Buscar en
Revista Colombiana de Cardiología
Toda la web
Inicio Revista Colombiana de Cardiología Mecanismos celulares y moleculares de la aterotrombosis
Información de la revista
Vol. 21. Núm. 1.
Páginas 35-43 (Enero - Febrero 2014)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 21. Núm. 1.
Páginas 35-43 (Enero - Febrero 2014)
Open Access
Mecanismos celulares y moleculares de la aterotrombosis
Cellular and molecular mechanisms of atherothrombosis
Visitas
...
Eliana C. Portilla1, Wilson Muñoz1,2, Carlos H. Sierra1,3,
Autor para correspondencia
hsierra@unicauca.edu.co

Correspondencia: Laboratorio de Genética Humana, Facultad de Ciencias de la Salud, Universidad del Cauca, Calle 5 No. 4-70, Popayán, Colombia. Telefax: (572) 8 20 98 72.
1 Grupo de Investigación en Genética Humana Aplicada. Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia
2 Unidad Vascular, Popayán, Colombia
3 Fundación InnovaGen, Popayán, Colombia
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

La aterosclerosis es el resultado de la alteración en la función del endotelio arterial, desencadenada por la exposición continua de este tejido a fenómenos circulatorios turbulentos. La presencia de factores de riesgo cardiovascular promueve la sobre-expresión de moléculas proinflamatorias que inician la cascada inflamatoria al interior del vaso. Una vez las células inmunes, como monocitos y macrófagos, ingresan a la arteria, se inicia una serie de eventos que incluye la internalización de partículas lipídicas en el macrófago y la formación de las células espumosas y estrías grasas. Posteriormente, la respuesta inflamatoria se agudiza y continúa la formación del núcleo lipídico y el desarrollo de la placa de ateroma. El proceso inflamatorio modula la sobre-expresión de mecanismos protrombóticos que actúan en respuesta a la ruptura o erosión de la placa aterosclerótica y desencadena eventos trombóticos o embólicos. El objetivo de esta revisión es presentar evidencia acerca de los mecanismos celulares y moleculares involucrados en los procesos de disfunción endotelial, inflamación y trombosis que subyacen el inicio y la progresión de la aterosclerosis.

Palabras clave:
radicales libres
endotelio
inflamación
coagulación
aterosclerosis
enfermedad cardiovascular

Atherosclerosis results from an altered arterial endothelial function, triggered by the continuous exposure of this tissue to turbulent circulatory phenomena. The presence of cardiovascular risk factors promotes the overexpression of proinflammatory molecules that initiate the inflammatory cascade within the vessel. Once immune cells such as monocytes and macrophages have entered the artery, these initiate a series of events that include the internalization of lipid particles in the macrophage and the formation of foam cells and fatty streaks. Subsequently, the inflammatory response is exacerbated and the lipid core formation and development of atheromatous plaque continues. The inflammatory process modulates the overexpression of prothrombotic mechanisms that act in response to the rupture or erosion of the atherosclerotic plaque and triggers thrombotic or embolic events. The aim of this review is to present evidence about the cellular and molecular mechanisms involved in the processes of endothelial dysfunction, inflammation and thrombosis that underlie the initiation and progression of atherosclerosis.

Key words:
oxidative stress
endothelial dysfunction
inflammation
coagulation
atherosclerosis
cardiovascular disease
El Texto completo está disponible en PDF
Bibliografía
[1.]
P. Greenland, J.S. Alpert, G.A. Beller, E.J. Benjamin, M.J. Budoff, Z.A. Fayad, et al.
2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults.
J Am Coll Cardiol, 56 (2010), pp. 50-103
[2.]
A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry, W.B. Borden, et al.
Heart disease and stroke statistics-2013 update: a report from de American Heart Association.
Circulation, 127 (2013), pp. 6-245
[3.]
P. Lopez, J. López.
Lecciones aprendidas de dos grandes estudios epidemiológicos de enfermedades cardio-cerebro-vasculares en las que ha participado Colombia.
Rev Col Cardiol, 17 (2010), pp. 195-199
[4.]
S.A. Ramsey, E.S. Gold, A. Aderem.
A systems biology approach to understanding atherosclerosis.
EMBO Mol Med, 2 (2010), pp. 79-89
[5.]
F. Grover, A. Zavalza.
Endothelial dysfunction and cardiovascular risk factors.
Diabetes Res Clin Pract, 84 (2009), pp. 1-10
[6.]
P.P. Toth.
Subclinical atherosclerosis: what it is, what it means and what we can do about it.
Int J Clin Pract, 62 (2008), pp. 1246-1254
[7.]
P. Dutta, G. Courties, Y. Wei, F. Leuschner, R. Gorbatov, C.S. Robbins, et al.
Myocardial infarction accelerates atherosclerosis.
Nature, 487 (2012), pp. 325-329
[8.]
A. Ghazalpour, S. Doss, X. Yang, J. Aten, E.M. Toomey, A. Van Nas, et al.
Thematic review series: the pathogenesis of atherosclerosis.
Toward a biological network for atherosclerosis. J Lipid Res, 45 (2004), pp. 1793-1805
[9.]
H. Roy, S. Bhardawaj, S. Yla-Herttuala.
Molecular genetics of atherosclerosis.
Hum Genet, 125 (2009), pp. 467-491
[10.]
H. Hadi, C.S. Carr, J. Al Suwaidi.
Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome.
Vasc Health Risk Manag, 1 (2005), pp. 183-198
[11.]
E. Flowers, E. Froelicher, B.E. Aouizerat.
Gene-environment interactions in cardiovascular disease.
Eur J Cardiovasc Nurs, 11 (2012), pp. 472-478
[12.]
S.J. Elder, A.H. Lichtenstein, A.G. Pittas, S.B. Roberts, P.J. Fuss, A.S. Greenberg, et al.
Genetic and environmental influences on factors associated with cardiovascular disease and the metabolic syndrome.
J Lipid Res, 50 (2009), pp. 1917-1926
[13.]
F. Epstein, R. Ross.
Atherosclerosis—an inflammatory disease, 340 (1999), pp. 115-126
[14.]
P. Libby, M. DiCarli, R. Weissleder.
The vascular biology of atherosclerosis and imaging targets.
J Nucl Med, 51 (2010), pp. 33-37
[15.]
W.C. Aird.
Endothelial cell heterogeneity.
Cold Spring Harb Perspect, 2 (2012), pp. 1-13
[16.]
L. Badimon, R. Storey, G. Vilahur.
Update on lipids, inflammation and atherothrombosis.
Thromb Haemost, 105 (2011), pp. 34-42
[17.]
H. Kaneto, N. Katakami, M. Matsuhisa, T.A. Matsuoka.
Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis.
Mediators Inflamm, (2010), pp. 1-11
[18.]
E. Lubos, D.E. Handy, J. Loscalzo.
Role of oxidative stress and nitric oxide in atherothrombosis.
Front Biosci, 1 (2008), pp. 5323-5344
[19.]
S. Sitia, L. Tomasoni, F. Atzeni, G. Ambrosio, C. Cordiano, A. Catapano, et al.
From endothelial dysfunction to atherosclerosis.
Autoimmun Rev, 9 (2010), pp. 830-834
[20.]
B. Shao, J.W. Heinecke.
HDL, lipid peroxidation, and atherosclerosis.
J Lipid Res, 50 (2009), pp. 599-601
[21.]
G. Muller, C. Goettsch, H. Morawietz.
Oxidative stress and endothelial dysfunction.
Hamostaseologie, 27 (2007), pp. 5-12
[22.]
M.E. Lönn, J.M. Dennis, R. Stocker.
Actions of “antioxidants” in the protection against atherosclerosis.
Free Radic Biol Med, 53 (2012), pp. 863-884
[23.]
D. Versari, E. Daghini, A. Virdis, L. Ghiadoni, S. Taddei.
Endothelial dysfunction as a target for prevention of cardiovascular disease.
Diabetes Care, 32 (2009), pp. 314-321
[24.]
M. Hulsmans, E. Van Dooren, P. Holvoet.
Mitochondrial reactive oxygen species and risk of atherosclerosis.
Curr Atheroscler Rep, 14 (2012), pp. 264-276
[25.]
J. Davignon, P. Ganz.
Role of endothelial dysfunction in atherosclerosis.
Circulation, 109 (2004), pp. III27-III32
[26.]
D. Tousoulis, A.M. Kampoli, C. Tentolouris, N. Papageorgiou, C. Stefanadis.
The role of nitric oxide on endothelial function.
Curr Vasc Pharmacol, 10 (2012), pp. 4-18
[27.]
C.E. Tabit, W.B. Chung, N.M. Hamburg, J.A. Vita.
Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications.
Rev Endocr Metab Disord, 11 (2010), pp. 61-74
[28.]
R.A. Bastarrachea, J.C. López, V.E. Bolado, J. Téllez, H. Laviada, A.G. Comuzzie.
Macrófagos, inflamación, tejido adiposo, obesidad y resistencia a la insulina.
Gac Méd Méx, 143 (2007), pp. 505-512
[29.]
J.E. Deanfield, J.P. Halcox, T.J. Rabelink.
Endothelial function and dysfunction: testing and clinical relevance.
Circulation, 115 (2007), pp. 1285-1295
[30.]
P.J. Boyle.
Diabetes mellitus and macrovascular disease: mechanisms and mediators.
[31.]
J.A. Ambrose, R.S. Barua.
The pathophysiology of cigarette smoking and cardiovascular disease: An update.
J Am Coll Cardiol, 43 (2004), pp. 1731-1737
[32.]
K.S. McCully.
Chemical pathology of homocysteine IV. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation.
Ann Clin Lab Sci, 39 (2009), pp. 219-232
[33.]
T. Sawamura.
LOX-1 a lectin-like oxidized LDL receptor identified form endothelial cells, in endothelial dysfunction.
Int Congr, 1262 (2004), pp. 531-534
[34.]
G. Soldatos, M.E. Cooper, K.A. Jandeleit.
Advanced-glycation end products in insulin-resistant states.
Curr Hypertens Rep, 7 (2005), pp. 96-102
[35.]
M. Mudau, A. Genis, A. Lochner, H. Strijdom.
Endothelial dysfunction: the early predictor of atherosclerosis.
Cardiovasc J Afr, 23 (2012), pp. 222-231
[36.]
A. Avogaro, S.V. de Kreutzenberg, G. Fadini.
Endothelial dysfunction: causes and consequences in patients with diabetes mellitus.
Diabetes Res Clin Pract, 15 (2008), pp. s94-s101
[37.]
E. Corrado, M. Rizzo, G. Coppola, K. Fattouch, G. Novo, I. Marturana, et al.
An update on the role of markers of inflammation in atherosclerosis.
J Atheroscler Thromb, 17 (2010), pp. 1-11
[38.]
P. Libby, P.M. Ridker, G.K. Hansson.
Inflammation in atherosclerosis: from pathophysiology to practice.
J Am Coll Cardiol, 54 (2009), pp. 2129-2138
[39.]
G.K. Hansson.
Inflammatory mechanisms in atherosclerosis.
J Thromb Haemost, 7 (2009), pp. 328-331
[40.]
K.G. Birukov.
Oxidized lipids: the two faces of vascular inflammation.
Curr Atheroscler Rep, 8 (2006), pp. 223-231
[41.]
S. Samson, L. Mundkur, V.V. Kakkar.
Immune response to lipoproteins in atherosclerosis.
Cholesterol, 2012 (2012), pp. 1-12
[42.]
P. Libby, Y. Okamoto, V.Z. Rocha, E. Folco.
Inflammation in atherosclerosis: transition from theory to practice.
Circ J, 74 (2010), pp. 213-220
[43.]
H. Yang, A.S. Mohamed, S. Zhou.
Oxidized low density lipoprotein, stem cells, and atherosclerosis.
Lipids Health Dis, 11 (2012), pp. 1-9
[44.]
K. Ley, Y.I. Miller, C.C. Hedrick.
Monocyte and macrophage dynamics during atherogenesis.
Arterioscler Thromb Vasc Biol, 31 (2011), pp. 1506-1516
[45.]
E. Galkina, K. Ley.
Immune and inflammatory mechanisms of atherosclerosis.
Ann Rev Immunol, 27 (2009), pp. 165-197
[46.]
R.R. Packard, P. Libby.
Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction.
[47.]
J.F. Keaney.
Immune modulation of atherosclerosis.
Circulation, 29 (2011), pp. 559-560
[48.]
A. Zernecke, C. Weber.
Chemokines in the vascular inflammatory response of atherosclerosis.
Cardiovasc Res, 86 (2010), pp. 192-201
[49.]
J.L. Johnson, A.C. Newby.
Macrophage heterogeneity in atherosclerotic plaques.
Curr Opin Lipidol, 20 (2009), pp. 370-378
[50.]
Y.V. Bobryshev.
Monocyte recruitment and foam cell formation in atherosclerosis.
[51.]
R. Poledne, A. Lorenzova, P. Stavek, Z. Valenta, J. Hubácek, P. Suchánek, et al.
Proinflammatory status, genetics and atherosclerosis.
Physiol Res, 58 (2009), pp. 111-118
[52.]
M. Hristov, C. Weber.
Differential role of monocyte subsets in atherosclerosis.
Thromb Haemost, 106 (2011), pp. 757-762
[53.]
R. Paoletti, C. Bolego, A. Poli, A. Cignarella.
Metabolic syndrome, inflammation and atherosclerosis.
Vasc Health Risk Manag, 2 (2006), pp. 145-152
[54.]
K.J. Woollard, F. Geissmann.
Monocytes in atherosclerosis: subsets and functions.
Nat Rev Cardiol, 7 (2010), pp. 77-86
[55.]
J.W. Semple, J. Freedman.
Platelets and innate immunity.
Cell Mol Life Sci, 67 (2010), pp. 499-511
[56.]
J. Andersson, P. Libby, G.K. Hansson.
Adaptive immunity and atherosclerosis.
Clin Immunol, 134 (2010), pp. 33-46
[57.]
R.R. Packard, A.H. Lichtman, P. Libby.
Innate and adaptive immunity in atherosclerosis.
Semin Immunopathol, 31 (2009), pp. 5-22
[58.]
A. Boullier, D.A. Bird, M.K. Chang, E.A. Dennis, P. Friedman, K. Gillotre-Taylor, et al.
Scavenger receptors, oxidized LDL, and atherosclerosis.
Ann N Y Acad Sci, 947 (2010), pp. 214-223
[59.]
Y. Yuan, P. Li, J. Ye.
Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis.
Protein Cell, 3 (2012), pp. 173-181
[60.]
M. Ouimet, Y.L. Marcel.
Regulation of lipid droplet cholesterol efflux from macrophage foam cells.
Arterioscler Thromb Vasc Biol, 32 (2011), pp. 575-581
[61.]
R. Maiti, N.K. Agrawal.
Atherosclerosis in diabetes mellitus: role of inflammation.
Indian J Med Sci, 61 (2007), pp. 292-306
[62.]
P. Libby.
Inflammation and cardiovascular disease mechanisms.
Am J Clin Nutr, 83 (2006), pp. 456-460
[63.]
H. Ait-Oufella, S. Taleb, Z. Mallat, A. Tedgui.
Recent advances on the role of cytokines in atherosclerosis.
Arterioscler Thromb Vasc Biol, 31 (2011), pp. 969-979
[64.]
G. Douglas, K.M. Channon.
The pathogenesis of atherosclerosis.
Medicine, 38 (2010), pp. 397-402
[65.]
W.T. Gerthoffer.
Mechanisms of vascular smooth muscle cell migration.
[66.]
J.D. Raffetto, R.A. Khalil.
Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease.
Biochem Pharmacol, 75 (2008), pp. 346-359
[67.]
S.S. Dhawan, A. Nanjundappa, J.R. Branch, W.R. Taylor, A.A. Quyyumi, H. Jo, et al.
Shear stress and plaque development.
Expert Rev Cardiovasc Ther, 8 (2010), pp. 545-556
[68.]
M. Franco, R.S. Cooper, U. Bilal, V. Fuster.
Challenges and opportunities for cardiovascular disease prevention.
Am J Med, 124 (2011), pp. 95-102
[69.]
J. Almeida, O. Álvarez.
Fisiopatología de los síndromes coronarios agudos.
Rev Cubana Med, 45 (2006), pp. 13-24
[70.]
J.I. Borissoff, H.M. Spronk, H. Ten Cate.
The hemostatic system as a modulator of atherosclerosis.
N Engl J Med, 364 (2011), pp. 1746-1760
[71.]
R. Abbate, G. Cioni, I. Ricci, M. Miranda, A.M. Gori.
Thrombosis and acute coronary syndrome.
Thromb Res, 129 (2012), pp. 235-240
[72.]
K. Aksu, A. Donmez, G. Keser.
Inflammation-induced thrombosis: mechanisms, disease associations and management.
Curr Pharm Des, 18 (2012), pp. 1478-1493
[73.]
C. Weber, H. Noels, Atherosclerosis:.
current pathogenesis and therapeutic options.
Nat Med, 17 (2011), pp. 1410-1422
[74.]
B. Halvorsen, K. Otterdal, T.B. Dahl, M. Skjelland, L. Gullestad, E. Øie, et al.
Atherosclerotic plaque stability — what determines the fate of a plaque?.
Prog Cardiovasc Dis, 51 (2008), pp. 183-194
[75.]
L. Badimon, T. Padró, G. Vilahur.
Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease.
Acute Cardiovascular Care, 1 (2012), pp. 60-74
[76.]
K.S. Borensztajn, J.H. Von der Thüsen, C.A. Spek.
The role of coagulation in chronic inflammatory disorders: a jack of all trades.
Curr Pharm Des, 17 (2011), pp. 9-16
[77.]
P. de Moerloose, F. Boehlen, M. Neerman-Arbez.
Fibrinogen and the risk of thrombosis.
Semin Thromb Hemost, 36 (2010), pp. 7-17
[78.]
A. Breitenstein, F.C. Tanner, T.F. Lüscher.
Tissue factor and cardiovascular disease: quo vadis?.
Circ J, 74 (2010), pp. 3-12
[79.]
Z.S. Kaplan, S.P. Jackson.
The role of platelets in atherothrombosis.
Hematology Am Soc Hematol Educ Program, (2011), pp. 51-61
[80.]
C.T. Esmon.
The interactions between inflammation and coagulation.
Br J Haematol, 131 (2005), pp. 417-430
[81.]
A.I. Vinik, T. Erbas, T.S. Park, R. Nolan, G.L. Pittenger.
Platelet dysfunction in type 2 diabetes.
Diabetes Care, 24 (2001), pp. 1476-1485
[82.]
M.E. Carr.
Diabetes mellitus: a hypercoagulable state.
J Diabetes Complications, 15 (2001), pp. 44-54
[83.]
L.K. Jennings.
Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis.
Thromb Haemost, 102 (2009), pp. 248-257
[84.]
J.M. Maguire, A. Thakkinstian, J. Sturm, C. Levi, L. Lincz, M. Parsons, et al.
Polymorphisms in platelet glycoprotein 1bα and factor VII and risk of ischemic stroke: a meta-analysis.
Stroke, 39 (2008), pp. 1710-1716
[85.]
M. Kleinegris, A. Cate-Hoek, H. Cate.
Coagulation and the vessel wall in thrombosis and atherosclerosis.
Pol Arch Med Wewn, 122 (2012), pp. 557-566
[86.]
P.B. Balagopal, S.D. de Ferranti, S. Cook, S.R. Daniels, S.S. Gidding, L.L. Hayman, et al.
Nontraditional risk factors and biomarkers for cardiovascular disease: mechanistic, research, and clinical considerations for youth.
Circulation, 123 (2011), pp. 2749-2769
[87.]
A. Briasoulis, D. Tousoulis, E.S. Androulakis, N. Papageorgiou, G. Latsios, C. Stefanadis.
Endothelial dysfunction and atherosclerosis: focus on novel therapeutic approaches.
Recent Pat Cardiovasc Drug Discov, 7 (2012), pp. 21-32
[88.]
F. de la Cuesta, M.G. Barderas, E. Calvo, I. Zubiri, A.S. Maroto, V.M. Darde, et al.
Secretome analysis of atherosclerotic and non-atherosclerotic arteries reveals dynamic extracellular remodeling during pathogenesis.
J Proteomics, 75 (2011), pp. 2960-2971
[89.]
J. Jawien.
Atherosclerosis in 2012: what is new?.
Pol Arch Med Wewn, 122 (2012), pp. 170-173
[90.]
S. Lenglet, A. Thomas, P. Chaurand, K. Galan, F. Mach, F. Montecucco.
Molecular imaging of matrix metalloproteinases in atherosclerotic plaques.
Thromb Haemost, 107 (2012), pp. 409-416
Copyright © 2014. Sociedad Colombiana de Cardiología y Cirugía Cardiovascular
Opciones de artículo
Herramientas