

Gastroenterología y Hepatología

https://www.elsevier.es/gastroenterologia

NO MÁS COLITIS MICROSCÓPICA: LA ASOCIACIÓN HLA DISTINGUE LA COLITIS COLÁGENA DE LA LINFOCÍTICA

T. Zheng^{1,2}, G. Roda³, Y. Zabana^{4,5}, X. Liu², Y. Chen⁶, L. Camargo-Tavares¹, F. Bonfiglio^{1,2}, M.R. Mellander², I. Janczewska⁷, L. Vigren⁸, K. Sjoberg⁹, B. Ohlsson⁹, S. Almer², J. Halfvarsson¹⁰, S. Miehlke¹¹, A. Madish¹², W. Lieb¹³, J. Kupinskas¹⁴, R. Weersma¹⁵, L. Bujanda¹⁶, A. Julià¹⁷, S. Marsal¹⁷, M. Esteve⁴, D. Guagnozzi^{5,18}, F. Fernández-Bañares^{4,5}, GETECCU, I. Peter¹⁹, J.F. Ludvigsson², D. Pardi²⁰, D. Jonkers²¹, A. Münch²², F. Bresso², A. Franke²³, H. Khalili⁶, J.F. Colombel¹⁹ y M. D'Amato²⁴

¹Monash University, Melbourne (Australia). ²Karolinska Institutet, Stockholm (Suecia). ³Humanitas, Milan (Italia). ⁴Hospital Universitari Mútua de Terrassa. ⁵Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD). ⁶Massachusetts General Hospital, Boston, MA (EEUU). ⁷Medicine Clinic, First Hospital, Stockholm (Suecia). ⁸GHB specialty Care AB, Department of Clinical Sciences, Lund University, Lund (Suecia). ⁹Skane University Hospital, Malmo (Suecia). ¹⁰Orebro University Hospital, Orebro (Suecia). ¹¹Center for Digestive Diseases, Cooperation of Internal Medicine Eppendorf, Hamburg (Alemania). ¹²KRH Clinic Siloah, Hannover (Alemania). ¹³Institute of Epidemiology, Christian-Albrechts-University, Kiel (Alemania). ¹⁴Lithuanian University of Health Sciences, Kaunas (Lituania). ¹⁵UMCG, Groningen (Países Bajos). ¹⁶Biodonostia HRI, San Sebastian. ¹⁷Rheumatology Research Group (VHIR), Parc Científic de Barcelona, Barcelona. ¹⁸Vall d'Hebron University Hospital, Barcelona. ¹⁹Icahn School of Medicine at Mount Sinai, New York, NY (EEUU). ²⁰Mayo Clinic, Rochester, MN (EEUU). ²¹Maastricht University, Maastricht (Países Bajos). ²²Linkoping University, Linkoping (Suecia). ²³IKMB, Kiel (Alemania). ²⁴CIC bioGUNE-BRTA, Derio.

Resumen

Introducción: La colitis microscópica (MC) es una condición relativamente común caracterizada por diarrea acuosa crónica, que afecta hasta al 0,5% de los adultos mayores, principalmente mujeres. Actualmente se considera una enfermedad inflamatoria intestinal de etiología desconocida, que se manifiesta como dos formas clínicamente superpuestas, colitis colagenosa (CC) y colitis linfocítica (LC). Se sospecha un componente genético, y en estudios previos se ha identificado un papel predisponente en CC para variantes de HLA del haplotipo 8.1. Sin embargo, nunca se han realizado análisis diferenciales más amplios a gran escala del riesgo de CC y LC en todo el genoma (estudios GWAS).

Métodos: Realizamos un meta-análisis GWAS de 7,5 millones de polimorfismos (SNP) en 1498 casos de CC y 373 de LC desde centros terciarios en EE. UU. Y Europa (Suecia, Alemania, Lituania, Países Bajos y España) y 13.487 casos de controles poblacional. Los alelos individuales de HLA y los residuos polimórficos se imputaron y probaron para determinar su asociación, incluidos los análisis de sensibilidad realizados en casos con exclusión documentada del diagnóstico de enfermedad celíaca (mediante anticuerpos antitransglutaminasa tisular y/o biopsia duodenal). Se estudiaron las correlaciones genéticas con otros rasgos y diagnósticos (basados en códigos ICD10) usando LD score regression (LDSC).

Resultados: Detectamos una única señal de fuerte asociación en GWAS para CC, mapeada dentro

de la región HLA en el cromosoma 6 (SNP principal rs2844531; p = 1,97 × 10^{-32} ; OR = 2,00). Esta señal mostró efectos de riesgo genético aún más fuertes cuando solo se probaron los casos de CC con exclusión confirmada de enfermedad celíaca (N = 688; p = 4,3 × 10^{-17} ; OR = 2,11), y estuvo completamente ausente en la LC, a pesar del tamaño de muestra con el poder adecuado (confirmado mediante análisis de simulación). La imputación de HLA asignó la señal de riesgo CC a múltiples alelos y residuos polimórficos del haplotipo 8.1 (mejor evidencia estadística para DRB1*03:01; p = 7,9 × 10^{-27} ; OR = 1,84). Se identificó un locus adicional en un análisis combinado (MC) de datos de CC y LC, en una región del cromosoma 10 que alberga los genes *SVILP1*, *LYZL2* y *ZNF348* (rs7924137; p = 1,40 × 10^{-8} , OR = 1,36). Los análisis de LDSC revelaron que CC comparte su arquitectura genética con *neumonía*, *organismo no especificado* (J18; r_g = 0,770; p = 0,048), *otras enfermedades del esófago* (K22; r_g = 0,447; p = 0,023), *úlcera gástrica* (K25; r_g = 0,500; p = 0,048) y otros.

Conclusiones: CC y LC son condiciones genéticamente distintas, lo que afecta la validez de las clasificaciones de colitis microscópicas y, finalmente, los mecanismos postulados como factores comunes patogénicos subyacentes. La creciente evidencia directa e indirecta vincula los factores infecciosos, incluidos los factores genéticos del huésped involucrados en la respuesta a la infección, con un mayor riesgo de CC.