

Gastroenterología y Hepatología

https://www.elsevier.es/gastroenterologia

178 - THERAPEUTIC POTENTIAL OF TARGETING PROTEIN HYPER-SUMOYLATION IN CHOLANGIOCARCINOMA

Paula Olaizola^{1,2}, Irene Olaizola¹, Marta Fernández de Ara¹, Maite G. Fernández-Barrena^{2,3,4}, Laura Alvarez³, Mikel Azkargorta ^{2,5}, Colm J. O'Rourke⁶, Pui-Yuen Lee-Law^{1,7}, Luiz Miguel Nova-Camacho⁸, Jose J.G. Marin^{2,9}, Maria L. Martínez-Chantar^{2,10}, Matias A. Avila^{2,3,4}, Patricia Aspichueta^{2,11,12}, Felix Elortza^{2,5}, Jesper B. Andersen⁶, Luis Bujanda^{1,2}, Pedro M. Rodrigues^{1,2,13}, Maria J. Perugorria^{1,2,14} and Jesus M. Bañales^{1,2,13,15}

¹Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian. ²National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"). ³Hepatology Program, CIMA, University of Navarra, Pamplona. ⁴Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona. ⁵Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio. ⁶Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. ⁷Department of Gastroenterology & Hepatology, Radboud University Nijmegen Medical Center, The Netherlands. ⁸Osakidetza Basque Health Service, Donostialdea IHO, Donostia University Hospital, Department of Pathology, San Sebastian. ⁹Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca. ¹⁰Liver Disease Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA). ¹¹Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa. ¹²Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo. ¹³IKERBASQUE, Basque Foundation for Science, Bilbao. ¹⁴Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa. ¹⁵Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona.

Resumen

Introduction and objectives: cholangiocarcinoma (CCA) comprises a heterogeneous group of malignant tumors with dismal prognosis. Alterations in post-translational modifications (PTMs), including SUMOylation, result in abnormal protein dynamics, cell disturbances and disease. Here, we investigate the role of SUMOylation in CCA development and progression.

Methods: Levels and function of SUMOylation, together with response to S-adenosylmethionine (SAMe) and ML792 (SUMOylation inhibitors) or CRISPR/Cas9 against UBE 2I were evaluated *in vitro*, in vivo and/or in patients with CCA. The impact of SUMOylation in CCA cells on tumor-stroma crosstalk was assessed performing co-culture experiments with CCA-derived cancer-associated fibroblasts (CAFs), human endothelial cells and monocytes. Proteomic analyses were carried out by mass spectrometry.

Results: The SUMOylation machinery was found overexpressed and overactivated in human CCA cells and tumors, correlating with poor prognosis. Most SUMOylated proteins found upregulated in CCA cells, after SUMO1-immunoprecipitation and further proteomics, participate in cell proliferation, survival or cell homeostasis. Genetic (CRISPR/Cas9-UBE2I) and pharmacological (SAMe and ML792) inhibition of SUMOylation reduced CCA cell proliferation and impeded colony formation *in vitro*. Moreover, both SAMe and ML792 induced apoptotic cell death in CCA cells *in vitro*. SUMOylation depletion (SAMe, ML792 or CRISPR/Cas9-UBE2I) halted tumorigenesis in subcutaneous models of CCA in vivo. Furthermore, SUMOylation deficiency in CCA cells reduced cancer-associated fibroblast and endothelial cell proliferation and impaired macrophage polarization towards an anti-inflammatory M2-like phenotype.

Conclusions: Aberrant protein SUMOylation contributes to cholangiocarcinogenesis by promoting cell survival and proliferation. Moreover, SUMOylation impacts the CCA-stroma crosstalk. Impaired SUMOylation halts CCA growth and, thus, may represent a potential new therapeutic strategy for patients with CCA.