Buscar en
Revista Colombiana de Cardiología
Toda la web
Inicio Revista Colombiana de Cardiología Efectos biológicos de los stents medicados en la circulación coronaria
Información de la revista
Vol. 17. Núm. 2.
Páginas 47-55 (Marzo - Abril 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 17. Núm. 2.
Páginas 47-55 (Marzo - Abril 2010)
Open Access
Efectos biológicos de los stents medicados en la circulación coronaria
Biological effects of drug-eluting stents in the coronary circulation
Visitas
8109
Darío Echeverri
Autor para correspondencia
decheverri@cardioinfantil.org

Correspondencia: Servicio de Hemodinamia e Intervencionismo Cardiovascular. Laboratorio de Investigación en Función Vascular. Fundación Cardioinfantil- Instituto de Cardiología, Calle 163 A No. 13B – 60. Primer Piso. Bogotá - Colombia. Teléfono: (57-1) 679 1192- (57-1) 667 2727 Ext.: 1114. Fax: (57-1) 669 0382.
Servicio de Hemodinamia e Intervencionismo Cardiovascular. Laboratorio de Investigación en Función Vascular. Fundación Cardioinfantil- Instituto de Cardiología, Bogotá, Colombia
Este artículo ha recibido

Under a Creative Commons license
Información del artículo

Los stents medicados ofrecen la mejor alternativa disponible no quirúrgica para el tratamiento de la enfermedad coronaria gracias a su demostrada eficacia. Sin embargo, estos excelentes resultados han sido opacados en términos de seguridad, principalmente por la presencia de trombosis de stents de manera tardía o muy tardía. La comprensión de los efectos biológicos que ejercen a nivel de la arteria coronaria luego de su implante, se debe al efecto de la plataforma utilizada, el polímero y la droga que liberan. Los trastornos de reparación vascular inducidos favorecen la trombosis de stents y sus consecuencias clínicas. Se hace una revisión de los diferentes efectos biológicos de los stents medicados en las arterias coronarias, que permite comprender como han surgido rápidamente nuevas versiones en materiales, diseños, polímeros y medicamentos que reducen los efectos adversos a nivel coronario, mejorando su eficacia y seguridad.

Palabras clave:
stents
trombosis
endotelio
inflamación
enfermedad coronaria

Drug-eluting stents offer the best available non-surgical alternative for the treatment of coronary disease, thanks to its demonstrated efficacy. However, in terms of security, these excellent results have been overshadowed by the late or very late appearance of stent thromboses.The biological effects they have in the coronary artery after its implantation are due to the effect of the platform used, the polymer and the medication released. The vascular healing disorders induced by drug-eluting stents favor stent thrombosis and its clinical consequences. This is a review of the different biological effects of drugeluting stents in coronary arteries that allows to understand how the rapid onset of new versions of materials, designs, polymers and medications diminish adverse coronary effects and improve its efficacy and safety.

Key words:
stents
thrombosis
endothelium
inflammation
coronary heart disease
El Texto completo está disponible en PDF
Bibliografía
[1.]
D.L. Fischman, M.B. Leon, D.S. Baim, Stent Restenosis Study Investigators, et al.
A randomized comparison of coronarystent placement and balloon angioplasty in the treatment of coronary artery disease.
N Engl J Med, 331 (1994), pp. 496-501
[2.]
P.W. Serruys, P. de Jaegere, F. Kiemeneij, BENESTENT Study Group, et al.
A comparison of balloon-expandablestent implantation with balloon angioplasty in patients with coronary artery disease.
N Engl J Med, 331 (1994), pp. 489-495
[3.]
J.W. Moses, M.B. Leon, J.J. Popma, et al.
Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery.
N Engl J Med, 349 (2003), pp. 1315-1323
[4.]
E. Camenzind, P.G. Steg, W. Wijns.
Stent thrombosis late after implantation of firstgeneration drug-eluting stents: a cause for concern.
Circulation, 115 (2007), pp. 1440-1455
[5.]
T.F. Luscher, J. Steffel, F.R. Eberli, et al.
Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications.
Circulation, 115 (2007), pp. 1051-1058
[6.]
S.O. Marx, T. Jayaraman, L.O. Go, A.R. Marks.
Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells.
Circ Res, 76 (1995), pp. 412-417
[7.]
T.H. Wang, H.S. Wang, H. Ichijo, P. Giannakakou, J.S. Foster, T. Fojo, J. Wimalasena.
Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways.
J Biol Chem, 273 (1998), pp. 4928-4936
[8.]
K.R. Kamath, J.J. Barry, K.M. Miller.
The Taxus drug-eluting stent: a new paradigm in controlled drug delivery.
Advances in drugs delivery, 58 (2006), pp. 412-436
[9.]
T.J. Parry, R. Brosius, R. Thyagarajan, D. Carter, D. Argentieri, R. Falotico, J. Siekierka.
Drug-eluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries.
Eur J Pharmacol, 524 (2005), pp. 19-29
[10.]
E. Mc Lucas, Y. Rochev, W.M. Carroll, T.J. Smith.
Analysis of the effects of surface treatments on nickel release from nitinol wires and their impact on candidate gene expression in endothelial cells.
J Mater Sci Mater Med, 19 (2008), pp. 975-980
[11.]
P.A. Gurbel, K.P. Callahan, A.I. Malinin, et al.
Could stent design affect platelet activation? Results of the Platelet Activation in STenting (PAST) study.
J Invasive Cardiol, 14 (2002), pp. 584-589
[12.]
A. Farb, A.P. Burke, F.D. Kolodgie, et al.
Pathological mechanisms of fatal late coronary stent thrombosis in humans.
Circulation, 108 (2003), pp. 1701-1706
[13.]
R. Virmani, A. Farb, G. Guagliumi, F.D. Kolodgie.
Drug-eluting stents: caution and concerns for long-term outcome.
Coron Artery Dis, 15 (2004), pp. 313-318
[14.]
J. Watt, R. Wadsworth, S. Kennedy, K.G. Oldroyd.
Pro-healing drug-eluting stents: a role for antioxidants?.
Clinical Science, 114 (2008), pp. 265-273
[15.]
G. Nakasawa, H. Ladich, A. Finn, R. Virmani.
Pathophysiology of vascular healing and stent mediated arterial injury.
Eurointervention, 4 (2008), pp. C7-C10
[16.]
D.D. Ahmed, S.C. Sobczak, J.W. Yunginger.
Occupational allergies caused by latex.
Immunol Allergy Clin North Am, 23 (2003), pp. 205-219
[17.]
A. Farb, A.P. Burke, F.D. Kolodgie, et al.
Pathological mechanisms of fatal late coronary stent thrombosis in humans.
Circulation, 108 (2003), pp. 1701-1706
[18.]
T.J. Parry, R. Brosius, R. Thyagarajan, D. Carter, D. Argentieri, R. Falotico, et al.
Drugeluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries.
Eur J Pharmacol, 524 (2005), pp. 19-29
[19.]
M. Butzal, S. Loges, M. Schweizer, U. Fischer, U.M. Gehling, D.K. Hossfeld, et al.
Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro.
Exp Cell Res, 300 (2004), pp. 65-71
[20.]
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science; 275 (5302): 964-967.
[21.]
J. Steffel, R.A. Latini, A. Akhmedov, D. Zimmermann, P. Zimmerling, T.F. Luscher, et al.
Rapamycin, but not FK-506, increases endothelial tissue factor expression: implications for drug-eluting stent design.
Circulation, 112 (2005), pp. 2002-2010
[22.]
M. Togni, L. Räber, R. Cocchia, et al.
Local vascular dysfunction after coronary paclitaxel-eluting stent implantation.
Int J Cardiol, 120 (2007), pp. 212-220
[23.]
J. Steffel, R.A. Latini, A. Akhmedov, et al.
Rapamycin, but not FK-506, increases endothelial tissue factor expression: implications for drug-eluting stent design.
Circulation, 112 (2005), pp. 2002-2010
[24.]
J. Steffel, T.F. Luscher, F.C. Tanner.
Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications.
Circulation, 113 (2006), pp. 722-731
[25.]
D. Echeverri, K.R. Purushothaman, P.R. Moreno.
Reparação vascular após implante de stents não-farmacológicos e farmacológicos em modelo experimental de fibroateroma de capa fina em coelhos.
Rev Bras Cardiol Invas, 16 (2008), pp. 474-481
[26.]
M. Awata, J. Kotani, M. Uematsu, et al.
Serial angioscopic evidence of incomplete neointimal coverage after sirolimus-eluting stent implantation: comparison with baremetal stents.
Circulation, 116 (2007), pp. 910-916
[27.]
A.T. Ong, E.P. McFadden, E. Regar, P.P. de Jaegere, R.T. van Domburg, P.W. Serruys.
Late angiographic stent thrombosis (LAST) events with drug-eluting stents.
J Am Coll Cardiol, 45 (2005), pp. 2088-2090
[28.]
A.A. Bavry, D.J. Kumbhani, T.J. Helton, P.P. Borek, G.R. Mood, D.L. Bhatt.
Late thrombosis of drug-eluting stents: a meta-analysis of randomized clinical trials.
Am J Med, 119 (2006), pp. 1056-1060
[29.]
G.W. Stone, for the SPIRIT III Investigators.
Clinical, angiographic, and IVUS results from the pivotal U.S. randomized SPIRIT III Trial of the XIENCE V Everolimus Eluting Coronary Stent System.
Paper presented at: ACC 56th Annual Scientific Session,
[30.]
A. García-Touchard, S.E. Burke, J.L. Toner, et al.
Zotarolimus-eluting stents reduce experimental coronary artery neointimal hyperplasia after 4 weeks.
Eur Heart J, 27 (2006), pp. 988-993
[31.]
M. Grassberger, T. Baumruker, A. Enz, P. Hiestand, T. Hultsch, F. Kalthoff, et al.
Novel anti-inflammatory drug, S DZ ASM 981, for the treatment of skin diseases: in vitro pharmacology.
Br J Dermatol, 141 (1999), pp. 264-273
[32.]
S. Windecker, R. Simon, M. Lins, et al.
Randomized comparison of a titanium-nitrideoxide- coated stent with a stainless steel stent for coronary revascularization: the TiNOX trial.
Circulation, 111 (2005), pp. 2617-2620
[33.]
E.A. Sprague, M.L. Pomeranz, I. Odess, S.M. Furnish, J.F. Granada.
Surface material, surface treatment and nanotechnology in cardiovascular stent development.
Eurointervention, 4 (2008), pp. C60-C62
[34.]
S. Choudhary, K.M. Haberstroh, T.J. Webster.
Enhanced functions of vascular cells on nanostructured Ti for improved stent applications.
Tissue Eng, 13 (2007), pp. 1421-1430
[35.]
J. Aoki, P.W. Serruys, H. van Beusekom, et al.
Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry.
J Am Coll Cardiol, 45 (2005), pp. 1574-1580
[36.]
G.G. Camici, J. Steffel, A. Akhmedov, et al.
Dimethyl sulfoxide inhibits tissue factor expression, thrombus formation, and vascular smooth muscle cell activation: a potential treatment strategy for drug-eluting stents.
Circulation, 114 (2006), pp. 1512-1520
[37.]
J. Mehilli, A. Kastrati, R. Wessely, et al.
Randomized trial of a nonpolymer-based rapamycin-eluting stent versus a polymer-based paclitaxel-eluting stent for the reduction of late lumen loss.
Circulation, 113 (2006), pp. 273-279
[38.]
M.C. Morice, H.P. Bestehorn, D. Carrie, et al.
Direct stenting of de novo coronary stenoses with tacrolimus-eluting versus carbon-coated carbostents. The randomised JUPITER II trial.
Eurointervention, 2 (2006), pp. 45-52
[39.]
A. Lafont.
Bioresorbable stents: the next horizon after drug eluting stents?.
Eurointervention, 3 (2007), pp. 21-23
[40.]
J.A. Ormiston, P.W. Serruys, E. Regar, et al.
A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial.
Copyright © 2010. Sociedad Colombiana de Cardiología y Cirugía Cardiovascular
Opciones de artículo
Herramientas