Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición La glándula pineal como transductor neuroendocrino
Información de la revista
Vol. 48. Núm. 10.
Páginas 303-312 (Diciembre 2001)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 48. Núm. 10.
Páginas 303-312 (Diciembre 2001)
Acceso a texto completo
La glándula pineal como transductor neuroendocrino
Pineal gland as a neuroendocrine transductors
Visitas
20330
F.J. Hernández Díaz
Autor para correspondencia
fjhernandez@navegalia.es

Correspondencia: Dr. F.J. Hernández. Laboratorio de Neurobiología Celular. Departamento de Fisiología. Facultad de Medicina. Universidad de La Laguna. Campus de Ciencias de la Salud. 38200. La Laguna. Tenerife.
, J.J. Sánchez, P. Abreu González, R. Alonso Solis
Laboratorio de Neurobiología Celular. Departamento de Fisiología. Facultad de Medicina. Universidad de La Laguna. Campus de Ciencias de la Salud. La Laguna. Tenerife
Este artículo ha recibido
Información del artículo

:La glándula pineal de los mamíferos funciona como una interfase neuroendocrina, transformando los cambios de luz ambiental en un mensaje hormonal: la síntesis y liberación nocturna de melatonina. La noradrenalina, liberada desde las terminaciones nerviosas simpáticas procedentes del ganglio cervical superior, interactúa con los receptores β- y α1-noradrenérgicos situados en la membrana del pinealocito, iniciando una serie de acontecimientos que culminan en la síntesis de melatonina. La estimulación del receptor β activa la adenilato ciclasa, produciendo un rápido incremento en los valores intracelulares de adenosín monofosfato complementario (AMPc), la activación de una proteína cinasa dependiente de AMPc y la fosforilación del factor de transcripción CREB. La interacción del CREB fosforilado con las secuencias específicas en el ADN induce la expresión de la serotonina N-acetil transferasa (SNAT), enzima que cataliza el paso limitante en la síntesis de melatonina. El CREB fosforilado también activa la expresión de una proteína represora que bloquea la transcripción de la SNAT. El receptor α1 potencia la respuesta β- noradrenérgica activando una proteína cinasa dependiente de Ca+2 y de la hidrólisis de fosfatidilinositol. Además del control nervioso, se ha demostrado que la biosíntesis de melatonina se ve afectada por las oscilaciones de los valores circulantes de esteroides gonadales. En células pineales, las hormonas sexuales regulan directamente la respuesta a la estimulación adrenérgica y, de forma recíproca, la noradrenalina regula la cinética del receptor de estrógenos. En otras áreas del sistema nervioso se han descrito interacciones similares entre hormonas y neurotransmisores, lo que podría representar un mecanismo básico en los procesos de integración neuroendocrina a escala celular. La glándula pineal constituye un modelo extremadamente útil para la disección de los componentes de tales mecanismos.

Palabras clave:
Glándula pineal
Melatonina
Esteroides gonadales
Receptores de esteroides gonadales
Catecolaminas
Receptores alfaadrenérgicos
Receptores betaadrenérgicos
AMPc

:The mammalian pineal gland is as a neuroendocrine interface that converts enviromental lighting conditions into a humoral message: the nocturnal synthesis and release of melatonin. Norepinephrine released from postganglionic symphathetic nerve terminals arising from the superior cervical ganglia, acts on β- and α1-noradrenergic receptors in the pinealocyte membrane and initiates a series of events leading to melatonin synthesis. β-adrenoceptor stimulation activates adenyl cyclase resulting in a rapid increase in intracellular cAMP levels, activation of cAMP-dependent protein kinase, and phosphorylation of cAMP-response element binding protein (CREB). The interaction of phosphorylated CREB with a cAMPresponse element induces the expression of serotonin Nacetyltransferase (SNAT), the enzyme that catalyses the rate limiting setp in melatonin synthesis. Phosphorylated CREB also activates the expression of an inducible cAMP early repressor which represses cAMP-induced SNAT transcription. α1 adrenoreceptor activation potentiates β-action through a Ca+2-phospholipid-dependent protein kinase. In addition to this neural control, it has been shown that physiological oscillations of gonadal steroids, or those induced by experimental manipulations, also affect pineal melatonin synthesis and secretion. Gonadal steroids directly regulate pineal adrenoreceptor responsiveness. In addition, the levels of cytoplasmatic estrogen receptor and its traslocation to the nucleus are under control of sympathetic nerves via norephinephrine and β-adrenoceptor-mediated mechanisms. This type of interactions have been described in other parts of the nervous system, suggesting that they may represent a basic regulatory mechanism of neuroendocrine integration at the cellular level. Therefore, the rat pineal gland may constitute an extremely useful model to dissecting the different components of such mechanisms.

Key words:
Pineal gland
Melatonin
Gonadal steroids
Gonadal steroid receptor
Catecholamines
Alpha-adrenergic receptors
Beta-adrenergic receptors
El Texto completo está disponible en PDF
Biblografía
[1.]
P. Pévet.
Anatomy of the pineal gland of mammals.
The pineal gland, pp. 1-75
[2.]
R.J. Reiter.
Pineal gland: interface between the photoperiodic environment and endocrine system.
T Endocrinol Metab, 2 (1991), pp. 13-29
[3.]
R. Alonso.
La glándula pineal.
Fisiología médica, pp. 891-901
[4.]
R.Y. Moore.
The supraquiasmatic nucleus and the organization of a circadian system.
Trends Neurosci, 5 (1982), pp. 404-406
[5.]
R.J. Reiter.
Pineal melatonin production. Photoperiodic and hormonal influences.
Advances in pineal research, pp. 77-78
[6.]
H.W. Korf, M. Moller.
The innervation of the mammalian pineal gland with especial reference to the central pinealopetal projections.
Pineal research reviews, pp. 41-86
[7.]
W.B. Quay.
Circadian rhythm in the rat pineal serotonin and its modifications by estrous cycle and photoperiod.
Gen Comp Endocrinol, 3 (1963), pp. 473-479
[8.]
V.J. Aloyo, R.F. Walker.
Noradrenergic stimulation of serotonin release from rat pineal glands in vitro.
J Endocrinol, 114 (1987), pp. 3-9
[9.]
V.J. Aloyo, R.F. Walker.
Alpha-adrenergic control of serotonin release from rat pineal glands.
Neuroendocrinology, 48 (1988), pp. 61-66
[10.]
D. Sugden.
Melatonin biosynthesis in the mammalian pineal gland.
Experientia, 45 (1989), pp. 922-932
[11.]
R.J. Wurtman, Y. Ozaki.
Physiological control of melatonin synthesis and secretion: Mechanisms generating rhythms in melatonin, metoxytryptophol, and arginine vasotocin levels and effects on the pineal of endogenous cathecolamines, the estrous cycle, and enviromental lighting.
J Neural Transm, 13 (1978), pp. 59-70
[12.]
P.E. Mullen, C.R. Linsell, R.M. Leone, R.E. Silman, I. Smith, R.J. Hooper, et al.
Melatonin and 5-methoxytryptophol, the 24 hour pattern of secretion in man.
Adv Biosci, 29 (1981), pp. 337-342
[13.]
S.M. Milcu, S. Pavel, C. Neacsu.
Biological and chromatographic characterization of a polypeptide with pressor and oxytotic activities isolated from bovine pineal gland.
Endocrinology, 72 (1963), pp. 563-566
[14.]
W.B. Quay.
Pineal Chemistry in Cellular and Physiological Mechanism.
Pineal Chemistry, pp. 175-192
[15.]
D.C. Klein.
Circadian rhythms in the pineal gland.
Endocrine rhythms, pp. 203-223
[16.]
M. Ebadi.
Regulation of synthesis of melatonin and its significance to neuroendocrinology.
The pineal gland, pp. 1-37
[17.]
D. Sugden.
Circadian changes in the rat pineal tryptophan content: lack of correlation with serum tryptophan.
J Neurochem, 33 (1979), pp. 811-820
[18.]
W. Lovenberg, E. Jequier, A. Sjoerdsma.
Tryptophan hydroxylation: Measurement in pineal gland, brainstem and carcinoid tumor.
Science, 155 (1967), pp. 217-219
[19.]
D.C. Klein, G.R. Berg.
Pineal gland: Stimulation of melatonin production by norepinephrine involves cyclic AMP-mediated stimulation of N-acetyltransferase.
Adv Biochem Physicopharmacol, 3 (1970), pp. 241-263
[20.]
P. Voisin, M.A. Namboodiri, D.C. Klein.
Arylamine N-acetyltransferase in the mammalian pineal gland.
J Biol Chem, 259 (1984), pp. 10913-10918
[21.]
J. Axelrod, H. Weissbach.
Enzymatic O-methylation of N-acetylserotonin to melatonin.
Science, 131 (1960), pp. 1312
[22.]
R.Y. Moore.
Neural control of the pineal gland.
Behav Brain Res, 73 (1996), pp. 125-130
[23.]
R.J. Wurtman, J. Axelrold.
A 24-hour rhythm in the control of norepinephrine in the pineal and salivary glands of the rat.
Life Sci, 5 (1974), pp. 665-666
[24.]
R.J. Reiter, P.K. Rudden, A.F. Banks, M.D. Rollag.
Acute effects of unilateral or bilateral superior cervical ganglionectomy on rat pineal Nacetyltrasferase and melatonin content.
Experientia, 35 (1979), pp. 691-692
[25.]
Y.S. Chang, Y.M. Cheung, S.F. Pang.
Pulsatile release of pineal melatonin in the rabbit.
Advances in Pineal Research, pp. 185-188
[26.]
W.J. Drijfhout, A.G. Van der Linde, S.E. Kooi, C.J. Grol, B.H.C. Westering.
Norepinephrine release in the rat pineal gland: the input from the biological clock measured by in vivo microdialysis.
J Neurochem, 66 (1996), pp. 748-755
[27.]
P.K. Rudden, R.J. Reiter, M.K. Vaughan.
Pineal serotonin-N-acetyltransferase in four mammalian species.
Neurosci Lett, 1 (1975), pp. 225-229
[28.]
D.C. Klein, N.L. Schaad, L. Namboodori, L. Yu, J.L. Weller.
Regulation of pineal serotonin N-acetyltransferase activity.
Biochem Soc Transact, 20 (1992), pp. 299-304
[29.]
J. Borigin, M.M. Wang, S. Snyder.
Diurnal variation in mRNA encoding serotonin N-acetyltrasferase in pineal gland.
Nature, 378 (1995), pp. 783-785
[30.]
T.S. King, R.W. Steger, S. Steinlechner, R.J. Reiter.
Day-night differences in estimates rates of 5-hydroxytryptamine turnover in the rat pineal gland.
Exp Brain Res, 54 (1984), pp. 432-436
[31.]
A. Ichiyama, S. Nakamura, Y. Nishizuka, O. Hayaishi.
Enzymatic studies on the biosynthesis of serotonin in mammalian brain.
J Biol Chem, 245 (1970), pp. 1699-1709
[32.]
B.R. Sitaram, G.L. Lees.
Diurnal rhythm and turnover of tryptophan hydroxylase in the pineal gland of the rat.
J Neurochem, 42 (1978), pp. 1183-1185
[33.]
F.J. Hernández, P. Abreu, A.T. Díaz Cruz, R. Alonso.
Simultaneuos HPLC analysis of tryptophan hydroxylase activity and serotonin metabolism in rat pineal gland: determination of its kinetics properties.
J Liquid Chromatogr, 13 (1994), pp. 2939-2950
[34.]
D. Sugden, D.C. Klein.
Adrenergic stimulation of rat hydroxyindole-Omethyltransferase.
Brain Res, 265 (1983), pp. 348-351
[35.]
D.C. Klein, D.A. Auerbach, M.A. Namboodiri, G.H. Wheler.
Indole metabolism in the mammalian pineal gland.
The pineal gland, Volume I Anatomy and Biochemistry, pp. 199-227
[36.]
J. Axelrod, R. Wurtman, S.H. Snyder.
Control of hydroxyndole-Omethyl transferase activity in the rat pineal gland by environmental lighting.
J Biol Chem, 240 (1965), pp. 949-955
[37.]
H. Yang, N.H. Neff.
Hydroxyindole-O-methyltransferase: an immunochemical study of the neuronal regulation of the pineal enzyme.
Mol Pharmacol, 12 (1976), pp. 433-439
[38.]
D. Sugden, V. Ceña, D.C. Klein.
Hydroxyindole-O-methyltransferase.
Meth Enzymol, 142 (1987), pp. 590-596
[39.]
F. Gauer, C.M. Craft.
Circadian regulation of hydroxyindole-O-methyltransferase mRNA levels in rat pineal and retina.
Brain Res, 737 (1996), pp. 99-109
[40.]
B. Pangerl, A. Pangerl, R.J. Reiter.
Circadian variations of adrenergic receptors in the mammalian pineal gland: a review.
J Neural Transm, 81 (1990), pp. 17-29
[41.]
D.A. Carter.
Up-regulation of b1-adrenoreceptor messenger ribonucleic acid in the rat pineal gland: nocturnally through a b-adrenoreceptorlinked mechanism, and in vitro through a novel posttranscriptional mechanism activated by specific protein synthesis inhibitors.
Endocrinology, 133 (1993), pp. 2263-2268
[42.]
M. Moller, P.P. Pujito, K.C. Morgan, C. Badiu.
Localization and diurnal expression of mRNA encoding the b1-adrenoreceptor in the rat pineal gland: an in situ hybridization.
Cell Tissue Res, 288 (1997), pp. 279-284
[43.]
S.L. Coon, S.K. McCune, D. Sugden, D.C. Klein.
Regulation of pineal β-adrenergic receptor mRNA: day/night rhythm β-adrenergic receptor/cyclic AMP control.
Mol Pharmacol, 51 (1997), pp. 551-557
[44.]
A. González-Brito, D.J. Jones, R.M. Ademe, R.J. Reiter.
Characterization and measurement of [125I]-iodopindol binding in individual rat pineal glands: existence of a 24-h rhythm in β-adrenergic receptor density.
Brain Res, 738 (1988), pp. 108-114
[45.]
A.K. Ho, C.L. Chik.
Post-receptor mechanism in dual receptors regulation of second messengers in rat pineal gland.
Prog Comp Endocrinol, (1990), pp. 139-145
[46.]
D.C. Klein, D.A. Auerbach, J.L. Wellwe.
Pineal serotonin N-acetyltransferase activity: abrupt decrease in adenosine 3', 5'-monophosphate may be signal for “turn off”.
Science, 199 (1978), pp. 309-311
[47.]
J. Vanecek, D. Sudgen, J. Weller, D.C. Klein.
Atypical synergistic α1-and b1-adrenergic regulation of adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in rat pinealocytes.
Endocrinology, 116 (1985), pp. 2167-2173
[48.]
A.K. Ho, D.C. Klein.
Phosphatidylinositol phosphodiesterase (Phospholipase C) activity in the pineal gland: characterization and photoneural regulation.
J Neurochem, 48 (1987), pp. 1033-1038
[49.]
A.K. Ho, C.L. Chik, D.C. Klein.
Permisive role of calcium in α1-adrenergic stimulation of pineal phosphatidylinositol phosphodiesterase (Phospholipase C) activity.
J Pineal Res, 5 (1988), pp. 553-564
[50.]
S. Schomerus, E. Laedtke, H. Korf.
Calcium responses of isolated, immunocytochemically identified rat pinealocytes to noradrenergic, cholinergic and vasopressinergic stimulations.
Neurochem Int, 27 (1995), pp. 163-175
[51.]
A. Marín, J. Ureña, L. Tabares.
Intracellular calcium release mediated by noradrenaline and acetycholine in mammalian pineal cells.
J Pineal Res, 21 (1996), pp. 15-28
[52.]
A.K. Ho, T.P. T, C.L. Chik, W.B. Anderson, D.C. Klein.
Protein kinase C: subcellular redistribution by increased Ca+2 influx.
J Biol Chem, 263 (1988), pp. 9292-9297
[53.]
D. Sugden.
Ontogeny of pineal protein kinase C activity.
Biochem Biophys Res Commun, 159 (1989), pp. 701-706
[54.]
J.W. Putney.
Excitement about calcium signaling in unexcitable cells.
Science, 262 (1993), pp. 676-678
[55.]
T. D'Souza, S.E. Dryer.
Intracellular free calcium in dissociated cells of the chick pineal gland: regulation by membrane depolarization, second messengers and neuromodulator, and evidence of intracellular calcium stores.
Brain Res, 656 (1994), pp. 85-94
[56.]
L.A. Sugden, D. Sugden, D.C. Klein.
Essential role of calcium influx in the adrenergic regulation of cAMP and cGMP in rat pinealocytes.
J Biol Chem, 261 (1986), pp. 11608-11612
[57.]
D. Sugden, J. Vanecek, D.C. Klein, P.T. Thomas, W.B. Anderson.
Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes.
Nature, 314 (1985), pp. 359-361
[58.]
D. Sugden, D.C. Klein.
Activators of protein kinase C act at postreceptor site to amplify cyclic AMP production in rat pinealocytes.
J Neurochem, 50 (1988), pp. 149-155
[59.]
T. Katada, A.G. Gilman, Y. Watanabe, S. Bauer, K.H. Jakobs.
Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppress its function in hormonal inhibition of adenylate cyclase.
Eur J Biochem, 151 (1985), pp. 431-437
[60.]
D. Sugden.
Pertussis toxin does not inhibit α1-adrenergic potentiation of β-adrenergic stimulation of cyclic AMP accumulation in rat pinealocytes.
Biochem Biophys Res Commun, 168 (1990), pp. 871-877
[61.]
A. Castellano, J. López-Barneo, C.M. Amstrong.
Potassium current in dissociated cells of the rat pineal gland.
Pflügers Arch, 413 (1989), pp. 644-650
[62.]
V. Ceña, J.I. Halperin, S. Yeandle, D.C. Klein.
Norepinephrine stimulates potassium efflux from pinealocytes: evidence for involvement of biochemical “AND” gate operate by calcium and adenosine 3',5'-monophosphate.
Endocrinology, 128 (1991), pp. 559-569
[63.]
L.A. Sugden, D. Sugden, D.C. Klein.
a1-adrenoreceptor activation elevates cytosolic calcium in rat pinealocytes by increasing net influx.
J Biol Chem, 262 (1987), pp. 741-745
[64.]
B. Letz, C. Schomerus, E. Maronde, H.W. Korf, C. Korbmacher.
Stimulation of a nicotinic ACH receptor causes depolarization and activation of L-type calcium channels in rat pinealocytes.
J Physiol, 499 (1997), pp. 329-340
[65.]
P.H. Roseboom, S.L. Coon, R. Baler, S.K. McCune, J.L. Weller, D.C. Klein.
Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland.
Endocrinology, 137 (1996), pp. 3033-3045
[66.]
J.H. Stehle.
Pineal gene expression: Dawn in a dark matter.
J Pineal Res, 18 (1995), pp. 179-190
[67.]
R. Baler, S. Covington, D.C. Klein.
The rat arykalkylamine N-acetyltransferase gene promoter.
J Biol Chem, 272 (1997), pp. 6979-6985
[68.]
J.H. Stehle, N.S. Foulkes, C.A. Molina, V. Simonneaux, P. Pévet, P. Corsi-Sassone.
Adrenergic signals direct rhythmic expresion of transcriptional repressor CREM in the pineal gland.
Nature, 365 (1993), pp. 314-320
[69.]
J.A. Gastel, P.H. Rosenboom, P. Rinaldi, J.L. Weller, D.C. Klein.
Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation.
Science, 279 (1998), pp. 1358-1360
[70.]
D. Sugden, A.K. Ho, A.L. Sugden, D.C. Klein.
Negative feeback mechanisms: evidence that desensitization of pineal α1-adrenergic responses involves protein kinase C.
Endocrinology, 123 (1988), pp. 1425-1432
[71.]
R. Alonso, P. Abreu, N. Fajardo.
Steroid influences on pineal melatonin production.
Melatonin, physiological effects, and clinical applications, pp. 73-105
[72.]
F.J. Hernández-Díaz, J.J. Sánchez, P. Abreu, I. López-Coviella, L. Tabares, L. Prieto, et al.
Estrogen modulates alpha1/beta-adrenoreceptor-induced signaling and melatonin production in female rat pinealocytes.
Neuroendocrinology, 73 (2001), pp. 111-122
[73.]
D.P. Cardinali, C.A. Nagle, J.M. Rosner.
Gonadal steroids as modulators of the function of the pineal gland.
Gen Comp Endocrinol, 26 (1975), pp. 50-58
[74.]
M.I. Vacas, P.R. Lowestein, D.P. Cardinali.
Characterization of a cytosol progesterone receptor in bovine pineal gland.
Neuroendocrinology, 29 (1979), pp. 84-89
[75.]
P.J. Shughrue, M.V. Lane, I. Merhenthaler.
Comparative distribution of estrogen receptor-a and -b mRNA in the rat central nervous system.
J Comp Neurol, 388 (1997), pp. 507-525
[76.]
D.P. Cardinali, C.A. Nagle, J.M. Rosner.
Effects of estradiol on melatonin and protein synthesis in the rat pineal organ.
Horm Res, 5 (1974), pp. 304-310
[77.]
L.Y. Johnson, M.K. Vaughan, B.A. Richarson, L.J. Petterborg, R.J. Reiter.
Variation in pineal melatonin content during the estrous cycle of the rat.
Proc Soc Exp Biol Med, 169 (1982), pp. 416-419
[78.]
F. Moujir, F. Sánchez-Franco, C. Santana, L. Cacicedo, R. Alonso.
Immunoreactive levels of pineal arginine vasopressin change during the rat estrous cycle.
J Pineal Res, 8 (1990), pp. 359-366
[79.]
Y. Ozaki, R.J. Wurtman, R. Alonso, H.J. Lynch.
Melatonin secretion decreases during the proestrous stage of the rat estrous cycle.
Proc Natl Acad Sci USA, 75 (1978), pp. 531-534
[80.]
R. Alonso, P. Abreu, N. Fajardo, J.E. Sánchez-Criado.
Progesterone does not mediate the inhibition of pineal melatonin production during the rat proestrous night.
Neurosci Lett, 151 (1993), pp. 150-152
[81.]
S. Daya, B. Potgieter.
Effects of sex steroids on pineal enzymes.
South Afr J Sci, 78 (1982), pp. 174-175
[82.]
D.J. Morton, H.J. Forbes.
Inhibition of the catalytic activity of the bovine pineal gland hydroxyindole-O-methyltransferase (EC 2.1.14) by estradiol, progesterone and testosterone but not pteridines.
J Pineal Res, 6 (1989), pp. 259-265
[83.]
J. Zweens.
Influences of the estrous cycle and ovariectomy on the phospholipid content of the pineal gland in the rat.
Nature, 197 (1963), pp. 1114-1115
[84.]
F. Moujir, M.J. Lorenzo, R. Alonso, C. Santana, L. Cacicedo, F. Sánchez-Franco.
Pineal vasoactive intestinal peptide is reduced during proestrus stage of the rat estrous cycle.
Peptides, 12 (1991), pp. 529-533
[85.]
B. Weiss, J. Crayton.
Gonadal hormones as regulators of pineal adenyl cyclase activity.
Endocrinology, 87 (1970), pp. 527-532
[86.]
G. Davis.
The response of adenosine 3', 5'-monophosphate to norepinephrine in the hypothalamus and pineal organ of female rats in proestrus or diestrus.
Endocrinology, 103 (1978), pp. 1048-1053
[87.]
R. Alonso, P. Abreu, N. Fajardo, F. Hernández, A. Díaz-Cruz, G. Hernández, et al.
Ovarian hormones regulate α-and β-adrenoreceptor interactions in female rat pinealocytes.
NeuroReport, 6 (1995), pp. 345-348
[88.]
V.M. Fiske, J. Pound, J. Putnam.
Effect of light on the weight of the pineal organ in hypophysectomized, gonadectomized, adrenalectomized or thiouracil-fed rats.
Endocrinology, 71 (1962), pp. 130-133
[89.]
A. Sahu, S. Chakraborty.
Estradiol modulation of pineal gland activity in the wild bandicoot rat Bandicota bengalensis.
Acta Anat, 125 (1986), pp. 1-5
[90.]
T.D. Das Gupta.
Cellular hypertrophy in rat pineals after castration.
J Endocrinol, 41 (1968), pp. 607-608
[91.]
Y. Okatani, K. Watanabe, N. Morioca, K. Hayashi, Y. Sagara.
Nocturnal changes in pineal melatonin synthesis during puberty: relation to estrogen and progesterone levels in female rats.
J Pineal Res, 22 (1997), pp. 33-41
[92.]
H.K. Okatani, K. Watanabe, N. Morioka, Y. Sagara.
Estrogen modulates the nocturnal synthesis of melatonin in peripubertal female rats.
J Pineal Res, 24 (1998), pp. 224-229
[93.]
B. Alexander, A.J. Down, A. Wolfson.
Effects of prepubertal hypophysectomy and ovariectomy on hydroxyindole-O-methyltransferase activity in the female rat.
Endocrinology, 86 (1970), pp. 1166-1168
[94.]
S. Yie, G.M. Brown.
Effects of sex hormones on the pineal response to isoproterenol and pineal beta-adrenergic receptors.
Neuroendocrinology, 62 (1995), pp. 93-100
[95.]
N. Weiland, P.M. Wise.
Estrogen alters the diurnal rhythm of α1-adrenergic receptor densities in selected brain regions.
Endocrinology, 121 (1987), pp. 1751-1758
[96.]
N. Weiland, P.M. Wise.
Diurnal rhythmicity of beta-1 and beta-2 adrenergic receptors in ovariectomized, ovariectomized estradiol-treated and proestrous rats.
Neuroendocrinology, 50 (1989), pp. 655-662
[97.]
M. Wilkinson, J. Arendt.
Effects of oestrogen and progesterone on rat pineal N-acetyl transferase activity and melatonin production.
Experientia, 34 (1978), pp. 667-669
[98.]
D.P. Cardinali, P.V. Gejman, M.N. Ritta.
Further evidence of adrenergic control of translocation and intracelular levels of estrogen receptors in rat pineal gland.
Endocrinology, 112 (1983), pp. 492-498
[99.]
D.P. Cardinali, M.N. Rita, M.I. Vacas, P.R. Lowenstein, P.V. Geyman, C. González-Solveyra, et al.
Molecular aspects of neuroendocrine integrative processes on the pineal gland.
The pineal gland and superior cervical ganglia, pp. 83-107
[100.]
D.P. Cardinali, M.I. Vacas, M.I. Keller, G.S. Etchejoyen, E.N. Pereyra, H.E. Chuluyan.
Neuroendocrine integrative mechanism in mammalian pineal gland: effects of steroids and adenohypophysial hormones on melatonin synthesis in vitro.
J Steroid Biochem, 27 (1987), pp. 565-570
[101.]
R. Alonso, I. López-Coviella.
Gonadal steroids and neuronal function.
Neurochem Res, 23 (1998), pp. 679-692
[102.]
N. Petitti, A.M. Etgen.
Protein kinase C and phospholipase C mediate α1-and β-adrenoreceptor intercommunication in rat hypothalamic slices.
J Neurochem, 56 (1991), pp. 628-635
[103.]
J. Roger, R.M. Lynne.
Adrenoreceptors and their second messenger systems.
J Neurochem, 60 (1993), pp. 10-23
[104.]
A.M. Etgen, S. Ungar, N. Petitti.
Estradiol and progesterone modulation of norepinephrine neurotransmission: implications for the regulation of the female reproductive behavior.
J Neuroendocrinol, 4 (1992), pp. 255-271
[105.]
M. Buda, D.C. Klein.
A suspension culture of pinealocytes: regulation of N-acetyltransferase activity.
Endocrinology, 103 (1978), pp. 1483-1492
Copyright © 2001. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos