Buscar en
Revista Colombiana de Cancerología
Toda la web
Inicio Revista Colombiana de Cancerología Analysis of NK Cells in Peripheral Blood and Tumor Infiltrating Lymphocytes in C...
Información de la revista
Vol. 16. Núm. 1.
Páginas 16-26 (Enero 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 1.
Páginas 16-26 (Enero 2012)
Acceso a texto completo
Analysis of NK Cells in Peripheral Blood and Tumor Infiltrating Lymphocytes in Cervical Cancer Patients
Análisis de la población de células asesinas naturales (NK) en sangre periférica y en linfocitos infiltrantes de tumor en pacientes con cáncer de cuello uterino
Visitas
3545
María A. Céspedes1, Josefa A. Rodríguez1, Mónica Medina2, María Bravo1, Alba L. Cómbita1,3,
Autor para correspondencia
acombita@cancer.gov.co

Corresponding author: Instituto Nacional de Cancerología, Avenida 1a No. 9-85, Bogotá, Colombia. Telephone: (571) 334 0959.
1 Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá D. C., Colombia
2 Clínica de Ginecología, Instituto Nacional de Cancerología, Bogotá D. C., Colombia
3 Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C., Colombia
Este artículo ha recibido
Información del artículo
Abstract
Objective

To understand the biologic and clinical importance of intratumoral natural killer cells CD16+CD56+CD3 and NKT CD16+CD56+CD3 cells in immune surveillance against cervical cancer.

Methods

To understand the significance of NK (CD16+CD56+CD3-) and NKT (CD16+CD56+CD3-) in immune surveillance against cervical cancer, we analysed 39 peripheral blood and 30 biopsy samples from cervical cancer patients, and 40 peripheral blood and 5 biopsy samples from healthy women with normal cytology. The frequencies of NK and NKT and HLA-I expression in keratinocytes were analysed by flow cytometry.

Results

In peripheral blood, a higher frequency of NK was observed in the patient group compared with the controls (p=0.002). However, this increase was not reflected in TILs (p=0,095). A significant reduction of HLA-I expression was observed in the patient group compared to the control group (p=0.019). A low number of NK infiltrated was observed in tumors of patients with HLA-I down regulation, but it was not significant (p=0.374). A low number of NK infiltration was associated with shorter survival, but it was not significant (p=0.275).

Conclusions

Our results show that although in peripheral blood an increase in NK population was observed in patient group, this increase was not reflected in TILs. It is possible that this inefficient migration of NK's into the tumor milieu could be related to the expression of immunosuppressive cytokines, in particular IL-10.

Key words:
Lymphocytes
tumor-infiltrating
killer cells
natural
uterine cervical neoplasms
Resumen
Objetivo

Entender la importancia biológica y clínica de las células intratumorales natural killer (NK) CD16+CD56+CD3- y de las células natural killer T (NKT) CD16+CD56+CD3- en la inmunovigilancia del cáncer de cuello uterino (CCU).

Métodos

Para comprender el papel de las NK (CD16+CD56+CD3-) y de las células natural killer T (NKT) (CD16+CD56+CD3-) en la inmunovigilancia del CCU, se analizaron 39 muestras de sangre periférica (SP) y 30 biopsias de pacientes con CCU, así como de 40 muestras de SP y 5 biopsias de cuello uterino de mujeres con citología normal. Las frecuencias de NK y NKT y la expresión de HLA-I se analizaron por citometría de flujo.

Resultados

Se observó una mayor frecuencia de NK en SP en el grupo de pacientes comparado con el grupo control (p=0,002). Sin embargo, este aumento no se reflejó en TIL (p=0,095). Una reducción significativa de HLA-I se observó en el grupo de pacientes (p=0,019). Esta disminución se asoció una disminución en el número de NK, pero no fue significativa (p=0,374). Un bajo número de NK se asoció con una menor supervivencia, pero no fue significativo (p=0,275).

Conclusiones

Nuestros resultados muestran que aunque en SP se observa un incremento de NK, este no se refleja en los TIL. Es posible que este tráfico ineficiente de células NK hacia el tumor esté alterado por la expresión de citoquinas inmunosupresoras, en particular IL-10.

Palabras clave:
linfocitos infiltrantes de tumor
células asesinas naturales
neoplasias de cuello uterino
El Texto completo está disponible en PDF
References
[1.]
D.M. Parkin, F. Bray, J. Ferlay, et al.
Global cancer statistics, 2002.
CA Cancer J Clin, 55 (2005), pp. 74-108
[2.]
IARC. GLOBOCAN 2008. Section of Cancer Information. 2011. Ref Type: Generic
[3.]
N. Munoz.
Human papillomavirus and cancer: the epidemiological evidence.
J Clin Virol, 19 (2000), pp. 1-5
[4.]
J.S. Smith, L. Lindsay, B. Hoots, et al.
Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update.
Int J Cancer, 121 (2007), pp. 621-632
[5.]
J.M. Palefsky, H. Minkoff, L.A. Kalish, et al.
Cervicovaginal human papillomavirus infection in human immunodeficiency virus-1 (HIV)-positive and high-risk HIV-negative women.
J Natl Cancer Inst, 91 (1999), pp. 226-236
[6.]
M.A. Rellihan, D.P. Dooley, T.W. Burke, et al.
Rapidly progressing cervical cancer in a patient with human immunodeficiency virus infection.
Gynecol Oncol, 36 (1990), pp. 435-438
[7.]
E.M. Evans, S. Man, A.S. Evans, et al.
Infiltration of cervical cancer tissue with human papillomavirus-specific cytotoxic T-lymphocytes.
Cancer Res, 57 (1997), pp. 2943-2950
[8.]
I.T. Ovestad, E. Gudlaugsson, I. Skaland, et al.
Local immune response in the microenvironment of CIN2-3 with and without spontaneous regression.
Mod Pathol, 23 (2010), pp. 1231-1240
[9.]
M. Heusinkveld, M.J. Welters, M.I. van Poelgeest, et al.
The detection of circulating human papillomavirus-specific T cells is associated with improved survival of patients with deeply infiltrating tumors.
Int J Cancer, 128 (2011), pp. 379-389
[10.]
S.J. Piersma, E.S. Jordanova, M.I. van Poelgeest, et al.
High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer.
Cancer Res, 67 (2007), pp. 354-361
[11.]
A.G. Bais, I. Beckmann, J. Lindemans, et al.
A shift to a peripheral Th2-type cytokine pattern during the carcinogenesis of cervical cancer becomes manifest in CIN III lesions.
J Clin Pathol, 58 (2005), pp. 1096-1100
[12.]
M.A. Cooper, T.A. Fehniger, M.A. Caligiuri.
The biology of human natural killer-cell subsets.
Trends Immunol, 22 (2001), pp. 633-640
[13.]
M.A. Cooper, M.A. Caligiuri.
Isolation and characterization of human natural killer cell subsets.
Curr Protoc Immunol, (2004),
[14.]
S.S. Farag, M.A. Caligiuri.
Human natural killer cell development and biology.
Blood Rev, 20 (2006), pp. 123-137
[15.]
J.Y. Hsia, J.T. Chen, C.Y. Chen, et al.
Prognostic significance of intratumoral natural killer cells in primary resected esophageal squamous cell carcinoma.
Chang Gung Med J, 28 (2005), pp. 335-340
[16.]
S. Ishigami, S. Natsugoe, K. Tokuda, et al.
Prognostic value of intratumoral natural killer cells in gastric carcinoma.
Cancer, 88 (2000), pp. 577-583
[17.]
M. Feenstra, M. Veltkamp, J. van Kuik, et al.
HLA class I expression and chromosomal deletions at 6p and 15q in head and neck squamous cell carcinomas.
Tissue Antigens, 54 (1999), pp. 235-245
[18.]
E.S. Jordanova, A. Gorter, O. Ayachi, et al.
Human leukocyte antigen class I. MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients?.
Clinical Cancer Res, 14 (2008), pp. 2028-2035
[19.]
C.A. Biron, K.B. Nguyen, G.C. Pien, et al.
Natural killer cells in antiviral defense: function and regulation by innate cytokines.
Annu Rev Immunol, 17 (1999), pp. 189-220
[20.]
J. Brittenden, S.D. Heys, J. Ross, et al.
Natural killer cells and cancer.
Cancer, 77 (1996), pp. 1226-1243
[21.]
I. Takanami, K. Takeuchi, M. Giga.
The prognostic value of natural killer cell infiltration in resected pulmonary adenocarcinoma.
J Thorac Cardiovasc Surg, 121 (2001), pp. 1058-1063
[22.]
B.C. Sheu, S.M. Hsu, H.N. Ho, et al.
Reversed CD4/CD8 ratios of tumor-infiltrating lymphocytes are correlated with the progression of human cervical carcinoma.
Cancer, 86 (1999), pp. 1537-1543
[23.]
T.L. Whiteside, R.B. Herberman.
The role of natural killer cells in immune surveillance of cancer.
Curr Opin Immunol, 7 (1995), pp. 704-710
[24.]
P.A. Albertsson, P.H. Basse, M. Hokland, et al.
NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity.
Trends Immunol, 24 (2003), pp. 603-609
[25.]
G. Esendagli, K. Bruderek, T. Goldmann, et al.
Malignant and non-malignant lung tissue areas are differentially populated by natural killer cells and regulatory T cells in non-small cell lung cancer.
Lung Cancer, 59 (2008), pp. 32-40
[26.]
M. Gulubova, I. Manolova, D. Kyurkchiev, et al.
Decrease in intrahepatic CD56+ lymphocytes in gastric and colorectal cancer patients with liver metastases.
[27.]
E.M. Levy, M.P. Roberti, J. Mordoh.
Natural killer cells in human cancer: from biological functions to clinical applications.
J Biomed Biotechnol, 2011 (2011), pp. 676198
[28.]
Q. Yang, M.E. Hokland, J.L. Bryant, et al.
Tumor-localization by adoptively transferred, interleukin-2-activated NK cells leads to destruction of well-established lung metastases.
Int J Cancer, 105 (2003), pp. 512-519
[29.]
S.L. Giannini, W. Al-Saleh, H. Piron, et al.
Cytokine expression in squamous intraepithelial lesions of the uterine cervix: implications for the generation of local immunosuppression.
Clin Exp Immunol, 113 (1998), pp. 183-189
[30.]
F. Mota, N. Rayment, S. Chong, et al.
The antigen-presenting environment in normal and human papillomavirus (HPV)- related premalignant cervical epithelium.
Clin Exp Immunol, 116 (1999), pp. 33-40
[31.]
P. Allavena, G. Bianchi, C. Paganin, et al.
Regulation of adhesion and transendothelial migration of natural killer cells.
Nat Immun, 15 (1996), pp. 107-116
[32.]
T.R. Mosmann, S. Sad.
The expanding universe of T-cell subsets: Th1, Th2 and more.
Immunol Today, 17 (1996), pp. 138-146
[33.]
A. García-Lora, I. Algarra, F. Garrido.
MHC class I antigens, immune surveillance, and tumor immune escape.
J Cell Physiol, 195 (2003), pp. 346-355
[34.]
R.D. Berahovich, N.L. Lai, Z. Wei, et al.
Evidence for NK cell subsets based on chemokine receptor expression.
J Immunol, 177 (2006), pp. 7833-7840
[35.]
J.J. Campbell, S. Qin, D. Unutmaz, et al.
Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire.
J Immunol, 166 (2001), pp. 6477-6482
[36.]
M.J. Robertson.
Role of chemokines in the biology of natural killer cells.
J Leukoc Biol, 71 (2002), pp. 173-183
[37.]
T. Bauernhofer, I. Kuss, B. Henderson, et al.
Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer.
Eur J Immunol, 33 (2003), pp. 119-124
[38.]
S. Stanzer, B. Janesch, M. Resel, et al.
The role of activationinduced cell death in the higher onset of spontaneous apoptosis of NK cell subsets in patients with metastatic epithelial cancer.
Cell Immunol, 261 (2010), pp. 99-104
[39.]
J. Sheu, I. Shih.
HLA-G and immune evasion in cancer cells.
J Formos Med Assoc, 109 (2010), pp. 248-257
[40.]
S. Coca, J. Pérez-Piqueras, D. Martínez, et al.
The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma.
Cancer, 79 (1997), pp. 2320-2328
[41.]
S. Ishigami, S. Natsugoe, K. Tokuda, et al.
Clinical impact of intratumoral natural killer cell and dendritic cell infiltration in gastric cancer.
Cancer Lett, 159 (2000), pp. 103-108
Copyright © 2012. Instituto Nacional de Cancerología
Opciones de artículo
Herramientas