Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Cambios hormonales en las enfermedades críticas
Información de la revista
Vol. 48. Núm. 1.
Páginas 6-20 (Enero 2001)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 48. Núm. 1.
Páginas 6-20 (Enero 2001)
Acceso a texto completo
Cambios hormonales en las enfermedades críticas
Normal changes in critical illness
Visitas
4479
M. Albaredaa,**, R. Corcoyb
a Serveis d'Endocrinología i Nutrició. Hospital de la Creu Roja. Barcelona
b Hospital de la Santa Creu i Sant Pau. UAB. Barcelona
Este artículo ha recibido
Información del artículo

Una enfermedad critica conlleva respuestas endocrinas que difieren segun la duracion del estres. En las situaciones agudas, se produce un aumento de secrecion de prolactina, cortisol, glucagon, catecolaminas y hormona de crecimiento (GH) con valores disminuidos de factor de crecimiento similar a la insulina tipo 1 (IGF-1) y descenso de la actividad β pancreatica, tiroidea y gonadal. Se considera que estos cambios son adaptativos y no especificos del tipo de estres, y van dirigidos a adecuar el volumen intravascular, la presion de perfusion y la disponibilidad de sustratos. Si el proceso critico se prolonga, se produce un estado de hipercatabolismo proteico que se acompana de hiperglucemia, hiperinsulinemia, insulinorresistencia, hipoproteinemia y deplecion de agua y potasio intracelular. Esta respuesta se ha valorado como inadecuada y puede dificultar la recuperacion de los sistemas, contribuyendo, ademas, a una mayor necesidad de cuidados intensivos.

Palabras clave:
Catabolismo
Estrés
Eje hipotálamo-hipófiso-adrenal
Eje hipotálamo-hipófiso-tiroideo
Eje somatotrópico
Metabolismo hidrocarbonado
Metabolismo fosfocálcico
Catecolaminas
Sistema renina-angiotensina-aldosterona

Criticall illness results in endocrine responses which depend on the duration of the stress. The initial endocrine response includes hypersecretion of prolactin, cortisol, catecholamines, glucagon and growth hormone (GH) with low insulin-like growth factor (IGF-1) and a reduced of the â cell and thyroid and gonadal axis. These changes have been considered adaptative and non-specific and provide optimal intravascular volume, pressure perfussion and substrate availability. If the stress is prolonged, protein hypercatabolism becomes important and it is accompained by hyperglycemia, hypertriglyceridemia, insulin resistance, hypoproteinemia and intracellular water and potassium depletion. This response is considered inappropiate does not assist to the recovery of the dysfunctioning systems, and can contribute to prolong the intensive care dependency.

Key words:
Catabolism
Stress
Hypothalamic-pituitary-adrenocortical axis
Hypothalamicpituitary-thyroid axis
Somatotropic axis
Carbohydrate metabolism
Calcium metabolism
Catecholamines
Renin-angiotensin-aldosterone axis
El Texto completo está disponible en PDF
Bibliografía
[1.]
P.Q. Bessey, K.A. Lowe.
Early hormonal changes affect the catabolic response to trauma.
Ann Surg, 218 (1993), pp. 476-491
[2.]
C.A. Rolih, K.P. Ober.
The endocrine response to critical illness.
Med Clin North Am, 79 (1995), pp. 211-224
[3.]
G. Van den Berghe, F. De Zegher.
Anterior pituitary function during critical illness and dopamine treatment.
Crit Care Med, 24 (1996), pp. 1580-1590
[4.]
G. Vab den Berghe, F. De Zegher, R. Bouillon.
Acute and prolonged critical illness as different neuroendocrine paradigms.
J Clin Endocrinol Metab, 83 (1998), pp. 1827-1834
[5.]
S.J. Streat, A.H. Beddoe, G.L. Hill.
Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients.
J Trauma, 27 (1987), pp. 262-266
[6.]
L. Gamrin, P. Essén, A.M. Forsberg, E. Hultman, J. Werneman.
A descriptive study of skeletal muscle metabolism in critically ill patients: free aminoacids, energy-rich phosphates, protein, nucleic acids, fat, water, and electrolytes.
Crit Care Med, 24 (1996), pp. 575-583
[7.]
R.D. Madoff, S.M. Sharpe, J.J. Fath, R.L. Simmons, F.B. Cerra.
Prolonged surgical intensive care. A useful allocation of medical resources.
Arch Surg, 120 (1985), pp. 698-702
[8.]
S. Reichlin.
Neuroendocrine-immune interactions.
N Engl J Med, 329 (1993), pp. 1246-1253
[9.]
I.D. Johnston.
The endocrine response to trauma.
Adv Clin Chem, 15 (1972), pp. 255-285
[10.]
A. Munck, P.M. Guyre, N.J. Holbrook.
Physiological functions of glucocorticoids in stress and their relation to pharmacologic actions.
Endocr Rev, 5 (1984), pp. 25-44
[11.]
C.R. DeBold, W.R. Sheldon, G.S. DeCherney, R.V. Jackson, A.N. Alexander, W. Vale, et al.
Arginine vasopressin potentiates adrenocorticotropin release induced by ovine corticotropin releasing factor.
J Clin Invest, 73 (1984), pp. 533-538
[12.]
I. Vermes, A. Bieshuizen, R.M. Hampsink, C. Haanen.
Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone.
J Clin Endocrinol Metab, 80 (1995), pp. 1238-1242
[13.]
C. Rivier, W. Vale.
Modulation of stress induced ACTH release by corticotropin- releasing factor, catecholamines and vasopressin.
Nature, 305 (1983), pp. 325-327
[14.]
M.F. Dallman.
Stress update: adaptation of the hypothalamic-pituitaryadrenal axis to chronic stress.
Trends Endocrinol Metab, 4 (1993), pp. 62-69
[15.]
G.P. Chrousos.
The hypothalamic-pituitary adrenal axis and immunomediated inflammation.
N Engl J Med, 332 (1995), pp. 1351-1362
[16.]
R. Sapolsky, C. Rivier, G. Yamamoto, P. Plotsky, W. Vale.
Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor.
Science, 238 (1987), pp. 522-524
[17.]
A. Soni, G.M. Pepper, M. Piotr, P.M. Wyrwinski, N.E. Ramírez, R. Simon, et al.
Adrenal insufficiency occurring during septic shock: incidence, outcome, and relationship to peripheral cytokine levels.
Am J Med, 98 (1995), pp. 266-271
[18.]
R. Udelsman, J.A. Norton, S.E. Jelenich, D.S. Goldstein, W.M. Linehan, D.L. Loriaux, et al.
Responses of the hypothalamic-pituitary-adrenal and renin- angiotensin axis and the sympathetic system during controlled surgical and anesthesic stress.
J Clin Endocrinol Metab, 64 (1987), pp. 986-994
[19.]
D. Perrot, A. Bonneton, H. Dechaud, J. Motin, M. Pugeat.
Hypercortisolim in septic shocks is not suppressible by dexamethasone infusion.
Crit Care Med, 21 (1993), pp. 396-401
[20.]
M. Reincke, B. Allolio, G. Wurth, W. Winkelmann.
The hypothalamicpituitary- adrenal axis in critical illness: Response to dexamethasone and corticotropin-releasing hormone.
J Clin Endocrinol Metab, 77 (1993), pp. 151-156
[21.]
