Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Aspectos mitocondriales del envejecimiento. Papel del tipo de grasa de la dieta ...
Información de la revista
Vol. 51. Núm. 3.
Páginas 107-120 (Marzo 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 51. Núm. 3.
Páginas 107-120 (Marzo 2004)
Acceso a texto completo
Aspectos mitocondriales del envejecimiento. Papel del tipo de grasa de la dieta y el estrés oxidativo
Visitas
8117
J.L. Quiles
Autor para correspondencia
jlquiles@ugr.es

Correspondencia: Dr. J.L. Quiles. Instituto de Nutrición y Tecnología de Alimentos. Ramón y Cajal, 4 (Edificio Fray Luis de Granada). 18071 Granada. España.
, J.J. Ochoa, J.R. Huertas, J. Mataix
Departamento de Fisiología. Instituto de Nutrición y Tecnología de Alimentos. Universidad de Granada. Granada. España
Este artículo ha recibido
Información del artículo

El envejecimiento es un proceso que tiene importantes connotaciones socioeconómicas, psicológicas, morfológicas, celulares y moleculares, que está adquiriendo en los últimos años una especial relevancia. El afán por encontrar la causa y el remedio contra el envejecimiento ha proporcionado una gran cantidad de teorías, entre las que la del estrés oxidativo (donde la mitocondria ocupa un papel primordial) es una de las más aceptadas. La evidencia experimental indica que los oxidantes son determinantes en el envejecimiento celular. Estos hechos tienen, en el campo de la nutrición, una evidente interacción, puesto que ésta puede ejercer una clara influencia desde una perspectiva preventiva. Se conoce el importante papel de la grasa de la dieta en la epidemiología de enfermedades como las cardiovasculares. Los ácidos grasos que forman parte de los fosfolípidos de membrana condicionan sus propiedades fisicoquímicas y son responsables de su fluidez y permeabilidad, lo que condiciona la función de las proteínas ligadas a la membrana así como su susceptibilidad al ataque oxidativo. Además, con el envejecimiento se han detectado cambios estructurales y funcionales en las membranas (principalmente en las mitocondriales) que, en última instancia, conducen a la muerte celular. Son pocos los trabajos realizados hasta el momento en los que se estudie la adaptación a la grasa de la dieta durante la vida de un grupo de individuos, así como el efecto de ambos factores sobre el estado oxidativo celular y sobre la función mitocondrial en el proceso de envejecimiento. Este trabajo revisa la posible utilidad del uso de aceite de oliva virgen desde el punto de vista del envejecimiento mitocondrial.

The process of aging has important socioeconomic, psychological, morphological, cellular, and molecular repercussions. In the last few years interest in this process has been growing. Eagerness to identify the cause of aging as well as countermeasures have prompted the formulation of a large number of theories. Of these, the oxidative stress theory of ageing (in which mitochondria play a key role) is one of the most widely accepted. Experimental evidence suggests that oxidants are determining factors in cellular ageing. These findings are clearly relevant to the field of nutrition, since nutrition may exert a strong influence in prevention. In addition, the key role of dietary fat in the epidemiology of several diseases, such as those of cardiovascular origin, is well known. The fatty acids that form part of membrane phospholipids help to determine the properties of these membranes such as fluidity and permeability, which determine the function of proteins bound to the membrane as well as its susceptibility to oxidative stress. Moreover, some structural and functional changes in membranes (mostly mitochondrial membranes) leading to cell death have been detected. Few studies have been performed to date on the role of dietary fat throughout life or on the effect of both factors on oxidative stress and mitochondrial function in ageing. The present article reviews the possible advisability of using virgin olive oil from the point of view of mitochondrial aging.

Palabras clave:
Coenzima Q
Citocromo oxidasa
Ácido oleico
Ácido linoleico
Aceite de oliva virgen
Aceite de girasol
El Texto completo está disponible en PDF
Bibliografía
[1.]
B. Halliwell, J.M.C. Gutteridge.
Free radicals in biology and medicine 3rd ed.
[2.]
N. Camougrand, M. Rigoulet.
Aging and oxidative stress: studies of some genes involved both in aging and in response to oxidative stress.
Resp Physiol, 128 (2001), pp. 393-401
[3.]
G. Barja.
Rate of generation of oxidative stress-related damage and animal longevity.
Free Radic Biol Med, 33 (2002), pp. 1167-1172
[4.]
L. Partridge, D. Gems.
A letal side-effect.
Nature, 418 (2002), pp. 921
[5.]
E.J. Masoro.
Caloric restriction and aging: an update.
Exp Gerontol, 35 (2000), pp. 299-305
[6.]
R.S. Sohal, R.J. Mockett, W.C. Orr.
Mechanisms of aging: an appraisal of the oxidative stress hypothesis.
Free Radic Biol Med, 33 (2002), pp. 575-586
[7.]
D. Harman.
Aging: a theory based on free radical and radiation chemistry.
J Gerontol, 11 (1956), pp. 298-300
[8.]
D. Harman.
The biologic clock: the mitochondria?.
J Am Geriatr Soc, 20 (1972), pp. 145-147
[9.]
J. Miquel, A.C. Economos, J.E. Fleming, J.E. Johnson.
Mitochondrial role in cell aging.
Exp Gerontol, 15 (1980), pp. 579-591
[10.]
C.E. Finch, G. Ruvkun.
The genetics of aging.
Ann Rev Genomics Human Genet, 2 (2001), pp. 435-462
[11.]
S. Salvioli, M. Bonafè, M. Capri, D. Monti, C. Franceschi.
Mitochondria, aging and longevity – a new perspective.
FEBS Lett, 492 (2001), pp. 9-13
[12.]
H. Van Remmen, A. Richardson.
Oxidative damage to mitochondria and aging.
Exp Gerontol, 36 (2001), pp. 957-968
[13.]
G. De Benedictis, G. Carrieri, O. Varcasia, M. Bonafè, C. Franceschi.
Inherited variability of the mitochondrial genome and successful aging in humans.
Ann N Y Acad Sci, 908 (2000), pp. 208-218
[14.]
M. Tanaka, J. Gong, J. Zhang, Y. Yamada, H. Borgeld, K. Yagi.
Mitochondrial genotype associated with longevity.
[15.]
T. Finkel, N.J. Holbrook.
Oxidants, oxidative stress and the biology of ageing.
Nature, 408 (2000), pp. 239-247
[16.]
W.H. Watson, J. Cai, D.P. Jones.
Diet and apoptosis.
Annu Rev Nutr, 20 (2000), pp. 485-505
[17.]
J. Sastre, F.V. Pallardó, J. García de la Asunción, J. Viña.
Mitochondria, oxidative stress and aging.
Free Rad Res, 32 (2000), pp. 189-198
[18.]
G. Lenaz.
Role of mitochondria in oxidative stress and ageing.
Biochim Biophys Acta, 1366 (1998), pp. 3-67
[19.]
E. Cadenas, K.J.A. Davies.
Mitochondrial free radical generation, oxidative stress and aging.
Free Radic Biol Med, 29 (2000), pp. 222-230
[20.]
J.L. Quiles.
Estudio comparativo de aceite de oliva y girasol sobre la peroxidación lipídica en ratas sometidas a ejercicio físico [tesis doctoral].
[21.]
A.R. Cross, O.T. Jones.
Enzymic mechanisms of superoxide production.
Biochim Biophys Acta, 1057 (1991), pp. 281-298
[22.]
E. Cadenas, A. Boveris, C.I. Ragan, A.O.M. Stoppani.
Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria.
Arch Biochem Biophys, 180 (1977), pp. 248-257
[23.]
M. Ksenzenko, A.A. Konstantinov, G.B. Khomutov, A.N. Tikhnov, E.K. Ruuge.
Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain.
FEBS Lett, 155 (1983), pp. 19-24
[24.]
Y. Shimomura, M. Nishikimi, T. Ozawa.
Novel purification of cytochrome c1 from mitochondrial Complex III. Reconstitution of antimycin-insensitive electron transfer with the iron-sulfur protein and cytochrome c1.
J Biol Chem, 260 (1985), pp. 15075-15080
[25.]
N. Hauptmann, J. Grimsby, J.C. Shih, E. Cadenas.
The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA.
Arch Biochem Biophys, 335 (1996), pp. 295-304
[26.]
T.J. Montine, M.D. Neely, J.F. Quinn, M. Flint Beal, W.R. Markesbery, L.J. Roberts, et al.
Lipid peroxidation in aging brain and Alzheimer's disease.
Free Radic Biol Med, 33 (2002), pp. 620-626
[27.]
H. Esterbauer, R.J. Schaur, H. Zollner.
Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes.
Free Radic Biol Med, 11 (1991), pp. 81-128
[28.]
G. Paradies, F.M. Ruggiero, G. Petrosillo, E. Quagliariello.
Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations.
FEBS Lett, 424 (1998), pp. 155-158
[29.]
G. Lippe, M. Comelli, D. Mazzilis, F.D. Sala, L. Mavelli.
The inactivation of mitochondrial F1 ATPase by H2O2 is mediated by iron ions not tightly bound in the protein.
Biochem Biophys Res Comnun, 181 (1991), pp. 764-770
[30.]
P. Forsmark-Andree, C.P. Lee, G. Dallner, L. Ernster.
Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzimes of submitochondrial particles.
Free Radic Biol Med, 22 (1997), pp. 391-400
[31.]
C. Richter, J.W. Park, B.N. Ames.
Normal oxidative damage to mitochondrial and nuclear DNA is extensive.
Proc Natl Acad Sci USA, 85 (1988), pp. 6465-6467
[32.]
V.A. Bohr, R.M. Anson.
Mitochondrial DNA repair pathways.
J Bioenerg Biomembr, 31 (1999), pp. 391-398
[33.]
M.H. Chung, H. Kasai, S. Nishimura, B.P. Yu.
Protection of DNA damage by dietary restriction.
Free Radic Biol Med, 12 (1992), pp. 523-525
[34.]
S. Agarwal, R.S. Sohal.
DNA oxidative damage and life expectancy in houseflies.
Proc Nat Acad Sci USA, 91 (1994), pp. 12332-12335
[35.]
M. Yoneda, K. Katsumata, M. Hayakawa, M. Tanaka, T. Ozawa.
Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome.
Biochem Biophys Res Commun, 209 (1995), pp. 723-729
[36.]
G.A. Cortopassi, D. Shibata, N.W. Soong, N. Arnheim.
A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues.
Proc Nat Acad Sci USA, 89 (1992), pp. 7370-7374
[37.]
Y. Michikawa, F. Mazzucchelli, N. Bresolin, G. Scarlato, G. Attardi.
Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication.
Science, 286 (1999), pp. 774-779
[38.]
M. Sagai, T. Ichinose.
Age-related changes in lipid peroxidation as measured by ethane, ethylene, butane and pentane in respired gases of rats.
Life Sci, 27 (1980), pp. 731-738
[39.]
C.M. Lee, R. Weindruch, J.M. Aiken.
Age-associated alterations of the mitochondrial genome.
Free Radic Biol Med, 22 (1997), pp. 1259-1269
[40.]
R.S. Sohal, A. Dubey.
Mitochondrial oxidative damage, hydrogen peroxide release, and aging.
Free Radic Biol Med, 16 (1994), pp. 621-626
[41.]
Y.A. Barnett, C.M. King.
An investigation of antioxidant status, DNA repair capacity and mutation as a function of age in humans.
Mutat Res, 338 (1995), pp. 115-128
[42.]
E.W. Kellog, I. Fridovich.
Superoxide dismutase in the rat and mouse as a function of age and longevity.
J Gerontol, 31 (1976), pp. 405-408
[43.]
C.M. McCay, M.F. Crowell, L.A. Maynard.
The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935.
Nutrition, 5 (1989), pp. 155-171
[44.]
G.S. Roth, D.K. Ingram, M.A. Lane.
Calorie restriction in primates: will it work and how will we know?.
J Am Geriatr Soc, 47 (1999), pp. 896-903
[45.]
J. Miquel, A.C. Economos.
Favorable effects of the antioxidants sodium and magnesium thiazolidine carboxylate on the vitality and the life span of Drosophila and mice.
Exp Gerontol, 14 (1979), pp. 279-285
[46.]
T. Furukawa, S.N. Meydani, J.B. Blumberg.
Reversal of age-associated decline in immune responsiveness by dietary glutathione supplementation in mice.
Mech Ageing Develop, 38 (1987), pp. 107-117
[47.]
J.R. Huertas, E. Martínez-Velasco, S. Ibáñez, M. López-Frías, J.J. Ochoa, J.L. Quiles, et al.
Virgin olive oil protect heart mitochondria from peroxidative damage during aging.
Biofactors, 9 (1999), pp. 337-343
[48.]
S. Melov, J.A. Schneider, B.J. Day, D. Hinerfeld, P. Coskun, S.S. Mirra, et al.
A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase.
Nature Genet, 18 (1998), pp. 159-163
[49.]
Y. Rong, S.R. Doctrow, G. Tocco, M. Baudry.
EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology.
Proc Natl Acad Sci USA, 96 (1999), pp. 9897-9902
[50.]
S. Melov, J. Ravenscroft, S. Malik, M.S. Gill, D.W. Walker, P.E. Clayton, et al.
Extension of lifespan with superoxide dismutase/ catalase mimetics.
Science, 289 (2000), pp. 1567-1569
[51.]
J. Mataix, J.L. Quiles, J.R. Huertas, M. Battino, M. Mañas.
Tissue specific interactions of exercise, dietary fatty acids, and vitamin E in lipid peroxidation.
Free Radic Biol Med, 24 (1998), pp. 511-521
[52.]
J.L. Quiles, J.R. Huertas, M. Mañas, M. Battino, J. Mataix.
Physical exercise affects the lipid profile of mitochondrial membranes in rats fed with virgin olive oil or sunflower oil.
Br J Nutr, 81 (1999), pp. 21-24
[53.]
J.R. Huertas, M. Battino, G. Lenaz, F.J. Mataix.
Changes in mitochondrial and microsomal rat liver coenzyme Q9 and Q10 content induced by dietary fat and endogenous lipid peroxidation.
FEBS Lett, 5 (1991), pp. 89-92
[54.]
J.L. Quiles, M.C. Ramírez-Tortosa, S. Ibañez, A. González, G.G. Duthie, J.R. Huertas, et al.
Vitamin E supplementation increases the stability and the in vivo antioxidant capacity of refined olive oil.
Free Rad Res, 31 (1999), pp. S129-S135
[55.]
J.J. Ochoa-Herrera, J.R. Huertas, J.L. Quiles, J. Mataix.
Dietary oils high in oleic acid, but with different non-glyceride contents, have different effects on lipid profiles and peroxidation in rabbit hepatic mitochondria.
J Nutr Biochem, 12 (2001), pp. 357-364
[56.]
M. Battino, M.S. Ferreiro, G. Littarru, J.L. Quiles, M.C. Ramírez-Tortosa, J.R. Huertas, et al.
Structural damages induced by peroxidation could account for functional impairment of heavy synaptic mitochondria.
Free Rad Res, 36 (2002), pp. 479-484
[57.]
J.R. Huertas, M. Battino, J. Mataix, G. Lenaz.
Cytochrome oxidase induction after oxidative stress induced by adriamycin in liver of rats fed with dietary olive oil.
Biochem Biophys Re Commun, 181 (1991), pp. 375-382
[58.]
J.L. Quiles, J.R. Huertas, M. Mañas, J.J. Ochoa, M. Battino, J. Mataix.
Dietary fat type and regular exercise affect mitochondrial composition and function depending on specific tissue in rat.
J Bionerg Biomembr, 33 (2001), pp. 127-143
[59.]
M. Battino, J.L. Quiles, J.R. Huertas, M.C. Ramírez-Tortosa, M. Cassinello, M. Mañas, et al.
Feeding fried oil changes antioxidant and fatty acid pattern of rat and affects rat liver mitochondrial respiratory chain components.
J Bioenerg Biomembr, 34 (2002), pp. 127-134
[60.]
J.L. Quiles, J.R. Huertas, M. Battino, M.C. Ramírez-Tortosa, M. Cassinello, J. Mataix, et al.
The intake of fried virgin olive or sunflower oils differentially induces oxidative stress in rat liver microsomes.
Br J Nutr, 88 (2002), pp. 57-65
[61.]
J.J. Ochoa, J.L. Quiles, M.C. Ramirez-Tortosa, J. Mataix, J.R. Huertas.
Dietary oils high in oleic acid but with different unsaponifiable fraction contens have different effects in lipid profile and peroxidation in rabbit-LDL.
Nutr, 18 (2002), pp. 60-65
[62.]
M.C. Ramírez-Tortosa, J.M. López-Pedrosa, A. Suárez, E. Ros, J. Mataix, A. Gil.
Olive oil and fish oil enriched diets modify plasma lipids and susceptibility of low density lipoprotein to oxidative modification in free-living male patients with peripheral vascular disease: the Spanish Nutrition Study.
Br J Nutr, 82 (1999), pp. 31-39
[63.]
J.L. Quiles, M.C. Ramírez-Tortosa, J.R. Huertas, S. Ibáñez, J.A. Gómez, M. Battino, et al.
Olive oil supplemented with vitamin E affects mitochondrial coenzyme Q levels in liver of rats after an oxidative stress induced by adriamycin.
Biofactors, 9 (1999), pp. 331-336
[64.]
J. Mataix.
editor. Aceite de oliva virgen: nuestro patrimonio alimentario.
[65.]
J.L. Quiles, E. Martínez, S. Ibáñez, J.J. Ochoa, Y. Martín, M. López-Frías, et al.
Ageing-related tissue-specific alterations in mitochondrial composition and function are modulated by dietary fat type in the rat.
J Bioenerg Biomembr, 34 (2002), pp. 517-524
[66.]
N. Souza-Pinto, D.L. Croteau, E.K. Hudson, E.G. Heansford, V.A. Bohr.
Age-associated increase in 8-oxo-deoxyguanosine glycosylase/ AP lyase activity in rat mitochondria.
Nucleic Acid Res, 27 (1999), pp. 1935-1942
[67.]
J.J. Ochoa, J.L. Quiles, S. Ibáñez, E. Martínez, M. López-Frías, J.R. Huertas, et al.
Aging-related oxidative stress depends on dietary lipid source in rat postmitotic tissues.
J Bioenerg Biomembr, 35 (2003), pp. 267-275
Copyright © 2004. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos