraction in immature sheep.
Clin Orthop, 250 (1990), pp. 73-80
[109.]
A. Alberty, J. Peltonen, V. Ritsilä.
Effects of distraction and compression on proliferation of growth plate chondrocytes. A study on rabbits.
Acta Orthop Scand, 64 (1993), pp. 449-455
[110.]
J. Noble, R. Diamond, C.R. Stirrat, C.B. Sledge.
Breaking force of the rabbit growth plate and its application to epiphyseal distraction.
Acta Orthop Scand, 53 (1982), pp. 13-16
[111.]
A.J. Spriggins, D.L. Bader, J.L. Cunningham, J. Kenwright.
Distraction ephysiolisis in the rabbit.
Acta Orthop Scand, 60 (1989), pp. 154-158
[112.]
J. Kenwright, A.J. Spriggins, J.L. Cunningham.
Response of the growth plate to distraction close to skeletal maturity Is fracture necessary?.
Clin Orthop, 250 (1990), pp. 61-72
[113.]
J. Peltonen, I. Alitalo, E. Karaharju, H. Heliö.
Distraction of the growth plate.
Acta Orthop Scand, 55 (1984), pp. 359-362
[114.]
C.G. Dimitriuo, G.A. Kapetanos, P.P. Symeonides.
The effect of partial periosteal division on growth of long bones. An experimental study in rabbits.
Clin Orthop, 236 (1988), pp. 265-269
[115.]
J.F. Haasbeek, M.C. Rang, N. Blackburn.
Periosteal tether causing angular growth deformity: Report of two clinical cases and an experimental model.
J Pediatr Orthop, 15 (1995), pp. 677-681
[116.]
J.A. Hernández, S. Serrano, M.L. Mariñoso, J. Aubia, J. Lloreta, J. Marrugat, et al.
Bone growth and modeling changes induced by periosteal stripping in the rat.
Clin Orthop, 320 (1995), pp. 211-219
Copyright © 2005. Sociedad Española de Cirugia Ortopédica y Traumatología (SECOT)
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos