Buscar en
Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral
Toda la web
Inicio Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral Sulfato de calcio: Propiedades y aplicaciones clínicas
Información de la revista
Vol. 4. Núm. 3.
Páginas 138-143 (Diciembre 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 4. Núm. 3.
Páginas 138-143 (Diciembre 2011)
Open Access
Sulfato de calcio: Propiedades y aplicaciones clínicas
Calcium sulfate: properties and clinical applications
Visitas
29429
J. López1,
Autor para correspondencia
drluislopez40@hotmail.com

Correspondencia autor: Residencial San Felipe. Magnolias Dpto. 603 Distrito de Jesús María. C.O.P. 6137. Lima, Perú.
, M. Alarcón2
1 Diplomado en Periodoncia. Alumno del Programa de Especialización en Implantología Oral de la UPCH. Universidad Peruana Cayetano Heredia. Perú
2 Especialista y Magíster en Periodoncia. Docente del Programa de Especialización en Implantología Oral de la UPCH. Universidad Peruana Cayetano Heredia. Perú
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen

Durante más de cien años el sulfato de calcio se ha distinguido de otros biomateriales, por ser uno de los materiales aloplásticos más simples y que presenta la más larga historia clínica como material sintético. Entre sus principales propiedades destacan que es de fácil obtención, capacidad de osteoconducción, es totalmente absorbible, no provoca reacciones de inflamación o antigénicas, fácil modelado y fuerza de compresión semejante al tejido óseo. Todas éstas características son necesarias para ser usado como sustituto óseo. Sin embargo, diferencias en la morfología y estructura de sus cristales, la porosidad, propiedades mecánicas y en la constitución química del sulfato de calcio puede alterar significativamente sus propiedades biológicas. El objetivo de la presente revisión es conocer las propiedades del sulfato de calcio y sus diferentes aplicaciones clínicas como sustituto óseo en procedimientos regenerativos.

Palabras clave:
Preservación del reborde
exodoncia
implantes dentales
injerto óseo
regeneración
Abstract

For over 100 years, the calcium sulfate has stood out from other biomaterials, for being one of the simplest alloplastic materials and having the longest history as synthetic material. It is readily available, has osteoconductive properties, is completely absorbed, does not cause inflammation or antigenic reactions, can be modeled to defect, has compressive strength similar to bone tissue and can be used as a vehicle for in situ release of chemotherapeutic agents. All these features are required to be used as a bone substitute. However, differences in morphology, crystal structure, porosity, mechanical properties and chemical constitution of calcium sulfate can significantly alter its biological properties. The aim of this study was to determine through a review of the literature, the properties of calcium sulfate and its various clinical applications as bone substitute in regenerative procedures.

Key words:
Alveolar ridge preservation
extraction
dental implants
bone grafting
regeneration
El Texto completo está disponible en PDF
Referencias bibliográficas
[1.]
R. Strocchi, G. Orsini, G. Iezzi, A. Scarano, C. Rubini, G. Pecora, A. Piattelli.
Bone regeneration with calcium sulfate: Evidence for increased angiogenesis in rabbits.
[2.]
S.F. Rosenblum, S. Frenkel, J.R. Ricci, H. Alexander.
Diffusion of fibroblast growth factor from a plaster of Paris carrier.
J Appl Biomater, 4 (1993), pp. 67-72
[3.]
M. Nyan, D. Sato, M. Oda, T. Machida, H. Kobayashi, T. Nakamura, S. Kasugai.
Bone formation with the combination of simvastatin and calcium sulfate in critical-sized rat calvarial defect.
J Pharmacol Sci, 104 (2007), pp. 384-386
[4.]
G.E. Intini III.
Engineering a bioactive matrix by modifications of calcium sulfate.
Tissue Eng, 8 (2002), pp. 997-1008
[5.]
G. Intini, S. Andreana, F.E. Intini, R.J. Buhite, L.A. Bobek.
Calcium sulfate and platelet-rich plasma make a novel osteoinductive biomaterial for bone regeneration.
J Transl Med, 5 (2007), pp. 13
[6.]
J. Bateman, G. Intini, J. Margarone, S. Goodloe, P. Bush, S.E. Lynch, R. Dziak.
Platelet-derived growth factor enhancement of two alloplastic bone matrices.
J Periodontol, 76 (2005), pp. 1833-1841
[7.]
S.G. Kim, C.H. Chung, Y.K. Kim, J.C. Park, S.C. Lim.
Use of particulate dentin-plaster of Paris combination with/without platelet-rich plasma in the treatment of bone defects around implants.
Int J Oral Maxillofac Implants, 17 (2002), pp. 86-94
[8.]
L. Podaropoulos, A.A. Veis, S. Papadimitriou, C. Alexandridis, Kalyvas.
Bone regeneration using b-tricalcium in a calcium sulfate matrix.
Journal of Oral Implantology, 35 (2009), pp. 28-36
[9.]
H. Dreesman.
Uber Knochenplombierung.
Beitr Klin Chir, 9 (1892), pp. 804-810
[10.]
A. Nielson.
The filling of infected and sterile bone cavities by means of plaster of Paris.
Act Chir Scand, 91 (1944), pp. 17-27
[11.]
L.F. Peltier, R. Lillo.
The substitution of plaster of Paris rods for portions of the diaphysis of the radius in dogs.
Surg Forum, 6 (1955), pp. 556-558
[12.]
L. Lebourg, C. Biou.
The imbedding of plaster of Paris in surgical cavities of the jaws.
Sem Hop, 37 (1961), pp. 1195-1197
[13.]
Nick M. Tovar, Ziv Mazor, Sachin Mamidwar, John L. Ricci.
Reparación ósea en defectos periodontales el uso de un compuesto de aloinjerto y sulfato de calcio (DentoGen) como barrera.
Journal of Oral Implantology Orim, (2011),
[14.]
J.L. Ricci, H. Alexander, P. Nadkarni, M. Hawkins, J. Turner, S.F. Rosenblum, L. Brezenoff, D. De Leonardis, G. Pecora.
Biological mechanisms of calcium-sulfate eplacement by bone.
Bone Engineering., pp. 332-344
[15.]
W.R. Walsh, P. Morberg, Y. Yu, J.L. Yang, W. Haggard, P.C. Sheath, M. Svehla, W.J. Bruce.
Response of a calcium sulfate bone graft substitute in a confined cancellous defect.
Clin Orthop, (2003), pp. 228-236
[16.]
A. Lazary, B. Balla, J.P. Kosa, K. Bacsi, Z. Nagy, I. Takacs, P.P. Varga, G. Speer, P. Lakatos.
Effect of gypsum on proliferation and differentiation of MC3T3-E1 mouse osteoblastic cells.
Biomaterials, 28 (2007), pp. 393-399
[17.]
J.M. Payne, C.M. Cobb, J.W. Rapley, et al.
Migration of human gingival fibroblasts over guided tissue regeneration barrier materials.
J Periodontol, 67 (1996), pp. 236-244
[18.]
W.H. Radentz, C.K. Collings.
The implantation of plaster of paris in the alveolar process of the dog.
J Periodontol, 36 (1965), pp. 357-364
[19.]
J.S. Sottosanti.
Aesthetic extractions with calcium sulfate and the principles of guided tissue regeneration.
Pract Periodont Aesthet Dent, 5 (1993), pp. 61-69
[20.]
S. Andreana, R. Cornelini, L.E. Edsberg, J.R. Natiella.
Maxillary sinus elevation for implant placement using calcium sulfate with and without DFDBA: Six cases.
Implant Dent., 13 (2004), pp. 270-277
[21.]
D. Anson.
Calcium sulfate: A four-year observation of its use as a resorbable barrier in guided tissue regeneration of periodontal defects.
Compend Contin Educ Dent, 17 (1996), pp. 895-899
[22.]
G. Pecora, S. Andreana, J.E. Margarone III, U. Covani, J.S. Sottosanti.
Bone regeneration with a calcium sulfate barrier.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod., 84 (1997), pp. 424-429
[23.]
C.K. Kim, J.K. Chai, K.S. Cho, et al.
Periodontal repair in intrabony defects treated with a calcium sulfate implant and calcium sulfate barrier.
J Periodontol, 69 (1998), pp. 1317-1324
[24.]
C.J. Couri, G.I. Maze, D.W. Hinkson, B.H. Collins 3rd, D.V. Dawson.
Medical grade calcium sulfate hemihydrate versus expanded polytetrafluoroethylene in the treatment of mandibular class II furcations.
J Periodontol., 73 (2002), pp. 352-359
[25.]
J.W. Frame.
A composite of porous calcium sulphate dehydrate and cyanoacrylate as a substitute for autogenous bone.
J Oral Surg, 38 (1980), pp. 251-256
[26.]
A.S. Coetzee.
Regeneration of bone in the presence of calcium sulfate.
Arch Otolaryngol, 106 (1980), pp. 405-409
[27.]
D. De Leonardis, G.E. Pecora.
Prospective study on the augmentation of the maxillary sinus with calcium sulfate: histological results.
J Periodontol, 71 (2000), pp. 940-947
[28.]
H.B. Wright.
Ridge Preservation using pre-formed.
root-shaped calcium sulfate inserts, University of Kentucky College of Dentistry, (2004), pp. 62
[29.]
B. Shi, Y. Zhou, Y.N. Wang, X.R. Cheng.
Alveolar ridge preservation prior to implant placement with surgical-grade calcium sulfate and platelet-rich plasma: A pilot study in a canine model.
Int J Oral Maxillofac Implants, 22 (2007), pp. 656-665
[30.]
C.W. Rolph.
Ridge preservation using bioactive glass and a calcium sulfate barrier.
University of Kentucky College of Dentistry, (2000), pp. 62
[31.]
G.S. Vance, H. Greenwell, R.L. Miller, M. Hill, H. Johnston, J.P. Scheetz.
Comparison of an allograft in an experimental putty carrier and a bovine-derived xenograft used in ridge preservation: A clinical and histologic study in humans.
Int J Oral Maxillofac Implants, 19 (2004), pp. 491-497
[32.]
R. Guarnieri, G. Pecora, et al.
Medical grade calcium sulfate hemihydrate in healing of humam extraction sockets: Clinical and histological observations at 3 months.
J Periodontal, 75 (2004), pp. 902-908
[33.]
M. Aimetti, F. Romano, F. Baima Griga, L. Godio.
Clinical and histologic healing of human extraction sockets filled with calcium sulfate.
Int J Oral Maxillofac Implants, 24 (2009), pp. 901-909
Copyright © 2011. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile
Opciones de artículo
Herramientas