L.F. Span, A.R. Hermus, A.K. Bartelink, A.J. Hoitsma, J.S. Gimbrere, A.G. Smals, et al.
Adrenocortical function: An indicator of severity of disease and survival in chronic critically ill patients.
Intensive Care Med, 18 (1992), pp. 93-96
[22.]
M.J. Jarek, E.J. Legare, M.T. McDermott, J.A. Merenich, M.H. Kollef.
Endocrine profiles for outcome prediction from the intensive care unit.
Crit Care Med, 21 (1993), pp. 543-550
[23.]
C.H. Schultz, E.P. Rivers, C.S. Feldkamp, E.G. Goad, H.A. Smithline, G.B. Martin, et al.
A characterization of hypothalamic-pituitary-adrenal axis function during and after human cardiac arrest.
Crit Care Med, 21 (1993), pp. 1339-1347
[24.]
T.H. Jurney, J.L. Cockrell Jr, J.S. Lindberg, J.M. Lamiell, C.E. Wade.
Spectrum of serum cortisol response to ACTH in ICU patients: Correlation with degree of illness and mortality.
Chest, 92 (1987), pp. 292-295
[25.]
G. Bouachour, P. Tirot, J.P. Gouello, E. Mathieu, J.F. Vincent, P.H. Alquier.
Adrenocortical function during septic shock.
Intensive Care Med, 21 (1995), pp. 57-62
[26.]
J. Briegel, G. Schelling, M. Haller, W. Mraz, H. Forst, K. Peter.
A comparison of the adrenocortical response during septic shock and after complete recovery.
Intensive Care Med, 22 (1996), pp. 894-899
[27.]
P.M. Rothwell, Z.F. Udwadia, P.G. Lawler.
Cortisol response to corticotropin and survival in septic shock.
Lancet, 337 (1991), pp. 582-583
[28.]
J.L. Moran, M.J. Chapman, M.S. O'Fathartaigh, A.R. Peisach, P.R. Pannall, P. Leppard.
Hypocortisolaemia and adrenocortical responsiveness at onset of septic shock.
Intensive Care Med, 20 (1994), pp. 489-495
[29.]
J.I. McKee, W.E. Finlay.
Cortisol replacement in severely stressed patients.
Lancet, 1 (1983), pp. 438
[30.]
E. Barquist, O. Kirton.
Adrenal insufficiency in the surgical intensive care unit patient.
J Trauma, 42 (1997), pp. 27-31
[31.]
E.P. Rivers, H.C. Blake, B. Dereczyk, J.A. Ressler, E.L. Talos, R. Patel, et al.
Adrenal dysfunction in hemodynamically unstable patients in the emergency department.
Acad Emerg Med, 6 (1999), pp. 626-630
[32.]
J.S. Flier, L.H. Underhill.
The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation.
N Engl J Med, 332 (1995), pp. 1351-1362
[33.]
R.D. Zipser, M.W. Davenport, K.L. Martin, M.L. Tuck, N.E. Warner, R.R. Swinney, et al.
Hypereninemic hypoaldosteronism in the critically ill: a new entity.
J Clin Endocrinol Metab, 53 (1981), pp. 867-873
[34.]
L.N. Parker, E.R. Levin, E.T. Lifrak.
Evidence for adrenocortical adaption to severe illness.
J Clin Endocrinol Metab, 60 (1985), pp. 947-952
[35.]
T. Suzuki, N. Susuzi, R.A. Daynes, E.G. Engleman.
Dehydroepiandrosterone enhances IL2 production and cytotoxic effector function of human T-cells.
Clin Immunol Immunopathol, 61 (1991), pp. 202-211
[36.]
G. Van den Berghe, F. De Zegher, M. Schetz, C. Verwaest, P. Ferdinande, P. Lauwers.
Dehydroepiandrosterone sulphate in critical illness: effect of dopamine.
Clin Endocrinol (Oxf), 43 (1995), pp. 457-463
[37.]
D. Druker, J. McLaughlin.
Adrenocortical dysfunction in acute medical illness.
Crit Care Med, 14 (1986), pp. 789-791
[38.]
A.J. Schneider, H.J. Voerman.
Abrupt hemodynamic improvement in late septic shock with physiological doses of glucocorticoids.
Intesive Care Med, 17 (1991), pp. 436-437
[39.]
J.M. Luce, A.B. Montgomery, J.D. Marks, J. Turner, C.A. Metz, J.F. Murray.
Ineffectiveness of high dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock.
Am Rev Respir Dis, 138 (1988), pp. 62-68
[40.]
G.R. Bernard, J.M. Luce, C.L. Sprung, J.E. Rinaldo, R.M. Tate, W.J. Sibbald, et al.
High-dose corticosteroids in patients with the adult respiratory distress syndrome.
N Engl J Med, 317 (1987), pp. 1565-1570
[41.]
R.C. Bone, C.J. Fisher Jr, T.P. Clemmer, G.J. Slotman, C.A. Metz, R.A. Balk.
A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock.
N Engl J Med, 317 (1987), pp. 653-658
[42.]
R.M.H. Schein, C.L. Sprung, E. Marcial, L. Napolitano, B. Chernow.
Plasma cortisol levels in patients with septic shock.
Crit Care Med, 18 (1990), pp. 259-263
[43.]
G.R. Masterson, S.M. Mostafa.
Adrenocortical function in critical illness.
Br J Anaesthesia, 81 (1998), pp. 308-310
[44.]
A.R. Absalom, N.B. Scott.
Adrenocortical function and steroid therapy in critical illness.
Br J Anaesthesia, 82 (1999), pp. 474-475
[45.]
R.A. Daynes, A.W. Meikle, B.A. Araneo.
Locally active steroid hormones may facilitate compartimentalization of immunity by regulating the types of lymphokines produced by T-helper cells.
Res Immunol, 142 (1991), pp. 40-45
[46.]
K.L. Blauer, M. Poth, W.M. Rogers, E.W. Bernton.
Dehydroepiandrosterone antagonizes the supressive effects of dexamethasone on lymphocyte proliferation.
Endocrinology, 129 (1991), pp. 3174-3179
[47.]
B.A. Araneo, J. Shelby, G.Z. Li, W. Ku, R.A. Daynes.
Administration of DHEA to burned mice preserves normal immunological competence.
Arch Surg, 128 (1993), pp. 318-325
[48.]
E.D. Lephart, C.R. Baxter, C.R. Parker.
Effect of burn trauma on adrenal and testicular steroid hormone production.
J Clin Endocrinol Metab, 64 (1986), pp. 842-848
[49.]
G.L. Noel, H.K. Suh, S.J.G. Stone, A.E. Frantz.
Human prolactin and growth hormone release during surgery and other conditions of stress.
J Clin Endocrinol Metab, 35 (1972), pp. 840-851
[50.]
R. Ross, J. Miell, E. Freeman, J. Jones, D. Matthews, M. Preece, et al.
Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin-like growth factor I.
Clin Endocrinol (Oxf), 35 (1991), pp. 47-54
[51.]
H.J. Voerman, R.J.M. Strack van Schijndel, H. De Boer, E.A. Van der Veen, L.G. Thijs.
Growth hormone: secretion and administration in catabolic adult patients, with emphasis on the critically ill patient.
Neth J Med, 41 (1992), pp. 229-244
[52.]
A.C. Timmins, A.M. Cotterill, S.C. Hughes, J.M. Holly, R.J. Ross, W. Blum, et al.
Critical illness is associated with low circulating concentrations of insulin-like growth factors-I and -II, alterations in insulin-like growth factor binding proteins, and induction of an insulin-like growth factor binding protein 3 protease.
Crit Care Med, 24 (1996), pp. 1460-1466
[53.]
M. Hermansson, R.B. Wickelgren, F. Hammerqvist, R. Bjarnason, I. Wennström, J. Wernerman, et al.
Measurement of human growth hormone receptor messenger ribonucleic acid by a quantitative polimerase chain reaction-based assay: demonstration of reduced expression after elective surgery.
J Clin Endocrinol Metab, 82 (1997), pp. 421-428
[54.]
R.C. Baxter.
Acquired growth hormone insensitivity and insulin-like growth factor bioavailability.
Endocrinol Metab, 4 (1997), pp. 65-69
[55.]
M.L. Hartman, J.D. Veldhuis, M.L. Johnson, M.M. Lee, K.G. Albert, K.E. Samojli, et al.
Augmented growth hormone (GH) secretory burst frequency and amplitude mediate enhanced GH secretion during a two day fast in normal men.
J Clin Endocrinol Metab, 74 (1992), pp. 757-765
[56.]
J.P. Thissen, J-M Ketelslegers, L.E. Underwood.
Nutritional regulation of insulin-like growth factors.
Endocr Rev, 15 (1994), pp. 80-101
[57.]
G. Van den Berghe, F. De Zegher, J.D. Veldhuis, P. Wouters, M. Awouters, W. Verbruggen, et al.
The somatotropic axis in critical illness: Effects of continuous growth hormone (GH)-releasing hormone and GH-releasing peptide-2 infusion.
J Clin Endocrinol Metab, 82 (1997), pp. 590-599
[58.]
G. Van den Berghe, F. De Zegher, R.C. Baxter, J.S. Veldhuis, P. Wouters, M. Schetz, et al.
Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues.
J Clin Endocrinol Metab, 83 (1998), pp. 309-319
[59.]
G. Van der Berghe, F. De Zegher, C.Y. Bowers, P. Wouters, P. Muller, F. Soetens, et al.
Pituitary responsiveness to growth hormone GH-releasing hormone, GH-releasing peptide-2 and thyrotropin releasing hormone in critical illness.
Clin Endocrinol (Oxf), 45 (1996), pp. 341-351
[60.]
G. Van den Berghe, R.C. Baxter, F. Weekers, P. Wouters, C.Y. Bowers, J.D. Veldhuis.
A paradoxical gender dissociation within the growth hormone/insulin-like growth factor I axis during protracted critical illness.
J Clin Endocrinol Metab, 85 (2000), pp. 183-192
[61.]
G. Van den Berghe, F. De Zegher, P. Lauwers, J.D. Veldhuis.
Growth hormone secretion in critical illness: Effect of dopamine.
J Clin Endocrinol Metab, 79 (1994), pp. 1141-1146
[62.]
B. Burguera, C. Muruais, A. Peñalva, C. Diéguez, F.F. Casanueva.
Dual and selective actions of glucocorticoids upon basal and stimulated growth hormone release in man.
Neuroendocrinology, 51 (1990), pp. 51-58
[63.]
S. Reichlin.
Somatostatin (part I).
N Engl J Med, 309 (1983), pp. 1495-1501
[64.]
S. Reichlin.
Somatostatin (part II).
N Engl J Med, 309 (1983), pp. 1556-1563
[65.]
D.N. Herndon, R.E. Barrow, K.R. Kunkel, L. Broemeling, R.L. Rutan.
Effects of recombinant human growth hormone on donor-site healing in severely burnerd children.
Ann Surg, 12 (1990), pp. 424-431
[66.]
D.W. Wilmore.
Catabolic illness: strategies for enhancing recovery.
N Engl J Med, 325 (1991), pp. 695-702
[67.]
S.R. Kupfer, L.E. Underwood, R.C. Baxter, D.R. Clemons.
Enhancement of the anabolic effects of growth hormone and insulin-like growth factor 1 by use of both agents simultaneously.
J Clin Invest, 91 (1993), pp. 391-396
[68.]
D.W. Wilmore.
Growth hormone and growth factors in catabolic illness.
Endocrinol Metab, 2 (1995), pp. 77-84
[69.]
G. Van den Berghe, F. De Zerghe, J. Vanhaecke, G. Verleden, P. Lauwers.
Growth hormone as rescue treatment after heart-lung or double lung transplantion.
Endocrinol Metab, 1 (1994), pp. 187-190
[70.]
M.S. Dahn, R.A. Mitchell, S. Smith, M.P. Lange, M.P. Whitcomb, J.R. Kirkpatrick.
Altered immunologic function and nitrogen metabolism associates with depression of plasma growth hormone.
J Parenter Enteral Nutr, 8 (1984), pp. 690-694
[71.]
F.H. Hawker, P.M. Stewart, R.C. Baxter, M. Borkmann, K. Tan, I.D. Caterson, et al.
Relationship of somatomedin-C/insulin-like growth factor I levels to conventional nutritional indices in critically ill patients.
Crit Care Med, 15 (1987), pp. 732-736
[72.]
T.R. Ziegler, L.S. Young, E. Ferrari Baliviera, R.H. Demling, D.W. Wilmore.
Use of human growth hormone combined with nutritional support in a critical care unit.
J Parenteral Enteral Nutr, 14 (1990), pp. 574-581
[73.]
W.J. Chwals, B.R. Bistrain.
Role of exogenous growth hormone and insulin- like growth factor I in malnutrition and acute metabolic stress: a hypothesis.
Crit Care Med, 19 (1991), pp. 1317-1322
[74.]
J. Takala, E. Ruokonen, N.R. Webster, M.S. Nielsen, D.F. Zandstra, G. Vundelinckx, et al.
Increased mortality associated with growth hormone treatment in critically ill adults.
N Engl J Med, 341 (1999), pp. 785-792
[75.]
S.E. Wolf, R.E. Barrow, D.N. Herndon.
Terapia con hormona de crecimiento e IGF-I en el paciente hipercatabólico.
Rev Horm Factores Crecim, 2 (1997), pp. 2-16
[76.]
L. Wartofsky, K.D. Burman.
Alterations in thyroid function in patients with systemic illness: The “euthyroid sick syndrome”.
Endocr Rev, 3 (1982), pp. 164-217
[77.]
R. Docter, E.P. Krenning, M. De Jong, G. Hennemann.
The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone metabolism.
Clin Endocrinol, 39 (1993), pp. 499-518
[78.]
E.M. Kaptein.
Thyroid hormone metabolism in illness.
Thyroid hormone metabolism, pp. 297-334
[79.]
D.F. Gardner, M.M. Kaplan, C.A. Stanley, R.D. Utiger.
Effect of triiodothyronine replacement on the metabolic and pituitary responses to starvation.
N Engl J Med, 300 (1979), pp. 579-584
[80.]
B. McIver, C.A. Gorman.
Euthyroid sick syndrome: an overview.
Thyroid, 7 (1997), pp. 125-132
[81.]
I.J. Chopra, P. Taing, L. Mikus.
Direct determination of free triiodothyronine (T3) in undiluted serum by equilibrium dialysis/radioimmunoassay.
Thyroid, 6 (1996), pp. 255-259
[82.]
I.J. Chopra.
An assessment of daily turnover and significance of thyroidal secretion of reverse T3 in man.
J Clin Invest, 58 (1976), pp. 32-40
[83.]
Z. Eisenstein, S. Hagg, A.G. Vagenakis, S.L. Fang, B. Ransil, A. Burger, et al.
Effect of the starvation on the production and peripheral metabolism of 3,3',5'-triiodothyronine in euthyroid obese subjects.
J Clin Endocrinol Metab, 47 (1978), pp. 889-893
[84.]
J.C. Nelson, R.T. Tomei.
Direct determination of free thyroxin in undiluted serum by equilibrium dyalisis/radioimmunoassay.
Clin Chem, 34 (1988), pp. 1737-1744
[85.]
L.J. DeGroot.
Dangerous dogmas in medicine: the nonthyroidal illness syndrome.
J Clin Endocrinol Metab, 84 (1999), pp. 151-164
[86.]
E.M. Kaptein, D.A. Grieb, C. Spencer, W.S. Wheeler, J.T. Nicoloff.
Thyroxine metabolism in the low thyroxine state of critical non-thyroidal illnesses.
J Clin Endocrinol Metab, 53 (1981), pp. 764-771
[87.]
I.J. Chopra, T.S. Hung, A. Beredo, D.H. Solomon, G.N. Chua Teco, J.F. Mead.
Evidence for an inhibitor of extrathyroidal conversion of thyroxine to 3,5,3'-triiodothyronine in sera of patients with non-thyroidal illness.
J Clin Endocrinol Metab, 60 (1985), pp. 666-672
[88.]
P. Thompson Jr, K.D. Burman, Y.G. Lukes, J.S. McNeils, B.D. Jackson, K.R. Latham, et al.
Uremia decreases nuclear 3,5,3'-triiodothyronine receptors in rats.
Endocrinology, 107 (1980), pp. 1081-1084
[89.]
F.E. Carr, S. Seelig, C.N. Mariash, H.L. Schwartz, J.H. Oppenheimer.
Starvation and hypothyroidism exert an overlapping influence on rat hepatic messenger RNA activity profiles.
J Clin Invest, 72 (1983), pp. 154-163
[90.]
I.J. Chopra.
Simultaneous measurement of free thyroxine and free 3,5,3'-triiodothyronine in undiluted serum by direct equilibrium dialysis/ Radioimmunoassay: evidence that free triiodothyronine and free thyroxine are normal in many patients with low triiodothyronine syndrome.
Thyroid, 8 (1998), pp. 249-257
[91.]
I.J. Chopra, U. Chopra, S.R. Smith, M. Reza, D.H. Solomon.
Reciprocal changes in serum concentration of 3,3',5'-triiodothyronine (reverse T3) 3,3'5-triiodothyronine (T3) in systemic illnesses.
J Clin Endocrinol Metab, 41 (1975), pp. 1043-1049
[92.]
J.S. LoPresti, J.C. Fried, C.A. Spencer, J.T. Nicoloff.
Unique alterations of thyroid hormone indices in the acquired immunodeficiency syndrome (AIDS).
Ann Intern Med, 110 (1989), pp. 970-975
[93.]
E.M. Kaptein, E.I. Feinstein, S.G. Massry.
Thyroid hormone metabolism in renal disease.
Contrib Nephrol, 33 (1982), pp. 122-135
[94.]
P.D. Woolf, L.A. Lee, R.W. Hamill, J.V. McDonald.
Thyroid test abnormalities in traumatic brain injury: Correlation with neurologic impairment and sympathetic nervous system activation.
Am J Med, 84 (1988), pp. 201-208
[95.]
V. Bacci, G.C. Schussler, T.C. Kaplan.
The realtionship between serum triiodothyronine and thyrotropin during systemic illness.
J Clin Endocrinol Metab, 54 (1982), pp. 1229-1235
[96.]
I. Kakucska, L.I. Romero, B.D. Clark, J.M. Rondeel, S. Alex, C.H. Emerson, et al.
Suppression of thyrotropin-releasing hormone gene expression by interleukin-1-beta in the rat: implications for nonthyroidal illness.
Neuroendocrinology, 59 (1994), pp. 129-137
[97.]
I.J. Chopra.
Euthyroid sick syndrome: Is it a misnomer?.
J Clin Endocrinol Metab, 82 (1997), pp. 329-334
[98.]
I.J. Chopra, G.N. Chua Teco, A.H. Nguyen, D.H. Solomon.
In search of an inhibitor of thyroid hormone binding to serum proteins in nonthyroid illnesses.
J Clin Endocrinol Metab, 49 (1979), pp. 63-69
[99.]
G.A. Brent, J.M. Hershman.
Thyroxine therapy in patients with severe nonthyroidal illness and low serum thyroxine concentration.
J Clin Endocrinol Metab, 63 (1986), pp. 1-8
[100.]
J.I. Mechanick, H.S. Sacks, R.H. Cobin.
Hypothalamic-pituitary axis dysfunction in critically ill patients with a low free thyroxine index.
J Endocrinol Invest, 20 (1997), pp. 462-470
[101.]
G.C. Borst, C. Eil, K.D. Burman.
Euthyroid hyperthyroxinemia.
Ann Intern Med, 98 (1982), pp. 366-378
[102.]
I.J. Chopra, D.H. Solomon, T-S. Huang.
Serum thyrotropin in hospitalized psychiatric patients: Evidence for hyperthyrotropinemia as mesured by and ultrasensitive thyrotropin assay.
Metabolism, 39 (1990), pp. 538-543
[103.]
K.L. Cohen, M.E. Swigar.
Thyroid function screening in psychiatric patients.
JAMA, 242 (1979), pp. 254-257
[104.]
L.A. Gavin.
The diagnostic dilemmas of hyperthyroxinemia and hypothyroxinemia.
Adv Intern Med, 33 (1988), pp. 185-203
[105.]
C.S. Hollander, R.L. Scott, D.P. Tschudy, M. Perlroth, A. Waxman, K. Sterling.
Increase iodine and thyroxine binding in acute porphyria.
N Engl J Med, 177 (1967), pp. 995-1000
[106.]
G.C. Schussleer, F. Schaffneer, F. Korn.
Increased serum thyroid hormone binding and decreased free hormone in chronic active liver disease.
N Engl J Med, 299 (1978), pp. 510-515
[107.]
J.C. Jaume, C.M. Mendel, P.H. Frost, F.S. Greenspan, C.W. Laughton.
Extremely low doses of heparin release lipase activity into the plasma and can thereby cause artifactual elevations in the serum free thyroxine concentration as measured by equilibrium dialysis.
Thyroid, 6 (1996), pp. 79-84
[108.]
M. Lambert.
Thyroid dysfunction in HIV infection.
Baillières Clin Endocrinol Metab, 8 (1994), pp. 825-835
[109.]
M. Lambert, F. Zech, P. De Nayer, J. Jamez, B. Vandercam.
Elevation of serum thyroxine-binding globulin (but not of cortisol-binding globulin and sex hormone-binding globulin) associated with the progression of human immunodeficiency virus infection.
Am J Med, 89 (1990), pp. 748-751
[110.]
W. Ricart-Engel, J.M. Fernández-Real, F. González-Huix, M. Del Pozo, J. Mascaró, F. García-Bragado.
The relation between thyroid function and nutritional status in HIV-infected patients.
Clin Endocrinol, 44 (1996), pp. 53-58
[111.]
L.H. Duntas, T.T. Nguyen, F.S. Keck, D.K. Nelson, J.J. DiStefano III.
Changes in metabolism of TRH in euthyroid sick syndrome.
Eur J Endocrinol, 141 (1999), pp. 337-341
[112.]
R.M. Lechan.
Update on thyroid releasing hormone.
Thyroid Today, 16 (1993),
[113.]
D.E. Scarborough, S.L. Lee, C.A. Dinarello, S. Reichlin.
Inteleukin-1 stimulates somatostatin biosynthesis in primary cultures of fetal rat brain.
Endocrinology, 124 (1989), pp. 549-551
[114.]
X.P. Pang, J.M. Hershamn, C.J. Mirell, A.E. Pekary.
Impairment of hypothalamic- pituitary-thyroid function in rats treated with human recombinant tumor necrosis factor-alpha (cachectin).
Endocrinology, 125 (1989), pp. 76-84
[115.]
T. Van der Poll, J.A. Romijn, W.M. Wiersinga, H.P. Saverwein.
Tumor necrosis factor: A putative mediator for the sick euthyroid syndrome in man.
J Clin Endocrinol Metab, 71 (1990), pp. 1567-1572
[116.]
T. Van der Poll, K. Van Zee, E. Endert, S.M. Coyle, D.M. Stiles, J.P. Pribble, et al.
Interleukin-1 receptor blockade does not affect endotoxin-induced changes in plasma thyroid hormone and thyrotropin concentration in man.
J Clin Endocrinol Metab, 80 (1995), pp. 1341-1346
[117.]
A. Boelen, Platvoet-ter, M.C. Schiphorst, O. Bakker, W.M. Wiersinga.
The role of cytokines in the LPS-induced sick euthyroid syndrome in mice.
J Endocrinol, 146 (1995), pp. 475-483
[118.]
K. Carlin, S. Carlin.
Possible etiology for euthyroid sick syndrome.
Med Hypotheses, 40 (1993), pp. 38-43
[119.]
M.E. Everts, T.J. Visser, E.P. Moerings, R. Docter, H. Van Toor.
Update of triiodothyroacetic acid and its effect on thyrotropin secretion in cultured anterior pituitary cells.
Endocrinology, 135 (1994), pp. 2700-2707
[120.]
C.F. Lin, R. Doctor, T.J. Visser, E.P. Krenning, B. Bernard, H Van Toor, et al.
Inhibition of thyroxine transport into cultured rat hepatocytes by serum of nonuremic critically ill patients: effects of bilirubin and nonsterified fatty acids.
J Clin Endocrinol Metab, 76 (1993), pp. 1165-1172
[121.]
G. Van den Berghe, F. De Zegher, P. Lauwers.
Dopamine and the sick euthyroid syndrome in the critical illness.
Clin Endocrinol (Oxf), 41 (1994), pp. 731-737
[122.]
G. Van den Berghe, F. De Zegher, D. Vlasselaers, M. Schetz, C. Verwaest, P. Ferdinande, et al.
Thyrotropin releasing hormone in critical illness: from a dopamine-dependent test to a strategy for increasing low serum triiodothyronine, prolactin and growth hormone.
Crit Care Med, 24 (1996), pp. 590-595
[123.]
R.E. Wehmann, R.I. Gregerman, W.H. Burns, R. Saral, G.W. Santos.
Suppression of thyrotropin in the low-thyroxine state of severe nonthyroidal illness.
N Engl J Med, 312 (1985), pp. 546-552
[124.]
H. Mönig, T. Arendt, M. Meyer, S. Kloehn, B. Bewig.
Activation of the hypothalamo-pituitary-adrenal axis in response to septic or non-septic diseases-implications for the euthyroid sick syndrome.
Intensive Care Med, 25 (1999), pp. 1402-1406
[125.]
E. Lee, P. Chen, H. Rao, J. Lee, L.A. Burmeister.
Effect of acute high dose dobutamine administration on serum thyrotrophin (TSH).
Clin Endocrinol, 50 (1999), pp. 487-492
[126.]
M. Girvent, S. Maestro, R. Hernández, I. Carajol, J. Monné, J.J. Sancho, et al.
Euthyroid sick syndrome, associated endocrine abnormalities, and outcome in elderly patients undergoing emergency operation.
Surgery, 123 (1998), pp. 560-567
[127.]
G. Van den Berghe, F. De Zegher, J.D. Veldhuis, P. Wouters, S. Gouwy, W. Stockman, et al.
Thyrotrophin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues.
Clin Endocrinol, 47 (1997), pp. 599-612
[128.]
E. Fliers, S.E.F. Guldenaar, W.M. Wiersinga, D.F. Swaab.
Thyrotropin-releasing hormone gene expression the human hypothalamus in relation to non-thyroidal illness.
Procceedings of the 79th Annual Meeting of the Endocrine Society,, 129 (1997),
[129.]
C.M. Alexander, E.M. Kaptein, S.M.C. Lum, C.A. Spencer, D. Kumar, J.T. Nicoloff.
Patterns of recovery of thyroid hormone indices associated with treatment of diabetes mellitus.
J Clin Endocrinol Metab, 54 (1982), pp. 362-366
[130.]
P.S. Hamblin, S.A. Dyeer, V.S. Mohr, B.A. Le Grand, C-F Lim, D.V. Tuxen, et al.
Relationship between thyrotropin and thyroxine changes during recovery from severe hypothyroxinemia of critical illness.
J Clin Endocrinol Metab, 62 (1986), pp. 717-722
[131.]
J.L. Schlienger, R. Spain, T. Capgras, F. Gasser, J.P. Monassier, B. Hauer, et al.
Evaluation of thyroid function after myocardial infarction.
Ann Enocrinol (Paris), 52 (1991), pp. 283-288
[132.]
C.M. Mendel, C.W. Laughton, F.A. McMahon, R.R. Cavalieri.
Inability to detect an inhibidor of thyroxine-serum protein binding in sera from patients with nonthyroid illness.
Metabolism, 40 (1991), pp. 491-502
[133.]
L.S. Maldonado, G.H. Murata, J.M. Hershman, G.D. Braunstein.
Do thyroid function tests independently predict survival in the critically ill?.
Thyroid, 2 (1992), pp. 119-123
[134.]
P.M. Rotwell, P.G. Lawer.
Prediction of outcome in intensive care patients using endocrine parameters.
Crit Care Med, 23 (1995), pp. 78-83
[135.]
G.M. Vaughan, A.D. Mason, W.F. McManus, B.A. Pruitt.
Alterations of mental status and tyroid hormones after thermal injury.
J Clin endocrinol Metab, 60 (1985), pp. 1221
[136.]
L. De Marinis, A. Mancini, R. Masala, M. Torlontano, S. Sandric, A. Barbarino.
Evaluation of pintuitary-thyroid axis response to acute myocardial infarction.
J Endocrinol Invest, 8 (1985), pp. 597
[137.]
R. Arem, G.J. Wiener, G. Kaplan, H.S. Kim, S.W. Reichlin, M.M. Kaplan.
Reduced tissue thyroid hormone in fatal illness.
Metabolism, 42 (1993), pp. 1102-1108
[138.]
G.A. Brent, J.M. Hershman, A.W. Reed, A. Sastre, J. Lieberman.
Serum angiotensin converting enzyme in severe nonthyroidal illness associated with low serum thyroxine concentration.
Ann Intern Med, 100 (1986), pp. 680-683
[139.]
R.D. Hesch, M. Husch, R. Kodding, B. Hoffken, T. Meyer.
Treatment of dopamine-dependent shock with triiodothyronine.
Endocr Res Commun, 8 (1981), pp. 229-301
[140.]
R.A. Becker, G.M. Vaughan, M.G. Ziegler, L.G. Seraile, J.W. Goldfarb, E.H. Mansour, et al.
Hypermetabolic low triiodothyronine syndrome of burn injury.
Crit Care Med, 10 (1982), pp. 870-875
[141.]
S.A. Dulchavsky, S.R. Maitra, J. Maurer, P.R. Kennedy, E.G. Geller, D.J. Dreis.
Beneficial effects of thyroid hormone administration on metabolic and hemodynamic function in hemorrhagic shock.
FASEB J, 4 (1990), pp. A952
[142.]
S.A. Dulchavsky, P.R. Kennedy, E.R. Geller, S.R. Maitra, W.M. Foster, E.G. Langenbach.
T3 preserves respiratory function in sepsis.
J Trauma, 31 (1991), pp. 753-759
[143.]
D. Novitzky, D.K. Cooper, B. Reichart.
Hemodynamic and metabolic responses to hormonal therapy in brain-dead potential organ donors.
Transplantation, 43 (1987), pp. 852-855
[144.]
M.A. Hamilton, L.W. Stevenson.
Thyroid hormone abnormalities in heart failure: possibilities for therapy.
Thyroid, 6 (1996), pp. 527-529
[145.]
K.D. Burman, L. Wartofsky, R.E. Dinterman, P. Kesler, R.W. Wannemacher.
The effect of T3 and reverse T3 administration on muscle protein catabolism during fasting as measured by 3-methylhistidine excretion.
Metabolism, 28 (1979), pp. 805-813
[146.]
L. Wartofsky, K.D. Burman, M.D. Ringel.
Trading one “Dangerous Dogma” for another? Thyroid hormone treatment of the “Euthyroid sick syndrome”.
J Clin Endocrinol Metab, 84 (1999), pp. 1759-1760
[147.]
D. Glioner.
Comment on dangerous dogmas in medicine - The nonthyroidal illness syndrome.
J Clin Endocrinol Metab, 84 (1999), pp. 2262
[148.]
R.H. Caplan.
Comment on dangerous dogmas in medicine - The nonthyroidal illness syndrome.
J Clin Endocrinol Metab, 84 (1999), pp. 2261-2262
[149.]
D.I. Spratt, S.T. Bigos, I. Beitins, P. Cos, C. Longcope, J. Orav.
Both hyper- and hypogonadotropic hypogonadism occur transiently in acute illness: bio- and immunoactive gonadrotropins.
J Clin Endocrinol Metab, 75 (1992), pp. 1562-1570
[150.]
C. Wang, V. Chan, RTT. Yeung.
Effect of surgical stress on pituitarytesticular function.
Clin Endocrinol (Oxf), 9 (1978), pp. 255-266
[151.]
C. Wang, V. Chan, T.F. Tse, R. Yeung.
Effect of acute myocardial infarction on pituitary testicular function.
Clin Endocrinol (Oxf), 9 (1978), pp. 249-253
[152.]
A. Klibanski, I.Z. Beitens, T.M. Badger, R. Little, J. McArthur.
Reproductive function during fasting in man.
J Clin Endocrinol Metab, 53 (1981), pp. 258-266
[153.]
A.V. Vogel, G.T. Peake, R.T. Rada.
Pituitary-testicular axis dysfunction in burned men.
J Clin Endocrinol Metab, 60 (1985), pp. 658-665
[154.]
L.D. Kreutz, R.M. Rose, J.R. Jennings.
Supression of plasma testosterone levels and psychological stress: a longitudinal study of young men in officer candidate school.
Arch Gen Psychiatry, 26 (1972), pp. 479-482
[155.]
A. Aakvaag, O. Bentdal, K. Quigstad, P. Walstad, H. Ronningen, F. Fonnum.
Testosterone and testosterone binding globulin in young men during prolonged stress.
Int J Androl, 1 (1978), pp. 22-31
[156.]
G. Van de Berghe, F. De Zegher, P. Lawers, J.D. Veldhuis.
Luteinizing hormone secretion and hypoandrogenemia in critically ill men: effect of dopamine.
Clin Endocrinol (Oxf), 41 (1994), pp. 563-569
[157.]
P.D. Woolf, R.W. Hamill, J.V. McDonald, L.A. Lee, M. Kelly.
Transient hypogonadotropic hypogonadism caused by critical illness.
J Clin Endocrinol Metab, 60 (1985), pp. 444-450
[158.]
Q. Dong, F. Hawker, D. McWilliams, M. Bangah, H. Burger, D.J. Handels-man.
Circulating immunoreactive inhibin and testosterone levels in men with critical illness.
Clin Endocrinol (Oxf), 36 (1992), pp. 399-404
[159.]
A.C. Charters, W.D. Odell, J.C. Thompson.
Anterior pituitary function during surgical stress and convalescence. Radioimmunoassay of blood TSH, LH, FSH and growth hormone.
J Clin Endocrinol Metab, 29 (1969), pp. 63-66
[160.]
M.P. Warren, E.S. Siris, C. Petrovich.
The influence of severe illness on gonadotropin secretion in the postmenopausal female.
J Clin Endocrinol Metab, 45 (1976), pp. 99-104
[161.]
D.I. Spratt, P. Cox, J. Orav, J. Moloney, T. Bigos.
Reproductive axis suppression in acute illness in related to disease severity.
J Clin Endocrinol Metab, 76 (1993), pp. 1548-1554
[162.]
C. Rivier, S. Rivest.
Effect of stress on the activity of the hypothalamicpituitary- gonadal axis: peripheral and central mechanisms.
Biol Reprod, 45 (1991), pp. 523-532
[163.]
M.R. MacAdams, R.H. White, B.E. Chipps.
Reduction of serum testosterone levels during chronic glucocorticoide therapy.
Ann Int Med, 104 (1986), pp. 648-651
[164.]
H.E. Turner, JAH. Wass.
Gonadal function in men with chronic illness.
Clin Endocrinol, 47 (1997), pp. 379-403
[165.]
A. Barbarino, L. De Marinis, A. Tofani, S. Della Casa, C. D'Amico, A. Mancini, et al.
Corticotropin-releasing hormone inhibition of gonadotropin release and the effect of opioid blockade.
J Clin Endocrinol Metab, 68 (1989), pp. 523-528
[166.]
T.J. Cirero, R.D. Bell, W.G. Wiest, J.H. Allison, K. Polakoski, E. Robins.
Function of the male sex organs in heroin and methadone users.
N Engl J Med, 292 (1975), pp. 882-887
[167.]
C.A. Huseman, J.A. Kugler, I.G. Schneider.
Mechanism of dopaminergic suppression of gonadotropin secretion in men.
J Clin Endocrinol Metab, 51 (1980), pp. 209-214
[168.]
C. Rivier, W. Vale.
In the rat interleukin 1-α acts at the levels of the brain and the gonads to interfere with gonadotropin and sex steroid secretion.
Endocrinology, 124 (1989), pp. 2105-2109
[169.]
H. Guo, J.H. Calkins, M.M. Sigel, T. Lin.
Interleukin-2 is a potent inhibitor of Leydig cell steroidogenesis.
Endocrinology, 127 (1990), pp. 1234-1239
[170.]
E.Y. Adashi.
The potential relevance of cytokines to ovarian physiology: the emerging role of resident ovarian cells of the white blood cells series.
Endocr Rev, 11 (1990), pp. 454-464
[171.]
M.K. Skinner.
Cell-cell interactions in the testis.
Endocr Rev, 12 (1991), pp. 45-77
[172.]
D. Tweedle, C. Walton, IDA. Johnston.
The effect on an anabolic steroid on postoperative nitrogen balance.
Br J Clin Pract, 27 (1972), pp. 130-132
[173.]
N. Ben-Jonathan.
Dopamine: a prolactin-inhibiting hormone.
Endocr Rev, 6 (1985), pp. 564-589
[174.]
P. DuRuisseau, Y. Tache, H. Selye, J.R. Ducharme, R. Collu.
Effects of chronic stress on pituitary hormone release induced by hemi-extirpation of the thyroid, adrenal and ovary in rats.
Neuroendocrinology, 24 (1977), pp. 169-182
[175.]
W.A. Goins, H.N. Reynolds, D. Nyanjom, C.M. Dunhma.
Outcome following prolonged intensive care unit stay in multiple trauma patients.
Crit Care Med, 19 (1991), pp. 339-345
[176.]
J.L. Meakins, J.B. Pietsch, O. Bubenick, R. Kelly, H. Rode, J. Gordon, et al.
Delayed hypersensitivity: indicator of adquired failure of host defenses in sepsis and truma.
Ann Surg, 186 (1977), pp. 241-250
[177.]
D.M. Nierman, J.I. Mechanick.
Bone hyperresorption is prevalent in chronically critically ill patients.
Chest, 114 (1998), pp. 1122-1128
[178.]
F. Carlstedt, L. Lind, J. Rastad, H. Stjernstrom, L. Wide, S. Ljunghall.
Parathyroid hormone and ionized calcium levels are related to the severity of illness and survival in critically ill patients.
Eur J Clin Invest, 28 (1998), pp. 898-903
[179.]
M.S. Katz, G.E. Gutierrez, G.R. Mundy, T.K. Hymer, M.P. Caulfield, R.L. Mc-Kee.
Tumor necrosis factor and interleukin 1 inhibit parathyroid hormone-responsive adenylate cyclase in clonal osteoblast-like cells by down-regulating parathyroid hormone receptors.
J Cell Physiol, 153 (1992), pp. 206-213
[180.]
E.M. Greenfield, S.M. Shaw, S.A. Gornik, M.A. Banks.
Adenylcyclase and interleukin 6 are downstream effectors of parathyroid hormone resulting in stimulation of bone resorption.
J Clin Invest, 96 (1995), pp. 1238-1244
[181.]
Y. Jiang, A. Yoshida, C. Ishioka, H. Kimata, H. Mikawa.
Parathyroid hormone inhibits immunoglobulin production without affecting cell growth in human B cells.
Clin Immunol Immunopathol, 65 (1992), pp. 286-293
[182.]
M. Klinger, J.M. Alexiewicz, I.M. Linker-Israeli, T.O. Pitts, Z. Gaciong, G.Z. Fadda, et al.
Effect of parathyroid hormone on human T cell activation.
Kidney Int, 37 (1990), pp. 1543-1551
[183.]
C. Grunfeld, C. Zhao, J. Fuller, A. Pollack, A. Moser, J. Friedman, et al.
Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters.
J Clin Invest, 97 (1996), pp. 2152-2157
[184.]
P. Sarraf, R.C. Frederich, E.M. Turner, G. Ma, N.T. Jaskowiak, D.J. Rivet III, et al.
Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia.
J Exp Med, 185 (1997), pp. 171-175
[185.]
J.E. Janik, B.D. Curti, R.V. Considine, H.C. Rager, G.C. Powers, W.G. Alvord, et al.
Interleukin 1α increases serum leptin concentrations in humans.
J Clin Endocrinol Metab, 82 (1997), pp. 3084-3086
[186.]
C.S. Mantazoros, S. Moschos, I. Avramopoulos, V. Kaklamani, A. Liolios, D.E. Doulgerakis, et al.
Leptin concentrations in relation to body mass index and the tumor necrosis factor-α system in humans.
J Clin Endocrinol Metab, 82 (1997), pp. 3408-3413
[187.]
M.W. Schwartz, R.J. Seeley.
Neuroendocrine responses to starvation and weight loss.
N Engl J Med, 336 (1997), pp. 1802-1811
[188.]
G. Van den Berghe, P. Wouters, L. Carlsson, R.C. Baxter, R. Bouillon, C.Y. Bowers.
Leptin levels in protracted critical illness: effects of growth hormone-secretagogues and thyrotropin-releasing hormone.
J Clin Endocrinol Metab, 83 (1998), pp. 3062-3070
[189.]
S.R. Bornstein, J. Licinio, R. Tauchnitz, L. Engelmann, A.B. Negrao, P. Gold, et al.
Plasma leptin levels are increased in survivors of acute sepsis: associated loss of diurnal rhythm in cortisol and leptin secretion.
J Clin Endocrinol Metab, 83 (1998), pp. 280-283
[190.]
W. Jelkmann.
Erythropoietin: structure, control of production, and function.
Physiol Rev, 72 (1992), pp. 449-489
[191.]
B. Krafte-Jacobs, M.L. Levetown, G.L. Bray, U.E. Ruttimann, M.M. Pollack.
Erythropoietin response to critical illness.
Crit Care Med, 22 (1994), pp. 821-826
[192.]
B. Chernow, M. Salem, J.A. Stacey.
Blood conservation. a critical care imperative.
Crit Care Med, 19 (1991), pp. 313-314
[193.]
P. Rogiers, H. Zhang, M. Leeman, J. Nagler, H. Neels, C. Melot, et al.
Erythropoietin response is blunted in critically ill patients.
Int Care Med, 23 (1997), pp. 159-162
[194.]
W.C. Faquin, T.J. Schneider, M.A. Goldberg.
Effect of inflammatory cytokines on hypoxia-induced erythropoietin production.
Blood, 79 (1992), pp. 1987-1994
[195.]
W. Jelkmann, H. Pagel, M. Wolff, J. Fandrey.
Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys.
Life Sci, 50 (1991), pp. 301-308
[196.]
K.L. Blanchard, T.J. Schneider, A. Acquaviva, M.A. Goldberg.
Studies on the mechanism of tumor necrosis factor α inhibition of the hypoxiainduced erythropoietin production.
Blood, 80 (1992), pp. A151
[197.]
R.A. Gelfand, D.E. Matthews, D.M. Bier, R.S. Sherwin.
Role of counterrregulatory hormones in the catabolic response to stress.
J Clin Invest, 74 (1984), pp. 2238-2248
[198.]
P.Q. Bessey, T.T. Aoki, D.W. Wilmore.
Fuel utilization following injury: Relationship to hormonal environment.
J Surg Res, 38 (1985), pp. 484-493
[199.]
T. Heise, L. Heinemann, A.R. Starke.
Simulated postaggression metabolism in healthy subjects. Metabolic changes and insulin resistance.
Metabolism, 47 (1998), pp. 1263-1268
[200.]
M.S. Dahn, P. Lange.
Hormonal changes and their influence on metabolism and nutrition in the critically ill.
Intens Care Med, 8 (1982), pp. 209-213
[201.]
H. Shamoon, R. Hendler, R.S. Sherwin.
Synergistic interactions among antiinsulin hormones in the pathogenesis of stress hyperglycemia in humans.
J Clin Endocrinol Metab, 52 (1981), pp. 1235-1241
[202.]
P.R. Black, D.C. Brooks, P.Q. Bessey, R.R. Wolfe, D.W. Wilmore.
Mechanism of insulin resistance following injury.
Ann Surg, 196 (1982), pp. 420-435
[203.]
C.J. Klein, G.S. Stanek, C.E. Wiles III.
Overfeeding macronutrients to critically ill adults: metabolic complications.
J Am Diet Assoc, 98 (1998), pp. 795-806
[204.]
H.G. Beger, E. Kraas, R. Bittner, F.W. Lohmann.
Plasma catecholamines, insulin and glucose in the postoperative phase. Cause and duration of the post-stress syndrome after abdominal surgery.
Chirug, 52 (1981), pp. 225-230
[205.]
W. Stremmel, V. Scholosser, H.E. Koehnlein.
Effect of open-heart surgery with hemodilution perfusion upon insulin secretion.
J Thorac Cardiovasc Surg, 64 (1972), pp. 263-270
[206.]
D.J. Porte.
A receptor mechanism for the inhibition of insulin release by epinephrine in man.
J Clin Invest, 46 (1967), pp. 86-94
[207.]
R. Rizza, M. Haymond, P. Cryer, J. Gerich.
Differential effects of epinephrine on glucose production and disposal in man.
Am J Physiol, 237 (1979), pp. E356-E362
[208.]
D.E. Gray, H.L. Lickley, M. Vranic.
Physiologic effects of epinephrine on glucose turnover and plasma free fatty acid concentrations mediated independently of glucagon.
Diabetes, 29 (1980), pp. 600-608
[209.]
A. Grunert.
Pathobiochemical functions and their relation to carbohydrate metabolism after trauma.
Acta Chir Scand, 498 (1980), pp. 123-129
[210.]
J.M. Watters, S.B. Moulton, S.M. Clancey, J.M. Blakslee, R. Monaghan.
Aging exaggerates glucose intolerance following injury.
J Trauma, 37 (1994), pp. 786-791
[211.]
C.J. Weir, G.D. Murray, A.G. Dyker, K.R. Lees.
Is hyperglycaemia an independent predictor of poor outcome after acute stroke? Results of a long term follow up study.
Br Med J, 314 (1997), pp. 1303-1306
[212.]
R.J.M. Ross, J. Rodriguez-Arnao, J. Bentham, J.H. Coakley.
The role of insulin, growth hormone and IGF-I as anabolic agents in the critically ill.
Intensive Care Med, 19 (1993), pp. S54-S57
[213.]
A. Lindsey, F. Santeusanio, J. Braaten, G.R. Faloona, R.H. Unger.
Pancreatic alpha-cell function in trauma.
JAMA, 227 (1974), pp. 757-761
[214]
D.M. Rocha, F. Santeusanio, G.R. Faloona, R.H. Unger.
Abnormal pancreatic alpha-cell function in bacterial infections.
N Engl J Med, 288 (1973), pp. 700-703
[215.]
G.M. Vaughan, R.A. Becker, R.H. Unger, M.G. Ziegler, T.M. Siler-Khodr, B.A. Pruitt Jr, et al.
Nonthyroidal control of metabolism after burn injury: Possible role of glucagon.
Metabolism, 34 (1985), pp. 637-641
[216.]
J.B. Halter, J.C. Beard, D. Porte Jr.
Islet function and stress hyperglycemia: plasma glucose and epinephrine interaction.
Am J Physiol, 247 (1984), pp. E47
[217.]
J. Wenerman.
Effect of growth hormone on muscle and protein in critically ill patients.
Acta Endocrinol (Copenh), 128 (1993), pp. 19-22
[218.]
J. Worstman, S. Frank, P.E. Cryer.
Adrenomedullary response to maximal stress in humans.
Am J Med, 77 (1984), pp. 779-784
[219.]
A. Jäättelä, A. Alho, V. Avikainen, E. Karaharju, J. Kataja, M. Lahdensuu, et al.
Plasma catecholamines in severely injured patients: a prospective study on 45 patients with multiple injuries.
Br J Surg, 62 (1975), pp. 177-181
[220.]
J.H. Casey, E. Bickel, B. Zimmermann.
The pattern and significance of aldosterone excretion by the postoperative surgical patient.
Surg Gynecol Obstet, 105 (1957), pp. 179-184
[221.]
M.W. Davenport, R.D. Zipser.
Association of hypotension with hyperreninemic hypoaldosteronism in the critically ill patient.
Arch Intern Med, 143 (1983), pp. 735-737
[222.]
J.W. Findling, V.O. Waters, H. Raff.
The dissociation of renin and aldosterone during critical illness.
J Clin Endocrinol Metab, 64 (1987), pp. 592-595
[223.]
A. Luger, H. Graf, R. Prager, H.K. Stummvoll.
Alterations in the reninangiotensin- aldosterone system in the criticall ill.
Horm Metab Res, 16 (1984), pp. 213-214
[224.]
H. Raff, J.W. Findling, S.J. Díaz, M.H. Majmudar, V.O. Waters.
Aldosterone control in critically ill patients: ACTH, metoclopramide, and atrial natriuretic peptide.
Crit Care Med, 18 (1990), pp. 915-920
[225.]
J.V. Anderson, A.D. Struthers, N.N. Payne, J.D. Slater, S.R. Bloom.
Atrialnatriuretic peptide inhibits the aldosterone response to angiotensin II in man.
Clin Sci, 70 (1986), pp. 507-512
[226.]
R.C. Cuneo, E.A. Espiner, M.G. Nicholls, T.G. Yandle, J.H. Livesey.
Effect of physiological levels of atrial natriuretic peptide on hormone secretion: Inhibition of angiotensin-induced aldosterone secretion and renin release in normal man.
J Clin Endocrinol Metab, 65 (1987), pp. 765-772
[227.]
R. Horton, J. Nadler, Y. Wang, S. Ploszaj, I. Antonipillai, R. Natarajan.
The syndrome of hyperreninemic hypoaldosteronism may be induced by tumor necrosis factor and interleukin I.
Clin Res, 37 (1989), pp. A151
[228.]
F.M. Gutiérrez-Marcos, A. Fernández-Cruz, J. Gutkowska, C. Herrero, A. Blesa, V. Estrada, et al.
Atrial natriuretic peptide in patients with acute myocardial infarction without functional heart failure.
Eur Heart J, 12 (1991), pp. 503-507
[229.]
M. Frass, B. Watschinger, O. Traindl, R. Popovic, A. Podolsky, H. Gisslinger, et al.
Atrial natriuretic peptide release in response to different positive end-expiratory pressure levels.
Crit Care Med, 21 (1993), pp. 343-347
[230.]
Dreyfuss D, Leviel F, Sperandio M, Paillard M, Marty J, Coste F. Does the stress of admission to an intensive care unit influence argini-
Copyright © 2001. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos