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Resumen

Objetivo:  Evaluar  si  clasificadores  de  aprendizaje  supervisado  no  lineales  basados  en  radiómica
de la  TC cerebral  sin  contraste  (TCCSC)  pueden  predecir  el  pronóstico  funcional  al  alta  en
pacientes  con  hematoma  intracerebral  espontáneo  (HIE).
Material  y  método:  Análisis  observacional  retrospectivo  y  unicéntrico  de pacientes  con  diagnós-
tico de  HIE  confirmado  por  TCCSC  entre  enero  de  2016  y  abril  de  2018.  Se  incluyeron  pacientes
con HIE  > 18  años  y  con  TCCSC  realizado  dentro  de  las  primeras  24  horas  del  inicio  de los  sínto-
mas.  Se  excluyeron  los HIE secundarios  y  en  los  que  no se  disponía  de las  variables  de radiómica.
Se recogieron  datos clínicos,  demográficos  y  variables  al  ingreso.  Los pacientes  se  clasificaron
según la  Escala  Modificada  de  Rankin  (mRS)  al  alta  en  buen  (mRS  0-2)  y  mal  pronóstico  (mRS  3-6).
Tras la  segmentación  manual  de  la  TCCSC  de  cada  HIE  se  obtuvieron  las  variables  de radiómica.
La muestra  se  dividió  en  una  cohorte  de  entrenamiento  y  prueba  y  otra  cohorte  de  validación
(70-30%,  respectivamente).  Se  usaron  diferentes  métodos  de selección  de variables  y  reduc-
ción de  dimensionalidad,  así  como  diferentes  algoritmos  para  la  construcción  del modelo.  Se
realizaron 10  iteraciones  de validación  cruzada  estratificada  en  la  cohorte  de  entrenamiento  y
prueba y  se  calculó  la  media  de los valores  de área  bajo  la  curva  (AUC).  Una  vez entrenados  los
modelos, se  calculó  la  sensibilidad  de  cada  uno  para  predecir  el pronóstico  funcional  al  alta  en
la cohorte  de  validación.
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Resultados:  Se  analizaron  105  pacientes  con  HIE.  Se  evaluaron  105  variables  de radiómica  de
cada paciente.  Los algoritmos  P-SVM,  KNN-E  y  RF-10,  en  combinación  con  el método  de selección
de variables  ANOVA,  fueron  los clasificadores  con  mejor  rendimiento  en  la  cohorte  de entre-
namiento  y  prueba  (AUC:  0,798,  0,752  y  0,742,  respectivamente).  Las  predicciones  de estos
modelos, en  la  cohorte  de validación,  tuvieron  una  sensibilidad  de  0,897  (IC 95%:  0,778-1),  con
una tasa  de  falsos  negativos  del  0%  para  la  predicción  de mal  pronóstico  funcional  al  alta.
Conclusión:  Los  clasificadores  de  aprendizaje  supervisado  no  lineales  basados  en  radiómica
son una herramienta  de diagnóstico  prometedora  para  predecir  el  resultado  funcional  al  alta
en pacientes  con  HIE,  con  una baja  tasa  de falsos  negativos,  aunque  todavía  son  necesarios
estudios con  mayor  tamaño  muestral  y  balanceados  para  desarrollar  y  mejorar  su  rendimiento.
© 2023  SERAM.  Publicado  por  Elsevier  España,  S.L.U.  Todos  los  derechos  reservados.
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Radiomic-based  nonlinear  supervised  learning  classifiers  on non-contrast  CT  to

predict  functional  prognosis  in patients  with  spontaneous  intracerebral  hematoma

Abstract

Purpose:  To  evaluate  if  nonlinear  supervised  learning  classifiers  based  on  non-contrast  cerebral
CT can  predict  functional  prognosis  at discharge  in patients  with  spontaneous  intracerebral
hematoma  (HIE).
Methods:  Retrospective,  single-center,  observational  analysis  of  patients  with  a  diagnosis  of
spontaneous  intracerebral  hematoma  confirmed  by  non-contrast  CT between  January  2016
and April  2018.  Patients  with  HIE  > 18  years  and  with  non-contrast  CT  performed  within  the
first 24  hours  of  symptom  onset  were  included.  Patients  with  secondary  spontaneous  intrace-
rebral hematoma  and  in whom  radiomic  variables  were  not  available  were  excluded.  Clinical,
demographic  and  admission  variables  were  collected.  Patients  were  classified  according  to  the
Modified Rankin  Scale  (mRS)  at  discharge  into  good  (mRS  0-2)  and  poor  prognosis  (mRS  3-6).
After manual  segmentation  of  each  spontaneous  intracerebral  hematoma,  the  radiomics  varia-
bles were  obtained.  The  sample  was  divided  into  a training  and testing  cohort  and  a  validation
cohort (70-30%,  respectively).  Different  methods  of  variable  selection  and  dimensionality  reduc-
tion were  used,  and  different  algorithms  were  used  for  model  construction.  Stratified  10-fold
cross-validation  were  performed  on  the  training  and  testing  cohort  and  the  mean  area  under
the curve  (AUC)  were  calculated.  Once  the  models  were  trained,  the  sensitivity  of  each  was
calculated to  predict  functional  prognosis  at discharge  in the  validation  cohort.
Results: 105  patients  with  spontaneous  intracerebral  hematoma  were  analyzed.  105  radiomic
variables were  evaluated  for  each  patient.  P-SVM,  KNN-E  and  RF-10  algorithms,  in  combination
with the  ANOVA  variable  selection  method,  were  the  best  performing  classifiers  in the  training
and testing  cohort  (AUC:  0.798,  0.752  and  0.742,  respectively).  The  predictions  of  these  models,
in the  validation  cohort,  had a  sensitivity  of  0.897  (95%  CI:  0.778-1),  with  a  false-negative  rate
of 0% for  predicting  poor  functional  prognosis  at discharge.
Conclusion:  The  use  of  radiomics-based  nonlinear  supervised  learning  classifiers  are  a  promising
diagnostic  tool  for  predicting  functional  outcome  at discharge  in HIE  patients,  with  a  low  false
negative rate,  although  larger  and balanced  samples  are  still  needed  to  develop  and  improve
their performance.
© 2023  SERAM.  Published  by  Elsevier  España, S.L.U.  All  rights  reserved.

Introducción

El  accidente  cerebrovascular  (ACV)  es la  segunda  causa
de  muerte  en  todo  el  mundo  y  una  de  las  principales  cau-
sas  de  incapacidad1.  El hematoma  intracerebral  espontáneo
(HIE)  es  el segundo  tipo  más  frecuente  de  ACV,  después  del
ictus  isquémico,  y  representa  el  10-20%  de  todos  los  ACV2.

Aunque  el  pronóstico  es variable,  el  HIE  sigue  siendo  una
causa  importante  de  mortalidad  y de  morbilidad  en todo  el
mundo3, con  una tasa  de  mortalidad  de  aproximadamente

el  40%  al  mes,  54%  al año y 75%  a los 5  años.  Solo  del  12%
al  39%  de los  pacientes  logran  independencia  funcional3.
Identificar  a  los  pacientes  con  riesgo  de mal  pronóstico
funcional  permite  una  mejor  estratificación  para  ofrecer
terapias  intensivas  adaptadas  a estos  pacientes4.

Al  ser  la  tomografía  computarizada  cerebral  sin contraste
(TCCSC)  el  método  diagnóstico  de elección  en  el  HIE  agudo5,
han  surgido  varios  parámetros  cualitativos  (signos  radiológi-
cos)  que  se asocian  a  crecimiento  del HIE  y  a  mal  pronóstico
en estos pacientes.  Los  signos  radiológicos  de la  TCCSC  son
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una  forma  de  representar  las  características  de  morfología
(irregularidad)  y densidad  (heterogeneidad)  del HIE.

Sin  embargo,  estos  parámetros  cualitativos  (signos
radiológicos)6-12 pueden  estar sujetos  a cierta  subjetividad
en  la  interpretación,  y algunos  de  ellos  tienen  definiciones
superpuestas13,  habiéndose  publicado  resultados  de concor-
dancia  interobservador  variables14. Además,  se han  descrito
tasas  bajas  de  sensibilidad  en la predicción  pronóstica  de
estos  signos  (entre  el  14,3  y  el  39,2%  para  pronóstico  fun-
cional  según  el  grupo  de  Law)15,  lo que  puede  dar  lugar  a
estimaciones  erróneas  y  eventualmente  afectar  a la toma
de  decisiones.

Estas  limitaciones  ponen  de  manifiesto  la  necesidad  de
desarrollar  y utilizar  parámetros  cuantitativos  reproducibles
(biomarcadores)  que  minimicen  el  componente  subjetivo
de  la  evaluación  radiológica  cualitativa  y  que  mejoren  el
rendimiento  en  la predicción  del pronóstico  de  los  signos
radiológicos.

La  radiómica  es un enfoque  cuantitativo  en  el  que  se
extraen  un gran número  de  características  (biomarcadores)
de  las  imágenes  radiológicas16,17.

Al  aplicar  algoritmos  de  aprendizaje  automático
supervisado18 sobre  los  parámetros  cuantitativos  (biomar-
cadores)  se  pueden  crear  modelos  que  puedan  realizar  la
predicción  de  una  variable  resultado  sobre  datos  no  evalua-
dos  previamente.  Nuestra  hipótesis  es  que  clasificadores  de
aprendizaje  supervisado  no  lineales  basados en radiómica
pueden  predecir  el  mal  pronóstico  funcional  en pacientes
con  HIE,  al  objetivar  características  no  apreciables  por el
ojo  humano  (intensidad,  forma,  textura.  .  .).

El  objetivo  de  este  estudio es  evaluar  si  clasificadores  de
aprendizaje  supervisado  no  lineales  basados en radiómica
de  la  TCCSC  pueden  predecir  el  pronóstico  funcional  al  alta
en  pacientes  con  HIE.

Material y métodos

El manuscrito  ha sido estructurado  atendiendo  a  la inicia-
tiva  CLAIM  (de  sus  siglas  en inglés  Checklist  for  Artificial

Intelligence  in  Medical  Imaging)19.
Para  la segmentación  de  cada  HIE  se utilizó  el  Software

3D  Slicer  (versión  4.10.2).  El software  utilizado  para  el  pro-
cesamiento  de  datos  fue  Orange  data  mining  versión  3.31
(https://orangedatamining.com/).

Diseño  del estudio

Análisis  observacional  retrospectivo  unicéntrico  de  pacien-
tes  consecutivos  con diagnóstico  de  HIE  confirmado  por
TCCSC  entre  enero  de  2016  y  abril  de  2018  en un  cen-
tro  terciario  de  ictus.  El objetivo  es crear un algoritmo  de
aprendizaje  supervisado  no  lineal de  cribado  para  predecir
el  pronóstico  funcional  al  alta  en pacientes  con HIE.  Dado
el  objetivo  marcado,  las  métricas  que  se quieren  optimizar
son  la sensibilidad  y el  valor  predictivo  negativo.

Datos

El  protocolo  del  estudio  fue  aprobado  por  el  Comité  de
Ética  de  Investigación  Clínica  local  (número  de  registro

HCB/2020/0180)  según  lo establecido  en  las  leyes  y nor-
mas  nacionales  (Ley  14/2007,  de 3 de julio,  de Investigación
Biomédica)  e  internacionales  (Declaración  de Helsinki,  en
su última  actualización  de Fortaleza,  Brasil,  2013).  Dada  la
naturaleza  retrospectiva  del estudio,  no  se requirió  el  con-
sentimiento  informado  específico  para  la  inclusión  de  los
datos  en el  estudio.  Para  garantizar  el  anonimato  de  los
participantes  en  el  estudio  se llevó  a cabo  un proceso  de
seudonimización.  El  conjunto  de  datos  empleado  en este
estudio  no  se  ha  utilizado  previamente.  Los  datos  que  res-
paldan  las  conclusiones  de este  estudio  están  disponibles
mediante  el  autor  de  correspondencia,  previa  solicitud  jus-
tificada  de los  mismos.

Inicialmente  se valoraron  un total  de  128 pacientes  mayo-
res  de 18  años  con diagnóstico  de HIE  espontáneo  y con
TCCSC  realizado  dentro  de las  primeras  24  horas  desde  el  ini-
cio  de  los  síntomas.  De estos  se  excluyeron  los  pacientes  con
HIE  secundario  y  los  pacientes  en  los  que  no  se disponía  de
todas  las  variables  de  radiómica.  Se  recogieron  datos  demo-
gráficos  (edad y sexo),  hábitos  tóxicos  (alcohol  y tabaco),
factores  de  riesgo  cerebrovascular  y  cardiovascular  (hiper-
tensión,  dislipidemia,  diabetes  mellitus,  fibrilación  auricular
y  cardiopatía  isquémica),  antecedentes  médicos  de  HIE  o
ictus  previo  y  tratamiento  farmacológico  antiagregante  o
anticoagulante  concomitante.

Al  ingreso,  se registraron  la presión  arterial  sistólica  y
diastólica  (mmHG),  la  glucemia  (mmol/l)  y  la evaluación
neurológica  inicial  mediante  la  National  Institutes  of  Health

Stroke  Scale  (NIHSS).  El  pronóstico  funcional  al  alta  se
determinó  utilizando  la escala de Rankin  modificada  (mRS)
dicotomizada  en buen  pronóstico  (mRS  0-2)  o  mal  pronóstico
(mRS  3-6).

Se  realizó  una  TCCSC  secuencial  en dos  equipos  de  TC
multicorte  (Somatom  Definition  Flash  y  Somatom  Sensation
64,  Siemens  Healthcare,  Erlangen,  Alemania).  Se  obtuvieron
imágenes  secuenciales  axiales  paralelas  a  la  línea  orbito-
meatal  desde  la base  del  cráneo  hasta  el vértice,  utilizando
parámetros  estándar  de  140  kV, 230  mAs  y  reconstrucciones
axiales  con  un grosor  de  5 mm.

Se analizaron  la localización  del  HIE  (ganglios  basa-
les,  lobar,  tronco  encefálico  y  cerebelo),  la  presencia  de
hemorragia  intraventricular  y el  volumen  del hematoma
(ml).  El  volumen  del  hematoma  se calculó  según  el  método
validado  A ×  B ×  C  / 220.

Las  imágenes  de la  TCCSC  de cada  paciente  incluido  en
el  estudio  se importaron  desde  el  Picture  Archiving  and

Communication  System  (PACS)  al  Software  3D  Slicer  (ver-
sión  4.10.2),  donde  se utilizó el  módulo  «Segment  Editor»

para la segmentación.
El  proceso  de segmentación  fue  llevado  a  cabo  por  un

radiólogo  cualificado  sin acceso  a la  información  clínica.  Los
contornos  de todos  los  HIE  fueron  dibujados  manualmente
corte  a corte  y  se  formaron  los volúmenes  de  interés  (VOI)
tridimensionales  de cada HIE.

Desde  el  módulo  «Radiomics» del Software  3D  Slicer  se
obtuvieron  de forma  automática  un  total  de 105  variables
de  cada  uno de  los  VOI,  relacionadas  con la  intensidad,  la
forma  y la textura  del hematoma.  El  módulo  «Radiomics» de
3D  Slicer  se  basa  en  la librería  pyRadiomics21,  que  cumple
con  el  estándar  Image  Biomarker  Standardisation  Initiative

(IBSI)22.  En la figura  1 se resume  el  proceso  de segmentación.
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Figura  1  Proceso  de  segmentación.  Las  imágenes  de  la  TCCSC  se  importaron  desde  el Picture  Archiving  and  Communication  System

(PACS) al  Software  3D  Slicer  (versión  4.10.2),  donde  se  utilizó  el módulo  «Segment  Editor»  para  la  segmentación.  Los  contornos  de
todos los  HIE  fueron  dibujados  manualmente  corte  a  corte  y  se  formaron  los volúmenes  de interés  tridimensionales  (VOI)  de  cada
HIE. Desde  el módulo  «Radiomics»  del Software  3D  Slicer  se  obtuvieron  de  forma  automática  un  total  105  variables  de  cada  uno  de
los VOI,  relacionadas  con  la  intensidad,  la  forma  y  la  textura  del hematoma.

Verdad  fundamental

El  objetivo  principal  de  este  trabajo  fue  evaluar  si  los  clasi-
ficadores  de  aprendizaje  supervisado  basados  en radiómica
de  la  TCCSC  son capaces  de  predecir  el  mal  pronóstico  fun-
cional  al  alta  en  pacientes  con HIE. Se definió  mal  pronóstico
como  aquellos  pacientes  con dependencia  para  realizar  las
actividades  diarias  al  alta  o  defunción  tras el  HIE  (mRS  3-
6). La  variable  resultado  (mRS  al  alta)  fue  dicotomizada  en
buen  pronóstico  (independencia  funcional  al  alta: mRS  0-2)
y  mal  pronóstico  (dependencia  funcional  o  defunción  al  alta:
mRS  3-6).  La  escala  mRS  evalúa  la discapacidad  global  tras
un  ACV  y es la  medida  de  resultado  funcional  más  completa
y utilizada  en los  ensayos  de  ictus.  Sin  embargo,  se ha des-
crito  variabilidad  interobservador  que  puede  implicar  una
clasificación  errónea  y  limitar  la validez  de  los resultados23.
Por  ello,  el  mRS  al  alta  ha  sido  determinado  por  seis  neu-
rólogos  vasculares  con  más  de  cinco  años de  experiencia  y
con  certificación  en su determinación.  Además,  se  ha dico-
tomizado  el  resultado  del mRS  en  lugar  de  emplearlo  en  su
escala  original,  ya  que  se  ha  demostrado  que  las  tasas de
error  de  clasificación  son  menores  con la  dicotomización  del
mRS,  en  comparación  con la  determinación  ordinal24.

Distribución  de datos

La  muestra  se dividió  en dos  cohortes  estratificadas  de
pacientes,  una  cohorte  de  entrenamiento  y  prueba  (70%,
n = 70)  y  otra  de  validación  (30%,  n  = 29). La  estratificación
de  la  muestra  se refiere  a  que  cada cohorte  tiene  la  misma
proporción  de  pacientes  con  buen y mal  pronóstico  funcional
que  la  muestra  global.

Modelo

El software  utilizado  para  el  procesamiento  de
datos  fue  Orange  data  mining  versión  3.31  (https://
orangedatamining.com/).  Todas  las  variables  de  radiómica
obtenidas  (tanto  en  la  cohorte de  entrenamiento  y  prueba
como  en  la  cohorte  de  validación)  se sometieron  a un
procesamiento  inicial  para  asegurar  el  correcto  funciona-
miento  de  los  clasificadores.  Este  procesamiento  consiste,

en  primer  lugar,  en excluir  los  pacientes  que  tenían  valores
perdidos  (ausentes)  en  alguna  de las  105  variables.  En
segundo  lugar,  mediante  el  algoritmo  «Isolation  Forest» se
eliminaron  el  5% de los pacientes  con  valores  de  radiómica
extremos.  Por  último,  se  llevó  a cabo un  proceso  de
estandarización  y normalización  para  convertir  las  variables
de  radiómica  en  variables  con una  distribución  normal  con
valores  comprendidos  entre  0 y  1.

Reducción  de  la dimensionalidad  - Selección  de
variables

Una vez  realizado  el  procesamiento  inicial  de las  variables
de  radiómica,  para  seleccionar  las  variables  a  estudio  se
utilizaron,  por  un  lado,  todas  las variables  de radiómica
sin  seleccionar  ni reducir  su  dimensionalidad  (evaluando  las
105  variables  de cada  uno  de  los pacientes),  y, por otro,  se
aplicaron  técnicas  de  reducción  de la  dimensionalidad  para
identificar  y retirar  información  irrelevante  y  redundante25.
Dado  que  contamos  con  una  muestra  de  70  pacientes  para
entrenar  el  modelo,  se redujo  la  dimensionalidad  en  7 varia-
bles  para  minimizar  el  efecto  del sobreajuste  (overfitting).
Los  métodos  empleados  de selección  de variables  y de  reduc-
ción  de la  dimensionalidad  fueron:

-  Método  ANOVA:  seleccionamos  7  variables  según  tengan
mayor  diferencia  entre  los valores  promedio  de la  carac-
terística  en diferentes  clases,  siempre  y  cuando  no  exista
correlación  entre  ellas  (coeficiente  de correlación  de
Spearman  < 0,5).

- Algoritmos  de reducción  de la dimensionalidad  lineal:
◦ Principal  Component  Analysis  (PCA)26 80:  es un  procedi-

miento  estadístico  que  transforma  ortogonalmente  las  n
dimensiones  numéricas  originales  de un  conjunto  de datos
en  un  nuevo  conjunto  de n  dimensiones  llamadas compo-
nentes  principales.  En  este  caso,  el  nuevo  conjunto  tendrá
tantas  dimensiones  como  sean necesarias  para  conservar
el  80%  de la variación  de los  datos.

◦ PCA-90:  en  este  caso,  el  nuevo  conjunto  tendrá  tantas
dimensiones  como  sean  necesarias  para  conservar  el  90%
de  la variación  de los datos.

522

https://orangedatamining.com/
https://orangedatamining.com/


Radiología  65  (2023)  519---530

Figura  2  Resumen  del método  de  procesamiento  de  datos,  selección  de  variables  y  construcción  del  modelo.

-  Algoritmos  de  reducción  de  la dimensionalidad  no  lineales
con  los  que  seleccionaremos  7  nuevas  dimensiones  (varia-
bles)  para  representar  nuestras  variables  originales:

◦  tSNE-7  (incrustación  de  vecinos  estocásticos  distribuidos
en  t)27: es un  algoritmo  que  calcula  la  probabilidad  de
que  pares  de  puntos  de  datos  en  el espacio  de  alta  dimen-
sión  estén  relacionados  y  luego  elige  una inserción  de baja
dimensión  que  produce  una  distribución  similar.

◦  Isomap-7  (mapeo  de  características  isométricas)28:  es un
algoritmo  que  proyecta  los  datos  a  una  dimensión  inferior,
preservando  la  distancia  más  corta  entre  dos  puntos  de
una  curva.

◦ LLE-7  (incrustación  localmente  lineal)29: es  un  algoritmo
que  mantiene  las  características  lineales  locales  de las
muestras,  por  lo que  cada  punto  puede  estar  representado
como  una  suma  lineal  y ponderada  de  sus  vecinos.

Construcción  del  modelo

Para  la  construcción  del  modelo  se  emplearon  algoritmos
utilizados  previamente  en la literatura  con buenos  resul-
tados  en  la  evaluación  del  crecimiento  y  el  pronóstico  del
HIE30-32.  Se  aplicaron  los  siguientes  algoritmos:

-  K vecinos  más  cercanos  (KNN):  es  uno  de  los algoritmos
de  clasificación  más  básicos.  Es  un algoritmo  de  aprendi-
zaje  no  paramétrico,  es decir,  que  no  hace  suposiciones
sobre  la  forma  funcional  de  los datos.  Por  el  contrario,  es
un  algoritmo  basado  en  instancias,  es decir,  el  algoritmo
no  aprende  un  modelo,  sino  que  memoriza  las  instan-
cias de  entrenamiento  que  son usadas  como «base  de
conocimiento»  para  realizar  las  predicciones33,34.

◦  Distancia  euclidiana  (KNN-E):  es la  distancia  en línea  recta
o  la  trayectoria  más  corta  posible  entre  dos  puntos.

◦ Distancia  Manhattan  (KNN-M):  la  distancia  Manhat-
tan  entre  2 puntos  es  la suma  de  las  diferencias
absolutas  de  sus  coordenadas.  Es  decir, es la  suma  de las
longitudes  de  los  dos  catetos  del triángulo  rectángulo.  Es
la  distancia  entre  dos  puntos  en una  cuadrícula  de calles
tipo  ciudad,  en  la  que  es no  es  posible  recorrer  los  dos
puntos  en  línea  recta.

- Máquinas  de  vectores  de  soporte  (Support  Vector  Machine

[SVM]):  es un algoritmo  que  representa  las  instancias  de
la  muestra  en el  espacio,  separando  las  clases  a dos  espa-
cios  mediante  un  hiperplano  de separación.  Cuando  las
nuevas  instancias  se  introducen  en el  modelo,  en fun-
ción  de los  espacios  a  los que  pertenezcan,  pueden  ser
clasificadas  a una  u  otra  clase.  Una  SVM  construye  un
hiperplano  o conjunto  de hiperplanos  en  un espacio  de alta
dimensionalidad  que  puede  ser  utilizado  en  problemas  de
clasificación  o  regresión.  La  manera  más  simple  de realizar
la separación  es  mediante  una  línea  recta,  un  plano  recto,
pero  los  problemas  a estudiar  no  se suelen  representar  en
casos  de  dos  dimensiones.  Habitualmente,  un  algoritmo
de  SVM debe tratar  con  curvas  no  lineales  de separación  y
más  de  dos  variables  predictoras.  La  representación  por
medio  de funciones  Kernel  ofrece  una  solución  a este
problema,  ya  que  toma un espacio  de  entrada  de  baja
dimensión  y  lo transforma  en  un espacio  dimensional  más
alto,  es decir,  convierte  el  problema  no  separable  en
un  problema  separable33,35,36. Se  utilizaron  Kernel  Polino-
mial  (P-SVM);  Kernel  Radial  (R-SVM)  y  Kernel  Sigmoideo
(S-SVM).

- Random  Forest  (RF):  en  este  algoritmo  se ejecutan  varios
algoritmos  de árboles  de decisiones  en bagging,  es decir,
los  distintos  árboles  ven  distintas  proporciones  de  datos,
por  lo  que  cada  árbol  se entrenará  con distintas  mues-
tras  de  datos  para  un mismo  problema.  Para  clasificar
una  nueva  instancia,  cada  árbol  de  decisión  da  una  cla-
sificación,  y finalmente  la  decisión  con  mayor  número  de
«votos»  es la  predicción  del  algoritmo33,37. Se  utilizaron
algoritmos  sobre  la  decisión  de 10  árboles  (RF-10)  y 50
árboles  (RF-50).

-  Gradient  boosting  CatBoost  (GB):  algoritmo  construido
con  árboles  de decisión  individuales  entrenados  de forma
secuencial,  de forma  que  cada  nuevo  árbol  trata  de  mejo-
rar  los  errores  del  anterior  (boosting). La  predicción  de
una  nueva  instancia  se obtiene  agregando  las  predic-
ciones  de  todos  los árboles  individuales  que  forman  el
modelo33,38.

En la figura  2  se resume  el  método  de procesamiento
de  datos,  de  selección  de variables  y de construcción  del
modelo.
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Figura  3  Diagrama  de  flujo  de la  selección  de  pacientes.

Entrenamiento  y prueba

En  la  cohorte  de  entrenamiento  y prueba  se realizaron  10
iteraciones  de  validación  cruzada  estratificada,  es  decir,  se
entrenó  al modelo con el  90%  de  los  casos  de  la  cohorte  de
entrenamiento  y  prueba  y  se realizó  la  predicción  con  el  10%
restante  de  la muestra.  Esto se realizó  10  veces  y  se calculó
la  media  de  los  valores  de  área  bajo la  curva  ROC  (AUC)
de  las  10  predicciones.  No  se realizaron  estrategias  de data

augmentation  en  nuestra  muestra.
Una  vez  entrenados  los algoritmos  en  la  cohorte  de entre-

namiento  y  prueba  se realizaron  las  predicciones  con la
cohorte  de  validación.  Se  calcularon  la  sensibilidad  y  el  valor
predictivo  negativo  de  los clasificadores  en  la  cohorte  de
validación.  Se  definió  un  IC  del 95%.

Resultados

Datos

Un  total  de 105 pacientes  cumplieron  finalmente  los criterios
de  inclusión  y  exclusión,  y fueron  analizados;  en  la figura  3
se  representa  el  diagrama  de  flujo de  los  pacientes.  Las  prin-
cipales  características  demográficas,  clínicas  y  de  imagen  se
recogen  en las  tablas  1  y 2.

Procesamiento  de  los  datos  y cohorte de
entrenamiento y prueba  (fig.  4)

Tras  excluir  los  pacientes  con  valores  perdidos  y  aplicar  el
algoritmo  «Isolation  Forest»,  con en  el  que  se eliminaron
el  5%  de  los pacientes  con  valores  extremos,  las  variables
de  radiómica  de  99  pacientes  con HIE  fueron  analizadas.
La  muestra  se dividió  en  una  cohorte  de  entrenamiento  y
prueba  (70%,  n = 70) y otra  de  validación  (30%,  n  =  29).  En
la  cohorte  de  entrenamiento  y  prueba  se  realizaron  10  ite-
raciones  de  validación  cruzada  estratificada  (se  entrenó  al
modelo  con  el  90%  de  los casos  de  la cohorte  y  se realizó  la
predicción  con  el  10%  restante  de  la muestra).  Esto  se llevó
a  cabo  10  veces  y  se calculó  la media  de  los  valores  de área
bajo  la  curva  (AUC)  de  las  10  predicciones.  Una  vez  entrena-
dos  los  algoritmos  en la cohorte  de  entrenamiento  y prueba
se  realizaron  las  predicciones  con la  cohorte  de  validación.

Tabla  1 Características  demográficas

Edad  (años), mediana  (RIQ)  78  (66-84)
Sexo (masculino)  59  (56,2)
Antecedentes,  n  (%)

Alcohol  7 (6,7)
Tabaco  7 (6,7)
HTA  66  (62,9)
Dislipemia  41  (39)
DM 23  (21,9)
FA 22  (21)
Cardiopatía  isquémica  8 (7,6)
HIE previo  5 (4,8)
Ictus previo  14  (13,3)
Antiagregantes  26  (24,8)
Anticoagulantes  25  (23,8)

Variables  al  ingreso

Glucemia,  mediana(RIQ),  Mmol/l 138  (114-173)
PAS, mediana  (RIQ),  mmHG 159  (141-188)
PAD, mediana  (RIQ),  mmHG 81  (67-100)
NIHSS inicial,  mediana  (RIQ) 15  (5-21)

mRS al  alta,  n  (%)

mRS  0-2  16  (15,2)

Tabla  2 Características  de imagen

Total,  n  (%)

Localización

Lobar  47  (44,8)
Profunda 47  (44,8)
Cerebelo  8  (7,6)
Tronco encefálico 3  (2,9)

Volumen (ml),  mediana  (RIQ) 17  (8-47)
Extensión  ventricular  47  (44,8)

Se  calcularon  la  sensibilidad  y  el  valor  predictivo  negativo
de  los  clasificadores  en la  cohorte  de  validación.

La  AUC  media  de los  diferentes  métodos  de  selección  de
variables  y  clasificadores  con  la  cohorte  de  entrenamiento
y  prueba  se resume  en  la  tabla  3. KNN-E,  P-SVM y  RF-10,
en combinación  con el  método  de selección  de  caracte-
rísticas  de correlación  ANOVA,  fueron  los clasificadores  de
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Figura  4  Procedimiento  de  entrenamiento  y  validación.  Un  total  de 105  pacientes  cumplieron  los  criterios  de inclusión.  Se
excluyeron pacientes  con  valores  perdidos  y  se  aplicó  el  algoritmo  «Isolation  Forest»  con  en  el  que  se  eliminaron  el  5%  de  los
pacientes  con  valores  extremos.  Tras  el  procesamiento  inicial,  se  analizaron  finalmente  99  pacientes.  La  muestra  se  dividió  en
dos cohortes  estratificadas  de  pacientes:  una  cohorte  de  entrenamiento  y  prueba  (70%,  n  =  70)  y  otra  de validación  (30%,  n  =  29).
En la  cohorte  de  entrenamiento  y  prueba  se  realizaron  10  iteraciones  de validación  cruzada  estratificada.  Una  vez entrenados  los
algoritmos  en  la  cohorte  de  entrenamiento  y  prueba,  se  realizaron  las  predicciones  con  la  cohorte  de validación.

Tabla  3  Media  AUC  de  clasificadores  tras  10  iteraciones  de  validación  cruzada  estratificada  en  cohorte  entrenamiento  y  prueba

AUC  media Clasificadores

KNN-E  KNN-M  P-SVM  R-SVM  S-SVM  RF-10  RF-50  GB

Métodos  de  selección  de  variables

Sin seleccionar  0,554  0,472  0,693  0,575  0,330  0,514  0,607  0,709
ANOVA +  SPERAMAN  (7)  0,752  0,629  0,798  0,636  0,522  0,742  0,715  0,690
PCA-80 (23)  0,558  0,466  0,487  0,462  0,425  0,572  0,536  0,601
PCA-90 (34)  0,494  0,528  0,384  0,419  0,512  0,548  0,581  0,505
tSNE-7 0,600  0,590  0,462  0,288  0,328  0,574  0,638  0,596
Isomap-7 0,585  0,475  0,530  0,399  0,411  0,355  0,311  0,268
LLE-7 0,462  0,491  0,433  0,468  0,482  0,486  0,482  0,513

GB: gradient boosting CatBoost; Isomap-7: mapeo de características isométricas; KNN: K  vecinos más cercanos; KNN-E: distancia
euclidiana; KNN-M: distancia Manhattan; LLE-7: incrustación localmente lineal; PCA: principal component analisis;  P-SVM: Kernel poli-

nomial; RF: Random forest; R-SMV: Kernel radial; S-SVM: Kernel sigmoideo; SVM: Support vector machine; tSNE: incrustación de vecinos
estocásticos distribuidos en t.

mejor  rendimiento  en la cohorte  de  entrenamiento  y  prueba
(AUC  de  0,752,  0,798 y  0,742,  respectivamente).  Las  siete
variables  de  radiómica  seleccionadas  con el  método  ANOVA
fueron:  «Run  Lenght  Non-Uniformity», «Gray  Level  Non-
Uniformity»,  «High  Gray  Level Emphasis»,  «Run  Entropy»,
«Busyness»,  «Long  Run  Emphasis»,  «Interquartile  Range».

Rendimiento  del  modelo

Después  del  entrenamiento  de  los  diferentes  modelos,  los
clasificadores  se  evaluaron  con los  datos  de  la  cohorte  de
validación  (n =  29)  para  predecir  mal  pronóstico  funcional
del  paciente  al  alta,  comparando  la  predicción  de  los  cla-
sificadores  con  el  pronóstico  funcional  que tuvieron  dichos
pacientes.  La sensibilidad  de  los  clasificadores  en la  cohorte
de  validación  se detalla  en  la  tabla  4.  KNN-E,  KNN-M,  P-SVM  y
RF-10  en  combinación  con el  método  de  selección  de  carac-
terísticas  de  correlación  ANOVA  fueron  los  clasificadores  con
mejor  rendimiento  en  la cohorte  de  validación,  la  sensibili-
dad  fue  de  0,897  (IC  95%:  0,778-1),  con 0  falsos  negativos,

un  valor  predictivo  positivo  del  89%  y  un  valor  predictivo
negativo  del 100%.  El clasificador  RF-10 en  combinación
con  el  método  de  selección  de variables  Isomap-7  logró
la  misma  tasa  de sensibilidad.  En  la  tabla  5  se muestra  la
matriz  de confusión  de los  cinco  modelos  con mejores  resul-
tados  de sensibilidad.

Discusión

En este  estudio  retrospectivo  se  han  desarrollado  dife-
rentes  modelos  de  aprendizaje  supervisado  no  lineales
basados  en radiómica  para  predecir  el  pronóstico  funcional
al  alta  en pacientes  con  HIE.  Los  algoritmos  P-SVM,  KNN-
E y RF-10, en  combinación  con  el  método  de  selección  de
variables  ANOVA,  fueron  los clasificadores  con  mejor  ren-
dimiento  en  la  cohorte  de  entrenamiento  y prueba  (AUC
de  0,798,  0,752 y  0,742,  respectivamente).  Las  prediccio-
nes  de  estos modelos,  en la  cohorte  de validación,  tuvieron
una  sensibilidad  de 0,897  (IC  95%:  0,778-1),  con una  tasa  de
falsos  negativos  del  0% para  la  predicción  de mal  pronóstico
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Tabla  4  Sensibilidad  de  los  clasificadores  en  la  cohorte  de  validación

AUC  media  Clasificadores

KNN-E  KNN-M  P-SVM  R-SVM  S-SVM  RF-10  RF-50  GB

Métodos  de  selección  de variables

Sin seleccionar  0,862  0,862  0,862  0,862  0,862  0,862  0,828  0,862
ANOVA +  SPERAMAN  (7) 0,897  0,897  0,897  0,862  0,828  0,897  0,862  0,793
PCA-80 (23)  0,862  0,862  0,828  0,862  0,828  0,862  0,828  0,862
PCA-90 (34)  0,862  0,862  0,828  0,862  0,862  0,828  0,862  0,828
tSNE-7 0,828  0,793  0,793  0,862  0,828  0,862  0,862  0,828
Isomap-7  0,862  0,862  0,862  0,862  0,862  0,897  0,862  0,828
LLE-7 0,862  0,862  0,793  0,862  0,862  0,862  0,862  0,828

GB: gradient boosting CatBoost;  Isomap-7: mapeo de características isométricas; KNN: K vecinos más cercanos; KNN-E: distancia
euclidiana; KNN-M: distancia Manhattan; LLE-7: incrustación localmente lineal; PCA: principal component analisis; P-SVM: Kernel poli-

nomial; RF: Random forest;  R-SMV: Kernel radial; S-SVM: Kernel sigmoideo; SVM: Support vector machine; tSNE: incrustación de vecinos
estocásticos distribuidos en t.

Tabla  5  Matriz  de  confusión  de  los cinco modelos  con  mejores  resultados  de sensibilidad  en  la  cohorte  de validación

PREDICCIÓN

Buen  pronóstico  Mal  pronóstico  Total

Realidad

Buen  pronóstico  1 3 4
Mal pronóstico  0 25  25
Total 1 28  29

funcional  al  alta. Identificar  a los  pacientes  con  riesgo  de mal
pronóstico  funcional  permite  una  mejor  estratificación  para
ofrecer  terapias  intensivas  adaptadas  a  estos  pacientes.

La  principal  fortaleza  de  este  análisis  es  que  es el
primer  estudio  basado  en  algoritmos  de  aprendizaje  super-
visado  no  lineales  en el  que  el  objetivo  principal  es
predecir  el  pronóstico  funcional  al  alta  en pacientes  con
HIE.

Existen  dos  estudios  previamente  publicados  basados  en
algoritmos  de  aprendizaje  supervisado  no lineales,  en  los
que  el  objetivo  fue  la  predicción  de  crecimiento  del  HIE.
El  primero  fue  el  publicado  en el  año 2019  por el  equipo
de Hui  Li  et  al.39.  En  él se investigó  si  los  valores  de radió-
mica  de la  TCCSC  podrían  predecir  el  crecimiento  del HIE.
Tras  el  proceso  de  selección  de  datos,  analizaron  4 varia-
bles  de  radiómica  para  construir  el  modelo  y  aplicaron  23
algoritmos  de  aprendizaje  supervisado.  El que  obtuvo  mejor
rendimiento  para  predecir  crecimiento  del HIE  fue  «Linear
Support  Vector  Classifier»  (tabla  6).

El  segundo  estudio,  desarrollado  por  el  equipo  de Song30,
tuvo  como  objetivo  determinar  si  los  modelos  de TCCSC
basados  en  valores  de  radiómica  y  algoritmos  de  aprendizaje
supervisado  podrían  mejorar  la predicción  de  la  expansión
temprana  del  hematoma  en pacientes  con  HIE. Construyeron
varios  modelos  para  predecir  el  crecimiento  del HIE:  modelo
radiológico,  modelo  radiómico,  modelo  clínico-radiológico,
modelo  radiológico-radiómico  y modelo  combinado.  En  sus
resultados  observaron  que  el  modelo  radiómico  (en con-
creto,  el  algoritmo  de  regresión  logística)  demostró  un
mejor  rendimiento  y  mayor  sensibilidad  que  el  modelo
clínico-radiológico  y  que  el  modelo  radiológico  (tabla  6).

Otra  de las  fortalezas  de este  estudio  es  que,  pese  a
su  naturaleza  retrospectiva,  el  protocolo  de  adquisición  y
de  reconstrucción  de  las  imágenes  está  estandarizado  y  no
existe  variabilidad.  Debido  a la  naturaleza  retrospectiva
de  la mayoría  de los  estudios  de radiómica,  los proto-
colos  de imagen,  incluyendo  la adquisición,  y  los  ajustes
de  reconstrucción  a menudo  no están  controlados  o  estan-
darizados.

Múltiples  investigaciones  han  evaluado  el  impacto  de
estos  parámetros  (voltaje,  miliamperaje,  pitch, field  of

view, grosor  de corte,  adquisición,  marca,  movimiento. .  .)
y  su influencia  sobre  las  variables  de radiómica.  En  2016
Lu  et al.40 evaluaron  la  concordancia  en los  valores  de
radiómica  al  variar  parámetros  de grosor  de corte  y el
algoritmo  de reconstrucción  de  la TCCSC  y  llegaron  a la
conclusión  de que  existe  variabilidad  entre  las  caracterís-
ticas  de radiómica  cuando  se calculan  a partir  de  imágenes
de  TCCSC  reconstruidas  con diferentes  algoritmos  y  groso-
res  de corte,  destacando  la  importancia  de  estandarizar
la  adquisición  de las  imágenes.  En  el  presente  análisis  se
han  utilizado  dos  equipos  diferentes  (Somatom  Definition
Flash,  Siemens  Healthcare  y  Somatom  Sensation  64,  Sie-
mens  Healthcare)  de la misma marca;  en  investigaciones
futuras  habría  que  analizar  si  al utilizar  marcas  diferentes
existe  variabilidad  en  los  resultados  de las  características  de
radiómica.

Una  de  las  limitaciones  es que, tal  y  como  se  ha  men-
cionado  en  la introducción,  el  HIE  es una  de  las  causas
principales  de incapacidad,  por  lo  que  un alto  porcentaje
de  pacientes  incluidos  en  este  estudio  (84,8%)  tuvieron  un
mal  pronóstico  funcional  al alta  (mRS  3-6).  Esto  hace  que
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Tabla  6 Resumen  de  los  resultados  de  las  cohortes  de validación  interna  de  los  trabajos  de radiómica,  cuyo  objetivo  fue la  predicción  de crecimiento  y  pronóstico  del
hematoma intracerebral  espontáneo  (HIE),  que  han sido  mencionados  en  la  discusión  del manuscrito

Variable  resultado  Estudio  Método  Modelo  Resultados

Crecimiento  HIE Hui  Li  et  al.39 Algoritmos  de
aprendizaje
supervisado  no
lineales

Radiómica:  Linear

Support  Vector

Classifier

S  0,726;  E  0,717;
AUC  0,729

Song et  al.30 Algoritmos  de aprendizaje
supervisado  no lineales

Radiológico:  Black

Hole

S  0,367;  E  0,853;
AUC  0,610

Clínico-radiológico  S 0,645;  E  0,775;
AUC  0,766

Radiómica:
Logistic  regression

S  0,761;  E0,818;
AUC  0,850

Radiómica  +  radiológico  S 0,795;  E  0,879;
AUC  0,867

Combinado  (radió-
mica  + radiológico  + clínico)

S 0,804;  E  0,881;  AUC  0,867

Pronóstico +  crecimiento
HIE

Pszczolkowski
et  al.41

Modelos  lineales
generalizados

Pronóstico  Crecimiento
Radiómica  S 0,698;  E  0,741;

AUC  0,783
S  0,635;  E  0,690;
AUC  0,693

Radiológico  S 0,318;  E  0,880;
AUC  0,621

S  0,467;  E  0,711;
AUC  0,609

Radiómica  +  radiológico  S 0,698;  E0,741;
AUC  0,783

S  0,635;  E  0,69;
AUC0,693

Clínico  S 0,620;  E  0,815;
AUC  0,789

S  0,350;  E  0,839;
AUC  0,668

Radiómica  +  clínico  S 0,694;  E  0,826;
AUC  0,818

S  0,650;  E  0,711;
AUC  0,704

Pronóstico HIE Huang  et  al.42 Modelos  lineales
generalizados

Radiómica  S 0,705;  E  0,725;
AUC  0,773

Clínico  S 0,767;  E  0,725;
AUC  0,828

Radiómica  +  clínico  S 0,775;  E  0,739;
AUC  0,844

Nuestros
resultados

Algoritmos  de
aprendizaje
supervisado  no
lineales

Radiómica:
P-SVM,  KNN-E
y RF-10

S  0,897  (IC
95%:  0,778-1)

AUC: área bajo la curva; E: especificidad; KNN-E: distancia euclidiana; P-SVM: Kernel polinomial; RF: Random forest; S: sensibilidad.
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los grupos  de  la cohorte  de  entrenamiento  y  prueba  y de la
cohorte  de validación  no  estén  balanceados.

El  HIE  es  una  patología  con  elevada morbimortalidad,  lo
que  hace  que  la probabilidad  pretest  de  mal  pronóstico  fun-
cional  al  alta  en  estos  pacientes  sea  elevada.  La probabilidad
pretest  de  mal  pronóstico  funcional  tras  un  HIE  es  del  0,86  en
la  muestra  global,  y  tras  aplicar  los  clasificadores  de apren-
dizaje  supervisado  basados  en radiómica,  obtenemos  una
sensibilidad  del  0,89  en  la cohorte  de  validación.  Esta  es la
principal  limitación  del estudio,  ya  que  la probabilidad  de
predecir  el  pronóstico  no  aumenta  de  manera  sustancial  una
vez  aplicado  el modelo.  El  rendimiento  del modelo  podría
mejorar  aumentando  la  muestra  para  conseguir  cohortes
mejor  balanceadas.

Según  los  resultados  publicados  por los  equipos  de
Pszczolkowski41 y  Huang42, otra  de  las  medidas  que  se podría
aplicar  para  mejorar  el  rendimiento  de  nuestro  modelo  sería
crear  modelos  combinados  en los que  incorporar,  al  modelo
de  radiómica,  información  sobre  los  factores  demográficos
y  clínicos.

En el  estudio  del  grupo  de  Pszczolkowski41 se evaluó  el
rendimiento  predictivo  de  las  variables  basadas  en  radió-
mica  de  la  TCCSC  para  predecir  no  solo  la  expansión  del HIE,
sino  también  el  mal  pronóstico  funcional  utilizando  modelos
lineales  generalizados.  Investigaron  también  el  rendimiento
predictivo  de  los signos  radiológicos  y  los  factores  clínicos
de  forma  independiente  y en combinación  con  las  variables
basadas  en  radiómica.  Llegaron  a  la  conclusión  de  que  los
modelos  que  utilizan  variables  basadas  en radiómica  de la
TCCSC  superan  a los  modelos  individuales  que  utilizan  signos
radiológicos  o  factores  clínicos  aislados.  Además,  observa-
ron  que  los  modelos  combinados,  en  los que  se incorporaban
factores  demográficos  y  clínicos  al  modelo  de  radiómica,
mejoraban  la  predicción  de  mal  pronóstico  en  los pacientes
con  HIE  (tabla  6).

De igual  forma,  en 2022,  el  equipo  de  Huang42 evaluó  el
rendimiento  predictivo  de  las  variables  basadas  en  radió-
mica  de  la  TCCSC  del HIE  y  del edema  perihematoma,  y
desarrollaron  varios  modelos  basados  en las  características
de  radiómica  y clínicas para  predecir  el  pronóstico  funcional
a  los  tres  meses,  utilizando  modelos  lineales  generalizados.
Demostraron  que  el  modelo  conjunto  de  radiómica  y  clínico
obtuvo  un  mejor  rendimiento  y  una  mayor  sensibilidad  en  la
predicción  de  mal  pronóstico  tanto  en  la  cohorte  de  entre-
namiento  y prueba  como  en  la  de  validación  interna  y de
validación  externa)  (tabla  6).

Por  último,  otra  de  las  limitaciones  del estudio  radica
en  que,  aunque  la  segmentación  del HIE  en  la  TCCSC  ha
sido  realizada  por  un  radiólogo  especialista,  no  se ha ana-
lizado  la robustez  de  los  valores  de  radiómica  con varias
segmentaciones.  La segmentación  manual  y  semiautomática
introduce  el  sesgo  de  observador,  y los  estudios  han  demos-
trado  que  muchas  variables  de  radiómica  no  son robustas
frente  a  las  variaciones  intra e  interobservador  relativas  a
la  delineación  del ROI/VOI43. En  consecuencia,  habría que
realizar  evaluaciones  de  la  reproducibilidad  intra  e interob-
servador  de  las  variables  de  radiómica  derivadas  y excluir
las  variables  no reproducibles.  A pesar  de  ello, es el  método
de  segmentación  utilizado  previamente  en la  literatura44,  y
además  consideramos  que  el  gran  contraste  que  existe  en
la  TCCSC  entre  el  HIE  (hiperdenso)  y el resto  de  las  estruc-
turas  adyacentes  facilita  la identificación  y la segmentación

de este,  por  lo que  no  creemos  que  invalide  nuestros  resul-
tados.

En conclusión,  el  uso  de  clasificadores  de  aprendizaje
supervisado  no  lineales  basados  en  radiómica  con  métodos
de aprendizaje  automático  son una  herramienta  de  diagnós-
tico  prometedora  para  predecir  el  resultado  funcional  al alta
en  pacientes  con HIE,  con una  baja  tasa  de falsos  negativos,
aunque  todavía  son  necesarios  estudios  con  mayor  tamaño
muestral,  balanceados  y  en  los  que  se  combinen  caracterís-
ticas  de radiómica  y  clínicas  para  desarrollar  y mejorar  su
rendimiento.
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