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PALABRAS CLAVE Resumen

Accidente Objetivo: Evaluar si clasificadores de aprendizaje supervisado no lineales basados en radiomica
cerebrovascular de la TC cerebral sin contraste (TCCSC) pueden predecir el pronostico funcional al alta en
agudo; pacientes con hematoma intracerebral espontaneo (HIE).

Hemorragia Material y método: Analisis observacional retrospectivoy unicéntrico de pacientes con diagnos-
intracerebral; tico de HIE confirmado por TCCSC entre enero de 2016 y abril de 2018. Se incluyeron pacientes
CT Scanner; con HIE > 18 afos y con TCCSC realizado dentro de las primeras 24 horas del inicio de los sinto-
X-ray; mas. Se excluyeron los HIE secundarios y en los que no se disponia de las variables de radidmica.
Inteligencia artificial; Se recogieron datos clinicos, demograficos y variables al ingreso. Los pacientes se clasificaron
Biomarcadores segun la Escala Modificada de Rankin (mRS) al alta en buen (mRS 0-2) y mal pronéstico (mRS 3-6).

Tras la segmentacion manual de la TCCSC de cada HIE se obtuvieron las variables de radiomica.
La muestra se dividio en una cohorte de entrenamiento y prueba y otra cohorte de validacion
(70-30%, respectivamente). Se usaron diferentes métodos de seleccion de variables y reduc-
cion de dimensionalidad, asi como diferentes algoritmos para la construccion del modelo. Se
realizaron 10 iteraciones de validacion cruzada estratificada en la cohorte de entrenamiento y
prueba y se calculd la media de los valores de area bajo la curva (AUC). Una vez entrenados los
modelos, se calculd la sensibilidad de cada uno para predecir el prondstico funcional al alta en
la cohorte de validacion.
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Introduccion

Resultados: Se analizaron 105 pacientes con HIE. Se evaluaron 105 variables de radiémica de
cada paciente. Los algoritmos P-SVM, KNN-E y RF-10, en combinacion con el método de seleccion
de variables ANOVA, fueron los clasificadores con mejor rendimiento en la cohorte de entre-
namiento y prueba (AUC: 0,798, 0,752 y 0,742, respectivamente). Las predicciones de estos
modelos, en la cohorte de validacion, tuvieron una sensibilidad de 0,897 (IC95%: 0,778-1), con
una tasa de falsos negativos del 0% para la prediccion de mal prondstico funcional al alta.
Conclusion: Los clasificadores de aprendizaje supervisado no lineales basados en radidmica
son una herramienta de diagnoéstico prometedora para predecir el resultado funcional al alta
en pacientes con HIE, con una baja tasa de falsos negativos, aunque todavia son necesarios
estudios con mayor tamano muestral y balanceados para desarrollar y mejorar su rendimiento.
© 2023 SERAM. Publicado por Elsevier Espana, S.L.U. Todos los derechos reservados.

Radiomic-based nonlinear supervised learning classifiers on non-contrast CT to
predict functional prognosis in patients with spontaneous intracerebral hematoma

Abstract

Purpose: To evaluate if nonlinear supervised learning classifiers based on non-contrast cerebral
CT can predict functional prognosis at discharge in patients with spontaneous intracerebral
hematoma (HIE).

Methods: Retrospective, single-center, observational analysis of patients with a diagnosis of
spontaneous intracerebral hematoma confirmed by non-contrast CT between January 2016
and April 2018. Patients with HIE > 18 years and with non-contrast CT performed within the
first 24 hours of symptom onset were included. Patients with secondary spontaneous intrace-
rebral hematoma and in whom radiomic variables were not available were excluded. Clinical,
demographic and admission variables were collected. Patients were classified according to the
Modified Rankin Scale (mRS) at discharge into good (mRS0-2) and poor prognosis (mRS 3-6).
After manual segmentation of each spontaneous intracerebral hematoma, the radiomics varia-
bles were obtained. The sample was divided into a training and testing cohort and a validation
cohort (70-30%, respectively). Different methods of variable selection and dimensionality reduc-
tion were used, and different algorithms were used for model construction. Stratified 10-fold
cross-validation were performed on the training and testing cohort and the mean area under
the curve (AUC) were calculated. Once the models were trained, the sensitivity of each was
calculated to predict functional prognosis at discharge in the validation cohort.

Results: 105 patients with spontaneous intracerebral hematoma were analyzed. 105 radiomic
variables were evaluated for each patient. P-SVM, KNN-E and RF-10 algorithms, in combination
with the ANOVA variable selection method, were the best performing classifiers in the training
and testing cohort (AUC: 0.798, 0.752 and 0.742, respectively). The predictions of these models,
in the validation cohort, had a sensitivity of 0.897 (95% Cl: 0.778-1), with a false-negative rate
of 0% for predicting poor functional prognosis at discharge.

Conclusion: The use of radiomics-based nonlinear supervised learning classifiers are a promising
diagnostic tool for predicting functional outcome at discharge in HIE patients, with a low false
negative rate, although larger and balanced samples are still needed to develop and improve
their performance.

© 2023 SERAM. Published by Elsevier Espana, S.L.U. All rights reserved.

el 40% al mes, 54% al aho y 75% a los 5anos. Solo del 12%
al 39% de los pacientes logran independencia funcional®.

El accidente cerebrovascular (ACV) es la segunda causa
de muerte en todo el mundo y una de las principales cau-
sas de incapacidad’. El hematoma intracerebral espontaneo
(HIE) es el segundo tipo mas frecuente de ACV, después del
ictus isquémico, y representa el 10-20% de todos los ACVZ.
Aunque el pronostico es variable, el HIE sigue siendo una
causa importante de mortalidad y de morbilidad en todo el
mundo®, con una tasa de mortalidad de aproximadamente

Identificar a los pacientes con riesgo de mal prondstico
funcional permite una mejor estratificacion para ofrecer
terapias intensivas adaptadas a estos pacientes”.

Al ser la tomografia computarizada cerebral sin contraste
(TCCSC) el método diagndstico de eleccion en el HIE agudo®,
han surgido varios parametros cualitativos (signos radiologi-
cos) que se asocian a crecimiento del HIE y a mal prondstico
en estos pacientes. Los signos radioldgicos de la TCCSC son
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una forma de representar las caracteristicas de morfologia
(irregularidad) y densidad (heterogeneidad) del HIE.

Sin embargo, estos parametros cualitativos (signos
radioldgicos)®'? pueden estar sujetos a cierta subjetividad
en la interpretacion, y algunos de ellos tienen definiciones
superpuestas’?, habiéndose publicado resultados de concor-
dancia interobservador variables'#. Ademas, se han descrito
tasas bajas de sensibilidad en la prediccion prondstica de
estos signos (entre el 14,3 y el 39,2% para prondstico fun-
cional seglin el grupo de Law)', lo que puede dar lugar a
estimaciones erroneas y eventualmente afectar a la toma
de decisiones.

Estas limitaciones ponen de manifiesto la necesidad de
desarrollar y utilizar parametros cuantitativos reproducibles
(biomarcadores) que minimicen el componente subjetivo
de la evaluacion radiologica cualitativa y que mejoren el
rendimiento en la prediccion del pronostico de los signos
radiologicos.

La radiomica es un enfoque cuantitativo en el que se
extraen un gran nimero de caracteristicas (biomarcadores)
de las imagenes radioldgicas'®".

Al aplicar algoritmos de aprendizaje automatico
supervisado'® sobre los parametros cuantitativos (biomar-
cadores) se pueden crear modelos que puedan realizar la
prediccion de una variable resultado sobre datos no evalua-
dos previamente. Nuestra hipotesis es que clasificadores de
aprendizaje supervisado no lineales basados en radiomica
pueden predecir el mal prondstico funcional en pacientes
con HIE, al objetivar caracteristicas no apreciables por el
ojo humano (intensidad, forma, textura...).

El objetivo de este estudio es evaluar si clasificadores de
aprendizaje supervisado no lineales basados en radiomica
de la TCCSC pueden predecir el pronostico funcional al alta
en pacientes con HIE.

Material y métodos

El manuscrito ha sido estructurado atendiendo a la inicia-
tiva CLAIM (de sus siglas en inglés Checklist for Artificial
Intelligence in Medical Imaging)'’.

Para la segmentacion de cada HIE se utilizd el Software
3D Slicer (version 4.10.2). El software utilizado para el pro-
cesamiento de datos fue Orange data mining version 3.31
(https://orangedatamining.com/).

Disefo del estudio

Analisis observacional retrospectivo unicéntrico de pacien-
tes consecutivos con diagndstico de HIE confirmado por
TCCSC entre enero de 2016 y abril de 2018 en un cen-
tro terciario de ictus. El objetivo es crear un algoritmo de
aprendizaje supervisado no lineal de cribado para predecir
el prondstico funcional al alta en pacientes con HIE. Dado
el objetivo marcado, las métricas que se quieren optimizar
son la sensibilidad y el valor predictivo negativo.

Datos

El protocolo del estudio fue aprobado por el Comité de
Etica de Investigacion Clinica local (numero de registro

HCB/2020/0180) segin lo establecido en las leyes y nor-
mas nacionales (Ley 14/2007, de 3 de julio, de Investigacion
Biomédica) e internacionales (Declaracion de Helsinki, en
su Gltima actualizacion de Fortaleza, Brasil, 2013). Dada la
naturaleza retrospectiva del estudio, no se requiri6 el con-
sentimiento informado especifico para la inclusion de los
datos en el estudio. Para garantizar el anonimato de los
participantes en el estudio se llevo a cabo un proceso de
seudonimizacion. El conjunto de datos empleado en este
estudio no se ha utilizado previamente. Los datos que res-
paldan las conclusiones de este estudio estan disponibles
mediante el autor de correspondencia, previa solicitud jus-
tificada de los mismos.

Inicialmente se valoraron un total de 128 pacientes mayo-
res de 18anos con diagndstico de HIE espontaneo y con
TCCSC realizado dentro de las primeras 24 horas desde el ini-
cio de los sintomas. De estos se excluyeron los pacientes con
HIE secundario y los pacientes en los que no se disponia de
todas las variables de radiomica. Se recogieron datos demo-
graficos (edad y sexo), habitos toxicos (alcohol y tabaco),
factores de riesgo cerebrovascular y cardiovascular (hiper-
tension, dislipidemia, diabetes mellitus, fibrilacion auricular
y cardiopatia isquémica), antecedentes médicos de HIE o
ictus previo y tratamiento farmacolodgico antiagregante o
anticoagulante concomitante.

Al ingreso, se registraron la presion arterial sistolica y
diastolica (mmHG), la glucemia (mmol/l) y la evaluacion
neurologica inicial mediante la National Institutes of Health
Stroke Scale (NIHSS). El pronodstico funcional al alta se
determino utilizando la escala de Rankin modificada (mRS)
dicotomizada en buen prondstico (mRS 0-2) o mal prondstico
(mRS 3-6).

Se realizd una TCCSC secuencial en dos equipos de TC
multicorte (Somatom Definition Flash y Somatom Sensation
64, Siemens Healthcare, Erlangen, Alemania). Se obtuvieron
imagenes secuenciales axiales paralelas a la linea orbito-
meatal desde la base del craneo hasta el vértice, utilizando
parametros estandar de 140kV, 230 mAs y reconstrucciones
axiales con un grosor de 5 mm.

Se analizaron la localizacion del HIE (ganglios basa-
les, lobar, tronco encefalico y cerebelo), la presencia de
hemorragia intraventricular y el volumen del hematoma
(ml). El volumen del hematoma se calculo segin el método
validado A x B x C /2%°,

Las imagenes de la TCCSC de cada paciente incluido en
el estudio se importaron desde el Picture Archiving and
Communication System (PACS) al Software 3D Slicer (ver-
sion 4.10.2), donde se utilizé el modulo «Segment Editor»
para la segmentacion.

El proceso de segmentacion fue llevado a cabo por un
radiologo cualificado sin acceso a la informacion clinica. Los
contornos de todos los HIE fueron dibujados manualmente
corte a corte y se formaron los voliumenes de interés (VOI)
tridimensionales de cada HIE.

Desde el mddulo «Radiomics» del Software 3D Slicer se
obtuvieron de forma automatica un total de 105 variables
de cada uno de los VOI, relacionadas con la intensidad, la
formay la textura del hematoma. El médulo «Radiomics» de
3D Slicer se basa en la libreria pyRadiomics?', que cumple
con el estandar Image Biomarker Standardisation Initiative
(IBSI)?2. En la figura 1 se resume el proceso de segmentacion.
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Intensidad Forma Textura

Importacion PACS TC Cerebral Sin
Contraste

Segmentacion manual

3D Slicer 9

Moddulo Segment Editor

Extraccion variables

»

PyRadiomics
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3D Slicer
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Figura 1

Proceso de segmentacion. Las imagenes de la TCCSC se importaron desde el Picture Archiving and Communication System

(PACS) al Software 3D Slicer (version 4.10.2), donde se utilizé el modulo «Segment Editor» para la segmentacion. Los contornos de
todos los HIE fueron dibujados manualmente corte a corte y se formaron los volimenes de interés tridimensionales (VOI) de cada
HIE. Desde el médulo «Radiomics» del Software 3D Slicer se obtuvieron de forma automatica un total 105 variables de cada uno de
los VOI, relacionadas con la intensidad, la forma y la textura del hematoma.

Verdad fundamental

El objetivo principal de este trabajo fue evaluar si los clasi-
ficadores de aprendizaje supervisado basados en radiomica
de la TCCSC son capaces de predecir el mal prondstico fun-
cional al alta en pacientes con HIE. Se definié mal prondstico
como aquellos pacientes con dependencia para realizar las
actividades diarias al alta o defuncion tras el HIE (mRS 3-
6). La variable resultado (mRS al alta) fue dicotomizada en
buen pronostico (independencia funcional al alta: mRS0-2)
y mal pronostico (dependencia funcional o defuncion al alta:
mRS 3-6). La escala mRS evalla la discapacidad global tras
un ACV y es la medida de resultado funcional mas completa
y utilizada en los ensayos de ictus. Sin embargo, se ha des-
crito variabilidad interobservador que puede implicar una
clasificacion errénea y limitar la validez de los resultados?®.
Por ello, el mRS al alta ha sido determinado por seis neu-
rélogos vasculares con mas de cinco anos de experiencia y
con certificacion en su determinacion. Ademas, se ha dico-
tomizado el resultado del mRS en lugar de emplearlo en su
escala original, ya que se ha demostrado que las tasas de
error de clasificacion son menores con la dicotomizacion del
mRS, en comparacién con la determinacion ordinal®*.

Distribucion de datos

La muestra se dividio en dos cohortes estratificadas de
pacientes, una cohorte de entrenamiento y prueba (70%,
n=70) y otra de validacion (30%, n=29). La estratificacion
de la muestra se refiere a que cada cohorte tiene la misma
proporcion de pacientes con buen y mal pronéstico funcional
que la muestra global.

Modelo

El software utilizado para el procesamiento de
datos fue Orange data mining versién 3.31 (https://
orangedatamining.com/). Todas las variables de radidomica
obtenidas (tanto en la cohorte de entrenamiento y prueba
como en la cohorte de validacion) se sometieron a un
procesamiento inicial para asegurar el correcto funciona-
miento de los clasificadores. Este procesamiento consiste,

en primer lugar, en excluir los pacientes que tenian valores
perdidos (ausentes) en alguna de las 105 variables. En
segundo lugar, mediante el algoritmo «Isolation Forest» se
eliminaron el 5% de los pacientes con valores de radiomica
extremos. Por Ultimo, se llevd a cabo un proceso de
estandarizacion y normalizacion para convertir las variables
de radiémica en variables con una distribucién normal con
valores comprendidos entre 0 y 1.

Reduccion de la dimensionalidad - Seleccién de
variables

Una vez realizado el procesamiento inicial de las variables
de radiomica, para seleccionar las variables a estudio se
utilizaron, por un lado, todas las variables de radiémica
sin seleccionar ni reducir su dimensionalidad (evaluando las
105 variables de cada uno de los pacientes), y, por otro, se
aplicaron técnicas de reduccion de la dimensionalidad para
identificar y retirar informacion irrelevante y redundante?.
Dado que contamos con una muestra de 70 pacientes para
entrenar el modelo, se redujo la dimensionalidad en 7 varia-
bles para minimizar el efecto del sobreajuste (overfitting).
Los métodos empleados de seleccion de variables y de reduc-
cién de la dimensionalidad fueron:

- Método ANOVA: seleccionamos 7 variables segiin tengan
mayor diferencia entre los valores promedio de la carac-
teristica en diferentes clases, siempre y cuando no exista
correlacion entre ellas (coeficiente de correlacion de
Spearman <0,5).

- Algoritmos de reduccion de la dimensionalidad lineal:

o Principal Component Analysis (PCA)?° 80: es un procedi-
miento estadistico que transforma ortogonalmente las n
dimensiones numéricas originales de un conjunto de datos
en un nuevo conjunto de n dimensiones llamadas compo-
nentes principales. En este caso, el nuevo conjunto tendra
tantas dimensiones como sean necesarias para conservar
el 80% de la variacion de los datos.

o PCA-90: en este caso, el nuevo conjunto tendra tantas
dimensiones como sean necesarias para conservar el 90%
de la variacion de los datos.
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PROCESAMIENTO DATOS

Sin seleccionar
ANOVA (Spearman <0,5) (7 Variables)
PCA-80 (23 variables)
PCA-90 (34 variables)
tSNE-7 (7 Variables)
Isomap-7 (7 Variables)
LLE-7(7 Variables)

Valores Perdidos

Valores Atipicos (Outliers)
Isolation Forest 5%

Estandarizacion

Normalizaciéon

Figura 2

- Algoritmos de reduccion de la dimensionalidad no lineales
con los que seleccionaremos 7 nuevas dimensiones (varia-
bles) para representar nuestras variables originales:

o tSNE-7 (incrustacion de vecinos estocasticos distribuidos
en t)?7: es un algoritmo que calcula la probabilidad de
que pares de puntos de datos en el espacio de alta dimen-
sion estén relacionados y luego elige una insercion de baja
dimension que produce una distribucion similar.

o Isomap-7 (mapeo de caracteristicas isométricas)?®: es un
algoritmo que proyecta los datos a una dimension inferior,
preservando la distancia mas corta entre dos puntos de
una curva.

o LLE-7 (incrustacion localmente lineal)?’: es un algoritmo
que mantiene las caracteristicas lineales locales de las
muestras, por lo que cada punto puede estar representado
como una suma lineal y ponderada de sus vecinos.

Construccion del modelo

Para la construccion del modelo se emplearon algoritmos
utilizados previamente en la literatura con buenos resul-
tados en la evaluacion del crecimiento y el pronédstico del
HIE3?-32, Se aplicaron los siguientes algoritmos:

- K vecinos mas cercanos (KNN): es uno de los algoritmos
de clasificacion mas basicos. Es un algoritmo de aprendi-
zaje no paramétrico, es decir, que no hace suposiciones
sobre la forma funcional de los datos. Por el contrario, es
un algoritmo basado en instancias, es decir, el algoritmo
no aprende un modelo, sino que memoriza las instan-
cias de entrenamiento que son usadas como «base de
conocimiento» para realizar las predicciones®> 34,

o Distancia euclidiana (KNN-E): es la distancia en linea recta
o la trayectoria mas corta posible entre dos puntos.

o Distancia Manhattan (KNN-M): la distancia Manhat-
tan entre 2 puntos es la suma de las diferencias
absolutas de sus coordenadas. Es decir, es la suma de las
longitudes de los dos catetos del triangulo rectangulo. Es
la distancia entre dos puntos en una cuadricula de calles
tipo ciudad, en la que es no es posible recorrer los dos
puntos en linea recta.

SELECCION VARIABLES

CONSTRUCCION MODELO

KNN Euclidean distance (KNN-E)
KNN Manhattan distance (KNN-M)
Polynomial SVM (P-SVM)
Radial SVM (R-SVM)
Sigmoid SVM (S-SVM)
Random Forest #10 (RF-10)
Random Forest #50 (RF-50)
Gradient Boosting CatBoost (GB)

Resumen del método de procesamiento de datos, seleccion de variables y construccion del modelo.

- Maquinas de vectores de soporte (Support Vector Machine
[SVM]): es un algoritmo que representa las instancias de
la muestra en el espacio, separando las clases a dos espa-
cios mediante un hiperplano de separacion. Cuando las
nuevas instancias se introducen en el modelo, en fun-
cion de los espacios a los que pertenezcan, pueden ser
clasificadas a una u otra clase. Una SVM construye un
hiperplano o conjunto de hiperplanos en un espacio de alta
dimensionalidad que puede ser utilizado en problemas de
clasificacion o regresion. La manera mas simple de realizar
la separacion es mediante una linea recta, un plano recto,
pero los problemas a estudiar no se suelen representar en
casos de dos dimensiones. Habitualmente, un algoritmo
de SVM debe tratar con curvas no lineales de separacion y
mas de dos variables predictoras. La representacion por
medio de funciones Kernel ofrece una solucion a este
problema, ya que toma un espacio de entrada de baja
dimension y lo transforma en un espacio dimensional mas
alto, es decir, convierte el problema no separable en
un problema separable®?3>3¢. Se utilizaron Kernel Polino-
mial (P-SVM); Kernel Radial (R-SVM) y Kernel Sigmoideo
(S-SVM).

- Random Forest (RF): en este algoritmo se ejecutan varios
algoritmos de arboles de decisiones en bagging, es decir,
los distintos arboles ven distintas proporciones de datos,
por lo que cada arbol se entrenara con distintas mues-
tras de datos para un mismo problema. Para clasificar
una nueva instancia, cada arbol de decision da una cla-
sificacion, y finalmente la decision con mayor nimero de
«votos» es la predicciéon del algoritmo®®*. Se utilizaron
algoritmos sobre la decision de 10 arboles (RF-10) y 50
arboles (RF-50).

- Gradient boosting CatBoost (GB): algoritmo construido
con arboles de decisién individuales entrenados de forma
secuencial, de forma que cada nuevo arbol trata de mejo-
rar los errores del anterior (boosting). La prediccion de
una nueva instancia se obtiene agregando las predic-
ciones de todos los arboles individuales que forman el
modelo®*38.

En la figura 2 se resume el método de procesamiento
de datos, de seleccion de variables y de construccion del
modelo.
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Hematoma Intracerebral Espontdneo
n=128

9 pacientes no incluidos por HIE secundario a:

1 Tumor cerebral

5 MAV

1 Hemorragia intraventricular primaria

1 Trombosis venosa

1 Transformacién hemorragica ictus isquémico

5 pacientes excluidos por no disponer de mRS al alta ’

Andlisis cuantitativo (Radiémica)
n=105

Figura 3

Entrenamiento y prueba

En la cohorte de entrenamiento y prueba se realizaron 10
iteraciones de validacion cruzada estratificada, es decir, se
entrend al modelo con el 90% de los casos de la cohorte de
entrenamiento y prueba y se realizo la prediccion con el 10%
restante de la muestra. Esto se realizd 10 veces y se calculo
la media de los valores de area bajo la curva ROC (AUC)
de las 10 predicciones. No se realizaron estrategias de data
augmentation en nuestra muestra.

Una vez entrenados los algoritmos en la cohorte de entre-
namiento y prueba se realizaron las predicciones con la
cohorte de validacion. Se calcularon la sensibilidad y el valor
predictivo negativo de los clasificadores en la cohorte de
validacion. Se definié un IC del 95%.

Resultados
Datos

Un total de 105 pacientes cumplieron finalmente los criterios
de inclusion y exclusion, y fueron analizados; en la figura 3
se representa el diagrama de flujo de los pacientes. Las prin-
cipales caracteristicas demograficas, clinicas y de imagen se
recogen en las tablas 1y 2.

Procesamiento de los datos y cohorte de
entrenamiento y prueba (fig. 4)

Tras excluir los pacientes con valores perdidos y aplicar el
algoritmo «lIsolation Forest», con en el que se eliminaron
el 5% de los pacientes con valores extremos, las variables
de radiomica de 99 pacientes con HIE fueron analizadas.
La muestra se dividié en una cohorte de entrenamiento y
prueba (70%, n=70) y otra de validacion (30%, n=29). En
la cohorte de entrenamiento y prueba se realizaron 10 ite-
raciones de validacion cruzada estratificada (se entrend al
modelo con el 90% de los casos de la cohorte y se realizo la
prediccion con el 10% restante de la muestra). Esto se llevo
a cabo 10 veces y se calculd la media de los valores de area
bajo la curva (AUC) de las 10 predicciones. Una vez entrena-
dos los algoritmos en la cohorte de entrenamiento y prueba
se realizaron las predicciones con la cohorte de validacion.

9 pacientes excluidos por no disponer variables radiémica l

Diagrama de flujo de la seleccion de pacientes.

Tabla 1 Caracteristicas demograficas

Edad (anos), mediana (RIQ) 78 (66-84)

Sexo (masculino) 59 (56,2)

Antecedentes, n (%)
Alcohol 7 (6,7)
Tabaco 7 (6,7)
HTA 66 (62,9)
Dislipemia 41 (39)
DM 23 (21,9)
FA 22 (21)
Cardiopatia isquémica 8 (7,6)
HIE previo 5 (4,8)
Ictus previo 14 (13,3)
Antiagregantes 26 (24,8)
Anticoagulantes 25 (23,8)

Variables al ingreso
Glucemia, mediana(RIQ), Mmol/l
PAS, mediana (RIQ), mmHG

138 (114-173)
159 (141-188)

PAD, mediana (RIQ), mmHG 81 (67-100)

NIHSS inicial, mediana (RIQ) 15 (5-21)
mRS al alta, n (%)

mRS 0-2 16 (15,2)

Tabla 2 Caracteristicas de imagen

Total, n (%)

Localizacion

Lobar 47 (44,8)
Profunda 47 (44,8)
Cerebelo 8 (7,6)
Tronco encefalico 3(2,9)
Volumen (ml), mediana (RIQ) 17 (8-47)
Extension ventricular 47 (44,8)

Se calcularon la sensibilidad y el valor predictivo negativo
de los clasificadores en la cohorte de validacion.

La AUC media de los diferentes métodos de seleccion de
variables y clasificadores con la cohorte de entrenamiento
y prueba se resume en la tabla 3. KNN-E, P-SVM y RF-10,
en combinacion con el método de seleccion de caracte-
risticas de correlacion ANOVA, fueron los clasificadores de
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105 pacientes

Isolation Forest 5% y prueba

(70%, n70)

Cohorte de Entrenamiento

P

10 iteraciones de validacién
cruzada estratificada

99 pacientes

Training-Test
Split
Estratificado

Cohorte de

validacid

B Entrenamiento
Validacién

(30%, n29)

Figura 4

|

Procedimiento de entrenamiento y validacion. Un total de 105 pacientes cumplieron los criterios de inclusion. Se

excluyeron pacientes con valores perdidos y se aplico el algoritmo «Isolation Forest» con en el que se eliminaron el 5% de los
pacientes con valores extremos. Tras el procesamiento inicial, se analizaron finalmente 99 pacientes. La muestra se dividio en
dos cohortes estratificadas de pacientes: una cohorte de entrenamiento y prueba (70%, n=70) y otra de validacion (30%, n=29).
En la cohorte de entrenamiento y prueba se realizaron 10 iteraciones de validacion cruzada estratificada. Una vez entrenados los
algoritmos en la cohorte de entrenamiento y prueba, se realizaron las predicciones con la cohorte de validacion.

Tabla3 Media AUC de clasificadores tras 10 iteraciones de validacion cruzada estratificada en cohorte entrenamiento y prueba
AUC media Clasificadores
KNN-E KNN-M P-SVM R-SVM S-SVM RF-10 RF-50 GB
Métodos de seleccion de variables
Sin seleccionar 0,554 0,472 0,693 0,575 0,330 0,514 0,607 0,709
ANOVA + SPERAMAN (7) 0,752 0,629 0,798 0,636 0,522 0,742 0,715 0,690
PCA-80 (23) 0,558 0,466 0,487 0,462 0,425 0,572 0,536 0,601
PCA-90 (34) 0,494 0,528 0,384 0,419 0,512 0,548 0,581 0,505
tSNE-7 0,600 0,590 0,462 0,288 0,328 0,574 0,638 0,596
Isomap-7 0,585 0,475 0,530 0,399 0,411 0,355 0,311 0,268
LLE-7 0,462 0,491 0,433 0,468 0,482 0,486 0,482 0,513

GB: gradient boosting CatBoost; Isomap-7: mapeo de caracteristicas isométricas; KNN: K vecinos mas cercanos; KNN-E: distancia
euclidiana; KNN-M: distancia Manhattan; LLE-7: incrustacion localmente lineal; PCA: principal component analisis; P-SVM: Kernel poli-
nomial; RF: Random forest; R-SMV: Kernel radial; S-SVM: Kernel sigmoideo; SVM: Support vector machine; tSNE: incrustacion de vecinos

estocasticos distribuidos en t.

mejor rendimiento en la cohorte de entrenamiento y prueba
(AUC de 0,752, 0,798 y 0,742, respectivamente). Las siete
variables de radiomica seleccionadas con el método ANOVA
fueron: «Run Lenght Non-Uniformity», «Gray Level Non-
Uniformity», «High Gray Level Emphasis», «Run Entropy»,
«Busyness», «Long Run Emphasis», «Interquartile Range».

Rendimiento del modelo

Después del entrenamiento de los diferentes modelos, los
clasificadores se evaluaron con los datos de la cohorte de
validacion (n=29) para predecir mal pronoéstico funcional
del paciente al alta, comparando la prediccion de los cla-
sificadores con el pronostico funcional que tuvieron dichos
pacientes. La sensibilidad de los clasificadores en la cohorte
de validacion se detalla en la tabla 4. KNN-E, KNN-M, P-SVMy
RF-10 en combinacion con el método de seleccion de carac-
teristicas de correlacion ANOVA fueron los clasificadores con
mejor rendimiento en la cohorte de validacion, la sensibili-
dad fue de 0,897 (IC95%: 0,778-1), con 0 falsos negativos,

un valor predictivo positivo del 89% y un valor predictivo
negativo del 100%. El clasificador RF-10 en combinacion
con el método de seleccion de variables Isomap-7 logré
la misma tasa de sensibilidad. En la tabla 5 se muestra la
matriz de confusion de los cinco modelos con mejores resul-
tados de sensibilidad.

Discusion

En este estudio retrospectivo se han desarrollado dife-
rentes modelos de aprendizaje supervisado no lineales
basados en radiémica para predecir el pronéstico funcional
al alta en pacientes con HIE. Los algoritmos P-SVM, KNN-
E y RF-10, en combinacion con el método de seleccion de
variables ANOVA, fueron los clasificadores con mejor ren-
dimiento en la cohorte de entrenamiento y prueba (AUC
de 0,798, 0,752 y 0,742, respectivamente). Las prediccio-
nes de estos modelos, en la cohorte de validacion, tuvieron
una sensibilidad de 0,897 (IC95%: 0,778-1), con una tasa de
falsos negativos del 0% para la prediccion de mal prondstico
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Tabla 4 Sensibilidad de los clasificadores en la cohorte de validacion
AUC media Clasificadores
KNN-E KNN-M P-SVM R-SVM S-SVM RF-10 RF-50 GB

Métodos de seleccion de variables
Sin seleccionar 0,862 0,862 0,862 0,862 0,862 0,862 0,828 0,862
ANOVA + SPERAMAN (7) 0,897 0,897 0,897 0,862 0,828 0,897 0,862 0,793
PCA-80 (23) 0,862 0,862 0,828 0,862 0,828 0,862 0,828 0,862
PCA-90 (34) 0,862 0,862 0,828 0,862 0,862 0,828 0,862 0,828
tSNE-7 0,828 0,793 0,793 0,862 0,828 0,862 0,862 0,828
Isomap-7 0,862 0,862 0,862 0,862 0,862 0,897 0,862 0,828
LLE-7 0,862 0,862 0,793 0,862 0,862 0,862 0,862 0,828

GB: gradient boosting CatBoost; Isomap-7: mapeo de caracteristicas isométricas; KNN: K vecinos mas cercanos; KNN-E: distancia
euclidiana; KNN-M: distancia Manhattan; LLE-7: incrustacion localmente lineal; PCA: principal component analisis; P-SVM: Kernel poli-
nomial; RF: Random forest; R-SMV: Kernel radial; S-SVM: Kernel sigmoideo; SVM: Support vector machine; tSNE: incrustacion de vecinos

estocasticos distribuidos en t.

Tabla 5 Matriz de confusion de los cinco modelos con mejores resultados de sensibilidad en la cohorte de validacion

PREDICCION
Buen pronostico Mal prondstico Total
Realidad
Buen prondstico 1 3 4
Mal prondstico 0 25 25
Total 1 28 29

funcional al alta. Identificar a los pacientes con riesgo de mal
prondstico funcional permite una mejor estratificacion para
ofrecer terapias intensivas adaptadas a estos pacientes.

La principal fortaleza de este analisis es que es el
primer estudio basado en algoritmos de aprendizaje super-
visado no lineales en el que el objetivo principal es
predecir el pronostico funcional al alta en pacientes con
HIE.

Existen dos estudios previamente publicados basados en
algoritmos de aprendizaje supervisado no lineales, en los
que el objetivo fue la prediccion de crecimiento del HIE.
El primero fue el publicado en el ano 2019 por el equipo
de Hui Li et al.*. En él se investigd si los valores de radio-
mica de la TCCSC podrian predecir el crecimiento del HIE.
Tras el proceso de seleccion de datos, analizaron 4 varia-
bles de radiomica para construir el modelo y aplicaron 23
algoritmos de aprendizaje supervisado. El que obtuvo mejor
rendimiento para predecir crecimiento del HIE fue «Linear
Support Vector Classifier» (tabla 6).

El segundo estudio, desarrollado por el equipo de Song®°,
tuvo como objetivo determinar si los modelos de TCCSC
basados en valores de radiémica y algoritmos de aprendizaje
supervisado podrian mejorar la prediccion de la expansion
temprana del hematoma en pacientes con HIE. Construyeron
varios modelos para predecir el crecimiento del HIE: modelo
radiolégico, modelo radiémico, modelo clinico-radiologico,
modelo radiologico-radiomico y modelo combinado. En sus
resultados observaron que el modelo radiémico (en con-
creto, el algoritmo de regresion logistica) demostré un
mejor rendimiento y mayor sensibilidad que el modelo
clinico-radiolégico y que el modelo radioldgico (tabla 6).

Otra de las fortalezas de este estudio es que, pese a
su naturaleza retrospectiva, el protocolo de adquisicion y
de reconstruccion de las imagenes esta estandarizado y no
existe variabilidad. Debido a la naturaleza retrospectiva
de la mayoria de los estudios de radiomica, los proto-
colos de imagen, incluyendo la adquisicion, y los ajustes
de reconstruccion a menudo no estan controlados o estan-
darizados.

Multiples investigaciones han evaluado el impacto de
estos parametros (voltaje, miliamperaje, pitch, field of
view, grosor de corte, adquisicion, marca, movimiento...)
y su influencia sobre las variables de radiomica. En 2016
Lu et al.“0 evaluaron la concordancia en los valores de
radidomica al variar parametros de grosor de corte y el
algoritmo de reconstruccion de la TCCSC y llegaron a la
conclusion de que existe variabilidad entre las caracteris-
ticas de radiémica cuando se calculan a partir de imagenes
de TCCSC reconstruidas con diferentes algoritmos y groso-
res de corte, destacando la importancia de estandarizar
la adquisicion de las imagenes. En el presente analisis se
han utilizado dos equipos diferentes (Somatom Definition
Flash, Siemens Healthcare y Somatom Sensation 64, Sie-
mens Healthcare) de la misma marca; en investigaciones
futuras habria que analizar si al utilizar marcas diferentes
existe variabilidad en los resultados de las caracteristicas de
radiomica.

Una de las limitaciones es que, tal y como se ha men-
cionado en la introduccion, el HIE es una de las causas
principales de incapacidad, por lo que un alto porcentaje
de pacientes incluidos en este estudio (84,8%) tuvieron un
mal prondstico funcional al alta (mRS 3-6). Esto hace que
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Tabla 6 Resumen de los resultados de las cohortes de validacion interna de los trabajos de radiomica, cuyo objetivo fue la prediccion de crecimiento y pronodstico del

hematoma intracerebral espontaneo (HIE), que han sido mencionados en la discusion del manuscrito

Variable resultado Estudio Método Modelo Resultados
Crecimiento HIE Hui Li et al.?® Algoritmos de Radiomica: Linear S 0,726; E0,717;
aprendizaje Support Vector AUC 0,729

Pronostico + crecimiento
HIE

Pronostico HIE

Song et al.**

Pszczolkowski
et al.*!

Huang et al.*

Nuestros
resultados

supervisado no

lineales

Algoritmos de aprendizaje
supervisado no lineales

Modelos lineales
generalizados

Modelos lineales
generalizados

Algoritmos de
aprendizaje
supervisado no
lineales

Classifier
Radiologico: Black
Hole
Clinico-radiologico
Radiomica:
Logistic regression

Radiomica + radiologico

Combinado (radio-
mica + radiologico + clinico)

Radiomica

Radiologico

Radiomica + radiologico
Clinico

Radiomica + clinico
Radiomica

Clinico

Radiomica + clinico
Radiomica:

P-SVM, KNN-E
y RF-10

$0,367; E 0,853;

AUC 0,610

S 0,645; E 0,775;

AUC 0,766

$0,761; E0,818;

AUC 0,850

$0,795; E 0,879;

AUC 0,867

S 0,804; E 0,881; AUC 0,867

Pronostico

S 0,698; E 0,741;
AUC 0,783

S 0,318; E 0,880;
AUC 0,621

S 0,698; E0,741;
AUC 0,783

S 0,620; E 0,815;
AUC 0,789

S 0,694; E 0,826;
AUC 0,818

S 0,705; E 0,725;
AUC 0,773

S 0,767; E 0,725;
AUC 0,828

S 0,775; E 0,739;
AUC 0,844

S 0,897 (IC

95%: 0,778-1)

Crecimiento

S 0,635; E 0,690;
AUC 0,693

S 0,467; E0,711;
AUC 0,609

S 0,635; E0,69;
AUCO0,693

S 0,350; E 0,839;
AUC 0,668

S 0,650; E0,711;
AUC 0,704

AUC: area bajo la curva; E: especificidad; KNN-E: distancia euclidiana; P-SVM: Kernel polinomial; RF: Random forest; S: sensibilidad.

0£6-616 (£207) 9 eldojolpey



E. Serrano, J. Moreno, L. Llull et al.

los grupos de la cohorte de entrenamiento y prueba y de la
cohorte de validacion no estén balanceados.

El HIE es una patologia con elevada morbimortalidad, lo
que hace que la probabilidad pretest de mal pronodstico fun-
cional al alta en estos pacientes sea elevada. La probabilidad
pretest de mal prondstico funcional tras un HIE es del 0,86 en
la muestra global, y tras aplicar los clasificadores de apren-
dizaje supervisado basados en radiémica, obtenemos una
sensibilidad del 0,89 en la cohorte de validacion. Esta es la
principal limitacion del estudio, ya que la probabilidad de
predecir el prondstico no aumenta de manera sustancial una
vez aplicado el modelo. El rendimiento del modelo podria
mejorar aumentando la muestra para conseguir cohortes
mejor balanceadas.

Segln los resultados publicados por los equipos de
Pszczolkowski*' y Huang*, otra de las medidas que se podria
aplicar para mejorar el rendimiento de nuestro modelo seria
crear modelos combinados en los que incorporar, al modelo
de radiomica, informacion sobre los factores demograficos
y clinicos.

En el estudio del grupo de Pszczolkowski‘! se evalud el
rendimiento predictivo de las variables basadas en radio-
mica de la TCCSC para predecir no solo la expansion del HIE,
sino también el mal pronodstico funcional utilizando modelos
lineales generalizados. Investigaron también el rendimiento
predictivo de los signos radiologicos y los factores clinicos
de forma independiente y en combinacion con las variables
basadas en radiémica. Llegaron a la conclusion de que los
modelos que utilizan variables basadas en radiomica de la
TCCSC superan a los modelos individuales que utilizan signos
radioldgicos o factores clinicos aislados. Ademas, observa-
ron que los modelos combinados, en los que se incorporaban
factores demograficos y clinicos al modelo de radiomica,
mejoraban la prediccion de mal prondstico en los pacientes
con HIE (tabla 6).

De igual forma, en 2022, el equipo de Huang* evaluo el
rendimiento predictivo de las variables basadas en radio-
mica de la TCCSC del HIE y del edema perihematoma, y
desarrollaron varios modelos basados en las caracteristicas
de radiomica y clinicas para predecir el prondstico funcional
a los tres meses, utilizando modelos lineales generalizados.
Demostraron que el modelo conjunto de radiémica y clinico
obtuvo un mejor rendimiento y una mayor sensibilidad en la
prediccion de mal pronéstico tanto en la cohorte de entre-
namiento y prueba como en la de validacion interna y de
validacion externa) (tabla 6).

Por ultimo, otra de las limitaciones del estudio radica
en que, aunque la segmentacion del HIE en la TCCSC ha
sido realizada por un radidlogo especialista, no se ha ana-
lizado la robustez de los valores de radiémica con varias
segmentaciones. La segmentacion manual y semiautomatica
introduce el sesgo de observador, y los estudios han demos-
trado que muchas variables de radiémica no son robustas
frente a las variaciones intra e interobservador relativas a
la delineacidon del ROI/VOI*. En consecuencia, habria que
realizar evaluaciones de la reproducibilidad intra e interob-
servador de las variables de radidomica derivadas y excluir
las variables no reproducibles. A pesar de ello, es el método
de segmentacion utilizado previamente en la literatura®, y
ademas consideramos que el gran contraste que existe en
la TCCSC entre el HIE (hiperdenso) y el resto de las estruc-
turas adyacentes facilita la identificacion y la segmentacion

de este, por lo que no creemos que invalide nuestros resul-
tados.

En conclusion, el uso de clasificadores de aprendizaje
supervisado no lineales basados en radiémica con métodos
de aprendizaje automatico son una herramienta de diagnos-
tico prometedora para predecir el resultado funcional al alta
en pacientes con HIE, con una baja tasa de falsos negativos,
aunque todavia son necesarios estudios con mayor tamano
muestral, balanceados y en los que se combinen caracteris-
ticas de radiomica y clinicas para desarrollar y mejorar su
rendimiento.
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