Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Estado actual de las vacunas frente a la gripe pandémica
Información de la revista
Vol. 26. Núm. S1.
Vacunas: presente y futuro
Páginas 78-85 (Enero 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S1.
Vacunas: presente y futuro
Páginas 78-85 (Enero 2008)
Vacunas: presente y futuro
Acceso a texto completo
Estado actual de las vacunas frente a la gripe pandémica
Current status of vaccines against pandemic influenza
Visitas
2117
José María Bayas Rodrígueza,
Autor para correspondencia
jmbayas@clinic.ub.es

Correspondencia: Dr. J.M. Bayas Rodríguez. Centro de Vacunación de Adultos. Servicio de Medicina Preventiva. Hospital Clínic. Villarroel, 170. 08022 Barcelona. España.
, Magda Campins Martíb
a Centro de Vacunación de Adultos. Servicio de Medicina Preventiva y Epidemiología. UASP. Hospital Clínic. Barcelona. España
b Unidad de Vacunación Internacional. Servicio de Medicina Preventiva y Epidemiología. Hospital Universitari Vall d’Hebron. Barcelona. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

En 1997 se identificaron en Hong Kong los primeros casos de infección humana por virus gripales aviares H5N1. Hasta finales de mayo de 2007, la Organización Mundial de la Salud ha confirmado más de 300 casos, con una letalidad cercana al 60%. Hay un amplio consenso entre los expertos a nivel mundial de que la aparición de una nueva pandemia de gripe es sólo cuestión de tiempo, y que el subtipo H5N1 es el principal candidato. La vacunación es la única medida capaz de proteger a la población y reducir el exceso de morbilidad y mortalidad que inevitablemente acompañan a las pandemias de gripe. Sin embargo, la fabricación de una vacuna pandémica se enfrenta a retos importantes y se requieren nuevos enfoques en las estrategias de vacunación para optimizar la protección. Uno de los principales desafíos es la obtención del mayor número posible de vacunas con la menor cantidad de antígeno vacunal. La falta de experiencia antigénica previa de la población a la nueva cepa viral implica que se necesiten altas concentraciones de antígeno vacunal —más de 50 μg de hemaglutinina—para que la vacuna sea inmunógena. El uso de adyuvantes es una de las principales estrategias utilizadas en el diseño de vacunas prepandémicas y pandémicas. Los ensayos clínicos en fase II/III con vacunas inactivadas fraccionadas y adyuvadas con MF59, o con una emulsión de aceite en agua, muestran resultados prometedores, con datos preliminares que apoyan la inducción de inmunidad cruzada frente a cepas heterovariantes H5N1.

Palabras clave:
Gripe aviar
Vacuna antigripal
Pandemia

In 1997, the first cases of human infection by avian influenza A (H5N1) virus were identified in Hong Kong. Up to the end of May 2007, the World Health Organization has confirmed more than 300 cases, with a fatality rate of approximately 60%. There is broad consensus among experts worldwide that the occurrence of a new influenza pandemic is only a matter of time and that the H5N1 subtype is the main candidate. Vaccination is the only measure able to protect the population and reduce the excess of morbidity and mortality that inevitably accompany an influenza pandemic. However, designing a pandemic vaccine poses major challenges and new approaches are required in immunization strategies to optimize protection. One of the main challenges is to obtain the greatest possible number of vaccines with the lowest possible quantity of vaccine antigen. The lack of prior antigenic exposure among the population to the new viral strain implies that high concentrations of the vaccine antigen – more than 50 μg of hemagglutinin – are required for the vaccine to be immunogenic. The use of adjuvants is one of the main strategies used in the design of prepandemic and pandemic vaccines. Phase II and III clinical trials with fractionated and inactivated adjuvant vaccines with MF59 or with oil-in-water emulsion have shown promising results, with preliminary data that support the induction of cross immunity against heterovariant H5N1 strains.

Key words:
Avian influenza
Influenza vaccine
Pandemia
El Texto completo está disponible en PDF
Bibliografía
[1.]
A. Rodríguez Torres, J. Castrodeza, R. Ortiz de Lejarazu.
Vacuna antigripal.
Vacunaciones preventivas. Principios y aplicaciones, 2ª ed., pp. 331-362
[2.]
Y. Kawaoka, S. Krauss, R.G. Webster.
Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics.
J Virol, 63 (1989), pp. 4603-4608
[3.]
H. Chen, G. Deng, Z. Li, G. Tian, Y. Li, P. Jiao, et al.
The evolution of H5N1 influenza viruses in ducks in southern China.
Proc Natl Acad Sci USA, 101 (2004), pp. 10452-10457
[4.]
W. Schafer.
Vergleicherde Sjero-inmunologische Untersuchingen Uber die viren der Influenza and Klassischen Goflugelpest Zestschr.
Natur for Shung, 10 (1955), pp. 81-91
[5.]
World Organisation for Animal Heatlh [citado 9 Jul 2007]. Disponible en: http://www.oie.int/downld/AVIAN%20INFLUENZA/A_AI-Asia.htm
[6.]
WHO. H5N1 avian influenza: Timeline of major events [citado 10 Jul 2007]. Disponible en: http://www.who.int/csr/disease/avian_influenza/timeline_07_07_2007.pdf
[7.]
J.H. Beigel, J. Farrar, A.M. Han, F.G. Hayden, R. Hyer, M.D. De Jong, et al.
Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5. Avian influenza A (H5N1) infection in humans.
N Engl J Med, 353 (2005), pp. 1374-1385
[8.]
Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) Reported to WHO [citado 9 Jul 2007]. Disponible en: http://www.who.int/csr/disease/avian_influenza/country/cases_table_2007_06_29/en/index.html
[9.]
R. Ortiz de Lejarazu, F.J. Luquero, J. Castrodeza, J.M. Eiros.
La gripe aviar. Epidemiología y perspectivas de futuro.
FMC, 142 (2007), pp. 64-72
[10.]
K. Shinya, M. Ebina, S. Yamada, M. Ono, N. Kasai, Y. Kawaoka.
Avian flu: influenza virus receptors in the human airway.
Nature, 440 (2006), pp. 435-436
[11.]
R.B. Belshe.
The origins of pandemic influenza: lessons from the 1918 Virus.
N Engl J Med, 353 (2005), pp. 2209-2211
[12.]
J. Keawcharoen, K. Oraveerakul, T. Kuiken, R.A. Fouchier, A. Amonsin, S. Payungporn, et al.
Avian influenza H5N1 in tigers and leopards.
Emerg Infect Dis, 10 (2004), pp. 2189-2191
[13.]
G.F. Rimmelzwaan, D. Van Riel, M. Baars, T.M. Bestebroer, G. Van Amerongen, R.A. Fouchier, et al.
Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts.
Am J Pathol, 168 (2006), pp. 176-183
[14.]
K. Ungchusak, P. Auewarakul, S.F. Dowell, R. Kitphati, W. Auwanit, P. Puthavathana, et al.
Probable person-to-person transmission of avian influenza A (H5N1).
N Engl J Med, 352 (2005), pp. 333-340
[15.]
S. Yamada, Y. Suzuki, T. Suzuki, M.Q. Le, C.A. Nidom, Y. Sakai-Tagawa, et al.
Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors.
Nature, 444 (2006), pp. 378-382
[16.]
M. Peiris, K.Y. Yuen, C.W. Leung, K.H. Chan, P.L. Ip, R.W. Lai, et al.
Human infection with influenza H9N2.
Lancet, 354 (1999), pp. 916-917
[17.]
K.M. Butt, G.J. Smith, H. Chen, L.J. Zhang, Y.H. Leung, K.M. Xu, et al.
Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003.
J Clin Microbiol, 43 (2005), pp. 5760-5767
[18.]
M. Koopmans, B. Wilbrink, M. Conyn, G. Natrop, H. Van der Nat, H. Vennema, et al.
Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands.
[19.]
S.A. Tweed, D.M. Skowronski, S.T. David, A. Larder, M. Petric, W. Lees, et al.
Human illness from avian influenza H7N3, British Columbia.
Emerg Infect Dis, 10 (2004), pp. 2196-2199
[20.]
R.J. Webby, R.G. Webster.
Are we ready for pandemic influenza?.
Science, 302 (2003), pp. 1519-1522
[21.]
Lazzari S, Stöhr K. Avian influenza and influenza pandemics. Bull World Health Organ. 2004;82:242 [citado 9 Jul 2007]. Disponible en: http://www.who.int/bulletin/volumes/82/4/242.pdf
[22.]
WHO. World is ill-prepared for «inevitable» flu pandemic. Bull World Health Organ. 2004;82:317-318 [citado 9 Jul 2007]. Disponible en: http://www.who.int/bulletin/volumes/82/4/who%20news.pdf
[24.]
R.A. Fouchier, P.M. Scheeberger, F.W. Rozendaal, J.M. Broekman, S.A. Kemink, V. Munster, et al.
Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome.
Proc Natl Acad Sci USA, 101 (2004), pp. 1356-1361
[25.]
International Federation of Pharmaceutical Manufacturers & Associations [citado 16 Jul 2007]. Disponible en: http://www.bird-flu-history.com/2006/05/02/there-are-thirty-one-avian—amp—pandemic-prototyp.php
[26.]
J.M. Bayas.
Avances en el desarrollo de las vacunas contra la gripe aviar.
FMC, 14 (2007), pp. 61-63
[28.]
OMS. Gripe aviar y gripe pandémica Novedades, respuesta y seguimiento. 60.ª Asamblea Mundial de la Salud, 22 de marzo de 2007 [citado 9 Jul 2007]. Disponible en: http://www.who.int/gb/ebwha/pdf_files/WHA60/ A60_7-sp.pdf
[30.]
I. Stephenson, R. Bugarini, K.G. Nicholson, A. Podda, J.M. Wood, M.C. Zambon, et al.
Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy.
J Infect Dis, 191 (2005), pp. 1210-1215
[31.]
R.J. Webby, D.R. Pérez, J.S. Coleman, Y. Guan, J.H. Knight, E.A. Govorkova, et al.
Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines.
Lancet, 363 (2004), pp. 1099-1103
[32.]
M. Campins Martí, J. Díez Domingo.
Gripe aviar: ¿cuándo dispondremos de vacuna?.
Med Clin (Barc), 127 (2006), pp. 93-95
[33.]
J. Puig-Barberá, J. Díez-Domingo, S. Pérez Hoyos, A. Belenguer Varea, D. González Vidal.
Effectiveness of the MF59-adjuvanted influenza vaccine in preventing emergency admissions for pneumonia in the elderly over 64 years of age.
[34.]
I.A. De Bruijn, J. Nauta, W.C. Cramer, L. Gerez, A.M. Palache.
Clinical experience with inactivated, virosomal influenza vaccine.
Vaccine, 23 (2005), pp. 39-49
[35.]
K.G. Nicholson, A.E. Colegate, A. Podda, I. Stephenson, J. Wood, E. Ypma, et al.
Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza.
Lancet, 357 (2001), pp. 1937-1943
[36.]
N.K. Tong, J. Beran, S.A. Kee, J.L. Miguel, C. Sánchez, J.M. Bayas, et al.
Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients.
Kidney Int, 68 (2005), pp. 2298-2303
[37.]
S.L. Giannini, E. Hanon, P. Moris, M. Van Mechelen, S. Morel, F. Dessy, et al.
Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only.
Vaccine, 24 (2006), pp. 5937-5949
[38.]
EMEA [citado 18 Jul 2007]. Disponible en: http://www.emea.europa.eu/pdfs/human/bwp/021496en.pdf
[39.]
J.J. Treanor, J.D. Campbell, K.M. Zangwill, T. Rowe, M. Wolff.
Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine.
N Engl J Med, 354 (2006), pp. 1343-1351
[41.]
J.L. Bresson, C. Perronne, O. Launay, C. Gerdil, M. Saville, J. Wood, et al.
Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/ 1194/2004 (H5N1) vaccine: phase I randomised trial.
Lancet, 367 (2006), pp. 1657-1664
[42.]
I. Stephenson, K.G. Nicholson, A. Colegate, A. Podda, J. Wood, E. Ypma, et al.
Boosting immunity to influenza H5N1 with MF59-adjuvanted H5N3 A/Duck/Singapore/97 vaccine in a primed human population.
Vaccine, 21 (2003), pp. 1687-1693
[43.]
I. Leroux-Roels, A. Borkowski, T. Vanwolleghem, M. Dramé, F. Clement, E. Hons, et al.
Antigen sparing and cross-reactive immunity with an adjuvanted rH5N1 prototype pandemic influenza vaccine: a randomised controlled trial.
[44.]
Rümke H, Bayas JM, De Juanes JR, Cruzet F, Richardus H, Campins M, et al. Adjuvanted H5N1 pandemic candidate vaccine showed a positive safety profile in adults aged 18 years and older within a phase III safety trial. Options for the Control of Influenza VI Conference. Toronto, 17-23 de junio de 2007.
[45.]
Leroux-Roels I, Borkowski A, Dramé M, Hons E, Vanwolleghem T, Bernhard R, et al. Pandemic influenza preparedness: cross-reactive immunity with an adjuvanted H5N1 candidate vaccine IX International Symposium on Respiratory Viral Infections. Hong Kong, 3-6 de marzo de 2007.
[46.]
Baras B, Stittelaar K, Simon J, Jacob V, Mossman S, Pistoor F, et al. Crossprotection against heterologous H5N1 challenge in ferrets with low doses adjuvanted splint H5N1 vaccine. IX International Symposium on Respiratory Viral Infections. Hong Kong, 3-6 de marzo de 2007.
[47.]
J. Lin, J. Zhang, X. Dong, H. Fang, J. Chen, N. Su, et al.
Safety and immunogenicity of an inactivated adjuvanted whole-virion influenza A (H5N1) vaccine: a phase I randomised controlled trial.
[48.]
Barrett N, Ehrlich HJ. Development of a cell-culture (Vero) derived whole virus pre-pandemic candidate H5N1 vaccine. International Conference on Influenza Vaccines for the World. Vienna, 18-20 de octubre de 2006.
[49.]
International Federation of Pharmaceutical Manufacturers & Associations [citado 16 Jul 2007]. Disponible en: http://www.ifpma.org/influenza/content/pdfs/Table_Avian_Pandemic_Influenza_RnD_17Oct06.pdf
[50.]
WHO. Global pandemic influenza action plan to increase vaccine supply [citado 9 Jul 2007]. Disponible en: http://www.who.int/csr/resources/publications/influenza/CDS_EPR_GIP_2006_1.pdf
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos