Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Efecto del hipotiroidismo e hipertiroidismo sobre la actividad aminopeptidasa en...
Información de la revista
Vol. 48. Núm. 7.
Páginas 193-197 (Agosto 2001)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 48. Núm. 7.
Páginas 193-197 (Agosto 2001)
Acceso a texto completo
Efecto del hipotiroidismo e hipertiroidismo sobre la actividad aminopeptidasa en plasma de ratas
Aminopeptidase activity and thyroid function in rats
Visitas
5724
I. Prieto
Autor para correspondencia
iprieto@ujaen.es

Correspondencia: Prof. I. Prieto. Área de Fisiología. Universidad de Jaén. Edificio B3. 23071 Jaén.
, A.B. Segarra, G. Arechaga, J.M. Martínez, M.J. Ramírez-Expósito, M. Ramírez
Área de Fisiología, Universidad de Jaén. Universidad de Granada
F. Vargasa, F. Albab
a Departamentos de Fisiología Universidad de Granada
b Bioquímica y Biología Molecular. Universidad de Granada
Este artículo ha recibido
Información del artículo

Las alteraciones en la función del tiroides originan importantes cambios en la respuesta cardiovascular, en los que están implicados modificaciones en el sistema renina-angiotensina circulante (SRA) y otros péptidos vasoactivos. Las actividades aminopeptidasas (AP), a través del control de la hormona liberadora de la tirotropina (TRH), el SRA y otros péptidos vasoactivos como la vasopresina desempeñan un importante papel en el control de la función del tiroides y de la presión arterial. Con el fin de evaluar el papel de distintas aminopeptidasas plasmáticas en la función tiroidea, determinamos las actividades alanina (AlaAP), cistina (CysAP), piroglutamato (pGluAP), glutamato (GluAP) y aspartato (AspAP) aminopeptidasa, utilizando derivados de la naftilamida como sustratos en animales eu hipo e hipertiroideos. Los resultados demuestran que el hipertiroidismo disminuye significativamente las actividades pGluAP y CysAP, mientras que aumenta la actividad AlaAP. Sin embargo, no se observaron diferencias para las actividades AspAP y GluAP. El hipotirodismo incrementó significativamente los valores de AlaAP, no observándose diferencias en el resto de las actividades. Los presentes resultados apuntan a un papel preponderante de la actividad AlaAP (AP M) en lugar de la GluAP (AP A) en la regulación del SRA circulante, en modelos animales de hiper e hipotiroidismo.

Palabras clave:
Aminopeptidasa
TRH
Sistema renina-angiotensina
Hipotiroidismo
Hipertiroidismo

Alterations in thyroid function imply important changes in cardiovascular response, in which are also involved modifications in the renin angiotensin system (SRA) and other vasoactive peptides. Aminopeptidase (AP) activity, through the control of thyrotrophin releasing hormone, the SRA and other vasoactive peptides such as vasopressin, plays an important role in thyroid function and blood pressure control. To evaluate the role of AP activities in thyroid function, we determined alanyl-(AlaAP), cystinyl-(CysAP), glutamyl-(GluAP), aspartyl-(AspAP) and pyroglutamyl-(pGluAP) activities using naphthylamide derivatives as substrates in euthyroid, hypothyroid and hyperthyroid animals. Results demonstrated that hyperthyroidism decreased significantly pGluAP and CysAP, and increased significantly AlaAP. However, no differences were observed for AspAP and GluAP. Hypothyroidism increased significantly AlaAP but no differences were observed in the rest of activities. These results suggest a major role for AlaAP (APM) instead of GluAP (APA) in the regulation of the circulating SRA in animal models of hiper-and hypothyroidism.

Key words:
Aminopeptidase
TRH
Renin-angiotensin-aldosterone system
Hypothyroidisnn
Hiperthyroidisnn
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.K. McDonald, A.J. Barrett.
Mammalian proteases. A glosary and bibliography. Exopeptidases.
[2.]
S. Ahmad, P.E. Ward.
Role of aminopeptidase activity and regulación of the pressor activity of circulating angiotensins.
J Pharmacol Exp Ther, 252 (1990), pp. 643-650
[3.]
K. Bauer.
Purification and characterization of the thyrotropin-releasing hormone-degrading ectoenzyme.
Eur J Biochem, 224 (1994), pp. 387-396
[4.]
J.W. Wright, J.W. Harding.
Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions.
Regul Pept, 59 (1995), pp. 269-295
[5.]
R.H. Abhold, J.W. Harding.
Metobolism of angiotensin II and III by membrane-bound peptidases from rat brain.
J Pharmacol Exp Ther, 245 (1988), pp. 171-177
[6.]
C. Marchant, L. Brown, C. Sernia.
Renin-angiotensin system in thyroid dysfunction in rats.
J Cardiovasc Pharmacol, 22 (1993), pp. 449-455
[7.]
B.J. Asmah, W.M. Wan Nazaimon, K. Norazmi, T.T. Tan, B.A. Khalid.
Plasma renin and aldosterone in thyroid diseases.
Horm Metab Res, 29 (1997), pp. 580-583
[8.]
C.R. Franci, J.A. Anselmo-Franci, S.M. McCann.
Angiotensinergic neurons physiologically inhibit prolactin, growth hormone and thyroid-stimuling hormone, but not adrenocorticotropic hormone, release in ovaridectomized rats.
Peptides, 18 (1997), pp. 971-976
[9.]
M.H. Whitmall, R.C. Smallridge.
Altered thyroid axis function in Lewis rats with genetically defective hypothalamic CRH/VP neurosecretory cells.
Endocr Res, 23 (1997), pp. 365-376
[10.]
J. Ciosek, B. Stempniak.
The influence of vasopressin or oxytocin on thyroid-stimulating hormone and thyroid hormones concentrations in blood plasma of euthyroid rats.
J Physiol Pharmacol, 48 (1997), pp. 813-823
[11.]
T.H. John, J.C. George, G.M. Brown.
Effects of exogenous arginine vasotocin on circulating levels of thyroid hormones and melatonin in the pigneon, Columbia livia.
Comp Biochem Physiol C Pharmacol Toxicol Endocrinol, 112 (1995), pp. 345-351
[12.]
P. Browne, G. O'Cuinn.
An evaluation of the role of a pyroglutamate aminopeptidase, a post-proline cleaving enzyme and a post-proline dipeptidyl aminopeptidase, each purified from the solubre fraction of guinea-pig brain, in the degradation of thyroliberin in vitro.
Eur J Biochem, 137 (1983), pp. 75-87
[13.]
S. Wilk.
Neuropeptide-specific-peptidases: does brain contain a specific TRH-degrading enzyme?.
Life Sci, 39 (1986), pp. 1487-1492
[14.]
K. Bauer.
Degradation and biological inactivation of TRH: regulation of the membrane bound TRH-degrading enzyme from rat anterior pituitary by estrogens and thyroid hormones.
Biochimie, 70 (1988), pp. 69-74
[15.]
B. O'Connor, G. Cuinn.
Localization of a narrow specificity thiroliberin hydrolizing pyroglutamate aminopeptidase in synaptosomal membranes of guinea-pig brain.
Eur J Biochem, 144 (1984), pp. 271-278
[16.]
B. O'Connor, G. Cuinn.
Purification of and kinetic studies on a synaptosomal membrane pyroglutamate aminopeptidase from guinea-pig brain.
Eur J Biochem, 150 (1985), pp. 47-52
[17.]
C.H. Emerson, C.F. Wu.
Thyroid status influences rat serum but not brain TRH pyroglutamyl aminopeptidase activities.
Endocrinology, 120 (1987), pp. 1215-1217
[18.]
E. Vigouroux.
Dynamic study of post-natal thyroid function in the rat.
Acta Endocrinol (Copenh), 83 (1976), pp. 752-762
[19.]
T.C. Friedman, J.A. Yanovski, V. Jayasvasti, S.Z. Yanovski, R.J. Koening, S. Wilk.
Pyroglutamyl peptidase-II (“thyroliberinase”) activity in human serum: weight and thyroid status.
J Clin Endocrinol Metab, 80 (1995), pp. 1086-1089
[20.]
C. García del Río, M.R. Moreno, A. Osuna, J.D. Luna, J. García-Estan, F. Vargas.
Role of the renin-angiotensin system in the development of thyroxine-induced hypertension.
Eur J Endocrinol, 136 (1997), pp. 656-660
[21.]
J.M. Sabio, M. Rodríguez-Maresca, J.D. Luna, C. García del Río, F. Vargas.
Vascular reactivity to vasoconstrictors in aorta and renal vasculature of hyperthyroid and hypothyroid rats.
Pharmacology, 49 (1994), pp. 257-264
[22.]
M.M. Bradford.
A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.
Anal Biochem, 72 (1976), pp. 248-254
[23.]
L.J. Greenberg.
Fluorimetric measurement of alkaline phosphatase and aminopeptidase activities in the order of 10-14 mole.
Biochem Biophys Res Commun, 9 (1962), pp. 430-435
[24.]
F. Alba, C. Iríbar, M. Ramírez, C. Arenas.
Un método fluorimétrico para la determinación de aminopeptidasas cerebrales.
Arch Neurobiol, 52 (1989), pp. 169-173
[25.]
H. Tobe, F. Kojima, T. Aoyagi, H. Umezawa.
Purification using amastatin and properties of aminopeptidase A from pig kidney.
Biochim Biophys Acta, 613 (1980), pp. 459-468
[26.]
H.S. Cheung, D.W. Cushman.
A soluble aspartate aminopeptidase from dog kidney.
Biochim Biophys Acta, 242 (1971), pp. 190-193
[27.]
C. Schwabe, J.K. McDonald.
Demostration of a pyroglutamyl residue at the N-terminus of the B-chain of porcine relaxin.
Biochem Biophys Res Comun, 74 (1977), pp. 1501-1504
[28.]
M. Ramírez, I. Prieto, J.M. Martínez, F. Vargas, F. Alba.
Renal aminopeptidase activities in animal models of hypertension.
Regul Pept, 72 (1997), pp. 155-159
[29.]
J.T. Neary, J.D. Kieffer, P. Federico, F. Malooff.
TRH: development of inactivation system during maturation of the rat.
Science, 193 (1976), pp. 403-405
[30.]
L. Schomburg, K. Bauer.
Thyroid hormones rapidly and stringently regulate the messenger RNA levels of the thyrotropin-releasing hormone (TRH) receptor and the TRH-degrading ectoenzyme.
Endocrinology, 136 (1995), pp. 3480-3485
[31.]
J.M. Martínez, I. Prieto, M.J. Ramírez, M. De Gasparo, F. Hermoso, J.M. Arias, et al.
Sex differences and age-related changes in human serum aminopeptidase A activity.
Clin Chim Acta, 274 (1998), pp. 53-61
[32.]
G.J. Sanderink, Y. Artur, G. Siest.
Human aminopeptidases: a review of the literature.
J Clin Chem Clin Biochem, 26 (1988), pp. 795-807
[33.]
I. Prieto, A. Martínez, J.M. Martínez, M.J. Ramírez, F. Vargas, F. Alba, et al.
Activities of aminopeptidases in a rat saline model of volume hypertension.
Horm Metab Res, 30 (1998), pp. 246-248
[34.]
C. Itoh, A. Nagamatsu.
An aminopeptidase activity from porcine kidney that hydrolyzes oxytocin and vasopressin: purification and partial characterization.
Biochim Biophys Acta, 1243 (1995), pp. 203-208
[35.]
F. Vargas, M.J. Baz, J.D. Luna, J. Andrade, E. Jodar, J.M. Haro.
Urinary excretion of digoxin-like immunoreactive factor and arginine-vasopressin in hyper-and hypo-thyroid rats.
Clin Sci (Colch), 81 (1991), pp. 471-476
Copyright © 2001. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos