Buscar en
Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral
Toda la web
Inicio Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral Participación de MT1-MMP en la Remodelación del Ligamento Periodontal Durante ...
Información de la revista
Vol. 3. Núm. 3.
Páginas 113-117 (Diciembre 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 3. Núm. 3.
Páginas 113-117 (Diciembre 2010)
Open Access
Participación de MT1-MMP en la Remodelación del Ligamento Periodontal Durante la Movilización Dentaria
Role of MT1-MMP in the Remodeling of the Periodontal Ligament During Tooth Movement
Visitas
2556
P. Rey Droghetti1, F. Cruzat2, P. Smith Ferrer3,
Autor para correspondencia
psmith@med.puc.cl

Correspondencia autor: Laboratorio de Fisiología Periodontal, Carrera de Odontología. Facultad de Medicina, Pontificia Universidad Católica de Chile. Marcoleta 391, Santiago. Chile.
, A. Oyarzún Droguett4
1 Cirujano Dentista. Integramédica. Estudiante Postítulo en Periodoncia, Universidad Mayor. Chile
2 Cirujano Dentista. Centro Médico San Joaquín. Pontificia Universidad Católica de Chile. Chile
3 Carrera de Odontología. Facultad de Medicina, Pontificia Universidad Católica de Chile. Chile
4 Facultad de Odontología. Universidad Finis Terrae. Chile
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen

La movilización dentaria involucra una serie de cambios en los tejidos de soporte caracterizados por la activa remodelación de estos. La MT1-MMP o MMP-14 es una potente enzima proteolítica capaz de degradar colágeno tipo I, la principal molécula estructural del ligamento periodontal. La migración dentaria requiere de la degradación controlada del colágeno constituyente del ligamento periodontal. Sin embargo, no existen evidencias de la participación de MT1-MMP en la remodelación del tejido periodontal durante este proceso. En el presente estudio hemos analizado la expresión de MT1-MMP y del marcador de actividad osteoclástica Fosfatasa Ácida Tartrato Resistente (TRAP) en un modelo de migración dentaria en ratas. La migración dentaria fue activada mediante la inserción de una banda separadora entre los incisivos superiores. La expresión y distribución de TRAP y MT1-MMP fue evaluada a través de citoquímica e inmunohistoquímica a los días 1, 3, 5 y 7. La producción de TRAP fue identificada principalmente en osteoclastos ubicados en la zona de compresión del ligamento periodontal. La producción de MT1-MMP fue observada en fibroblastos de la zona de compresión del ligamento periodontal y osteoclastos ubicados en esta misma región. Nuestros resultados permiten proponer que tanto MT1-MMP como TRAP participan en la remodelación de los tejidos de soporte periodontal durante la migración dentaria.

Palabras clave:
MT1-MMP
remodelación tisular
ligamento periodontal
osteoclasto
movimiento dentario
Abstract

Tooth movement involves a series of changes of the supporting periodontal tissues characterized by the active connective tissue remodeling. MT1- MMP or MMP-14 belongs to the family of matrix metalloproteinases that are able to degrade type I collagen, the main molecule involved in periodontal attachment. Tooth migration requires the controlled degradation of periodontal ligament collagen fibers. However, evidences linking MT1-MMP expression with periodontal tissue remodeling are lacking. In the present study, we have evaluated the expression of MT1-MMP and of the osteoclast marker Tartrate Resistant Acid Phosphatase (TRAP) in a model of tooth migration in rats. Tooth migration was induced after the insertion of a rubber band between the upper incisors. The distribution of TRAP and MT1-MMP was evaluated by means of cytochemistry and immunohistochemistry respectively at days 1, 3, 5 and 7. TRAP production was identified in osteoclasts at the area of compression of the periodontal ligament. MT1-MMP distribution was observed in fibroblasts at the compressed area of the periodontal ligament and also in osteoclasts of the same region. Our findings allow us to propose that MT1-MMP and TRAP take part of the tissue remodeling events observed during tooth movement.

Key words:
MT1-MMP
tissue remodeling
periodontal ligament
osteoclast
tooth movement
El Texto completo está disponible en PDF
Referencias bibliográficas
[1.]
B. Melsen.
Tisue reaction to orthodontic tooth movement - a new paradigm.
Eur J Orthod, 23 (2001), pp. 671-681
[2.]
T.P. Tsay, M.H. Chen, O.J. Oyen.
Osteoclast activation and recruitment after application of orthodontic force.
Am J Orthod Dentofacial Orthop, 115 (1999), pp. 323-330
[3.]
W.J. Rody Jr., G.J. King, G. Gu.
Osteoclast recruitment to sites of compression in orthodontic tooth movement.
Am J Orthod Dentofacial Orthop, 120 (2001), pp. 477-489
[4.]
S.M. Krane, M. Inada.
Matrix metalloproteinases and bone.
[5.]
W.C. Parks, C.L. Wilson, Y.S. López-Boado.
Matrix metalloproteinases as modulators of inflammation and innate immunity.
Nat Rev Immunol, (2004), pp. 617-629
[6.]
S. Domon, H. Shimokawa, Y. Matsumoto, S. Yamaguchi, K. Soma.
In situ hybridization for matrix metalloproteinase-1 and cathepsin K in rat rootresorbing tissue induced by tooth movement.
Arch Oral Biol, 44 (1999), pp. 907-915
[7.]
W. Beertsen, K. Holmbeck, A. Niehof, P. Bianco, K. Chrysovergis, H. Birkedal-Hansen, V. Everts.
On the role of MT1-MMP, a matrix metalloproteinase essential to collagen remodelling, in murine molar eruption and root growth.
Eur J Oral Sci, 110 (2002), pp. 445-451
[8.]
T. Ingman, S. Apajalahti, P. Mäntylä, P. Savolainen, T. Sorsa.
Matrix metalloproteinase -1 and -8 in gingival crevicular fluid during orthodontic tooth movement: a pilot study during 1 month of follow-up after fixed appliance activation.
Eur J Orthod, 27 (2005), pp. 202-207
[9.]
I. Takahashi, M. Nishimura, K. Onodera, J.W. Bae, H. Mitani, M. Okazaki, Y. Sasano, H. Mitani.
Expression of MMP-8 and MMP-13 genes in the periodontal ligament during tooth movement in rats.
J Dent Res, 82 (2003), pp. 646-651
[10.]
I. Takahashi, K. Onodera, M. Nishimura, H. Mitnai, Y. Sasano, H. Mitani.
Expression of genes for gelatinases and tissue inhibitors of metalloproteinases in periodontal tissues during orthodontic tooth movement.
J Mol Histol, 37 (2006), pp. 333-342
[11.]
C.A. McCulloch, P. Lekic, M.D. McKee.
Role of physical forces in regulating the form and function of the periodontal ligament.
Periodontol 2000, 24 (2000), pp. 56-72
[12.]
M. Tsubota, Y. Sasano, I. Takahashi, M. Kagayama, H. Shimauchi.
Expression of MMP-8 and MMP-13 mRNAs in rat periodontium during tooth eruption.
J Dent Res, 81 (2002), pp. 673-678
[13.]
K. Holmbeck, P. Bianco, S. Yamada, H. Birkedal-Hansen.
MT1-MMP: a tethered collagenase.
J Cell Physiol, 200 (2004), pp. 11-19
[14.]
E.M. Tam, C.J. Morrison, Y.I. Wu, M.S. Stack, C.M. Overall.
Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates.
Proc Natl Acad Sci, USA, 101 (2004), pp. 6917-6920
[15.]
A.D. Oyarzún, R. Arancibia, R. Hidalgo, C. Peñafiel, M. Cáceres, M.J. González, J. Martínez, P.C. Smith.
Involvement of MT1-MMP and TIMP-2 in human periodontal disease.
Oral Diseases, 16 (2010), pp. 388-395
[16.]
K. Holmbeck, P. Bianco, J. Caterina, S. Yamada, M. Kromer, S.A. Kuznetsov, M. Mankani, P.G. Robey, A.R. Poole, I. Pidoux, J.M. Ward, H. Birkedal- Hansen.
MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover.
Cell, 99 (1999), pp. 81-92
[17.]
B.F. Boyce, Z. Yao, Q. Zhang, R. Guo, Y. Lu, E.M. Schwarz, L. Xing.
New roles for osteoclasts in bone.
Ann NY Acad Sci, 1116 (2007), pp. 245-254
[18.]
A.A. Cole, L.M. Walters.
Tartrate-resistant acid phosphatase in bone and cartilage following decalcification and cold embedding in plastic.
J Histochem Cytochem, 35 (1987), pp. 203-206
[19.]
B. Linsuwanont-Santiwong, Y. Takagi, K. Ohya, H. Shimokawa.
Expression of MT1-MMP during deciduous tooth resorption in odontoclasts.
J Bone Miner Metab, 24 (2006), pp. 447-453
[20.]
Z. Dong, R.D. Bonfil, S. Chinni, X. Deng, J.C. Trindade Filho, M. Bernardo, U. Vaishampayan, M. Che, B.F. Sloane, S. Sheng, R. Fridman, M.L. Cher.
Matrix metalloproteinase activity and osteoclasts in experimental prostate cancer bone metastasis tissue.
Am J Pathol, 166 (2005), pp. 1173-1180
[21.]
H. Kobayashi, K. Ochi, I. Saito, K. Hanada, T. Maeda.
Alterations in ultraestructural localization of growth-associated Protein-43 (GAP-43) in periodontal ruffini endings of rat molars during experimental tooth movement.
J Dent Res, 77 (1998), pp. 503-517
[22.]
L. Bonafe-Oliveira, R.M. Faltin, V.E. Arana-Chavez.
Ultraestructural and histochemical examination of alveolar bone at the pressute areas of rat molars submitted to continuous orthodontic force.
Eur J Oral Sci, 111 (2003), pp. 410-416
[23.]
A. Kawarizadeh, C. Bourauel, D. Zhang, W. Götz, A. Jäger.
Correlation of stress and strain profiles and the distribution ofosteoclastic cells induced by orthodontic loading in rat.
Eur J Oral Sci, 112 (2004), pp. 140-147
[24.]
G. Gu, S. Lemmery, G. King.
Effect of appliance reactivation after decay of initial activation on osteoclasts, tooth movement, and root resorption.
[25.]
Y. Ren, J.C. Maltha, A.M. Kuijpers-Jagtman.
The rat as a model for orthodontic tooth movement - a critical review and a proposed solution.
Eur J Orthod, 26 (2004), pp. 483-490
[26.]
T. Sato, M. del Carmen Ovejero, P. Hou, A.M. Heegaard, M. Kumegawa, N.T. Foged, J.M. Delaissé.
Identification of the membrane-type metalloproteinase MT1-MMP in osteoclast.
J Cell Sci, 110 (1997), pp. 589-596
[27.]
T.B. Rajavashisth, X.P. Xu, S. Jovinge, S. Meisel, X.O. Xu, N.N. Chai, M.C. Fishbein, S. Kaul, B. Cercek, B. Sharifi, P.K. Shah.
Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators.
Circulation, 99 (1999), pp. 3103-3110
[28.]
V. Camozzi, F. Vescini, G. Luisetto, L. Moro.
Bone organic matrix components: their roles in skeletal physiology.
J Endocrinol Invest, 33 (2010), pp. 13-15
[29.]
A. Hikita, I. Yana, H. Wakeyama, M. Nakamura, Y. Kadono, Y. Oshima, K. Nakamura, M. Seiki, S. Tanaka.
Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-kappaB ligand.
J Biol Chem, 281 (2006), pp. 36846-36855
[30.]
D. Zhang, W. Goetz, B. Braumann, C. Bourauel, A. Jaeger.
Effect of soluble receptors to interleukin-1 and tumor necrosis factor alpha on experimentally induced root reserption in rats.
J Periodont Res, 38 (2003), pp. 324-332
[31.]
P.C. Smith, J. Guerrero, N. Tobar, M. Cáceres, M.J. González, J. Martínez.
Tumor necrosis factor-alpha-stimulated membrane type 1-matrix metalloproteinase production is modulated by epidermal growth factor receptor signaling in human gingival fibroblasts.
J Periodontal Res, 44 (2009), pp. 73-80
Copyright © 2010. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile
Opciones de artículo
Herramientas