Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Perfil de la expresión génica de los macrófagos humanos en cultivo en respues...
Información de la revista
Vol. 16. Núm. 5.
Páginas 175-184 (Enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 5.
Páginas 175-184 (Enero 2004)
Acceso a texto completo
Perfil de la expresión génica de los macrófagos humanos en cultivo en respuesta a atorvastatina
Gene expression profile in human macrophages in response to atorvastatin in vitro
Visitas
3376
M. Artiedaa,
Autor para correspondencia
martieda@salud.aragob.es

Correspondencia: Laboratorio de Investigación Molecular. Hospital Universitario Miguel Servet. Isabel la Católica, 1-3. 50009 Zaragoza. España.
, A. Cenarroa, D. Tejedorb, A. Gañánb, P. Álvareza, C. Junquerac, A. Martínezc, M. Pocovíb, F. Civeiraa
a Laboratorio de Investigación Molecular. Hospital Universitario Miguel Servet. Zaragoza
b Departamento de Bioquímica y Biología Molecular y Celular. Universidad de Zaragoza. Zaragoza. España
c Progenika-Medplant Genetics S.L. Vizcaya. España
Este artículo ha recibido
Información del artículo
Introducción y objetivo

El beneficio clínico de las estatinas es superior al esperado por su papel hipolipemiante, dado que producen efectos pleiotrópicos en la fisiopatología de casi la totalidad de las células involucradas en la génesis y evolución de la aterosclerosis, entre ellas los macrófagos. El objetivo de este estudio ha sido analizar la expresión génica de los macrófagos humanos en cultivo sometidos a una sobrecarga de lípidos oxidados, con y sin atorvastatina en el medio de cultivo, para poder conocer los genes de respuesta a atorvastatina que expliquen el beneficio de las estatinas en una vía independiente de la hipolipemiante.

Material y método

Las células mononucleares humanas de 10 sujetos no relacionados fueron aisladas y cultivadas en el medio Macrophage-SFM a 37 °C y un 5% de CO2 repartidas en 4 frascos de cultivo para cada sujeto. En el día 9, todos los cultivos se suplementaron con 50 mg/l de lipoproteínas de baja densidad (LDL) oxidadas y 2 de los 4 cultivos se suplementaron también con 1 µmol/l de atorvastatina. Tras 18 horas de incubación se aisló el ARN total con Trizol-LS y se purificó con el kit RNeasy. Se prepararon 2 pools de 15 µg de ARN total de los cultivos suplementados con LDL oxidadas (pool LDLox; n = 10) y de los suplementados con atorvastatina y LDL oxidadas (pool Atv + LDLox; n = 10). Se sintetizó ARNc marcado con biotina a partir del ARN total, y ambos pools se analizaron con la micromatriz GeneChip Human Genome U133A (Affymetrix). Los resultados fueron analizados con el software Microarray Suite 5.0.

Resultados

De los 22.283 genes representados en la micromatriz, 7.661 (34,4%) estuvieron presentes en el pool LDLox y 8.871 (39,8%) en el pool Atv + LDLox. Al comparar el perfil de expresión del pool Atv + LDLox con el del pool LDLox se encontró que 11 genes estaban sobreexpresados con un Signal Log Ratio (SLR) de 2,2-1,0 y 190 con un SLR < 1,0; asimismo, 31 genes estaban inhibidos con un SLR de –3,9 a –1,0 y 28 con un SLR > –1,0, y 9.356 genes no presentaban cambio de expresión.

Conclusiones

La atorvastatina produce cambios en la expresión de genes involucrados en la síntesis endógena de colesterol y en otras vías metabólicas independientes.

Palabras clave:
Atorvastatina
HMG-CoA reductasa
Macrófago
Micromatriz
Introduction and objective

The overall clinical benefits observed with statin therapy appear to be greater than might be expected from its hypolipidemic role, due to statins exert many pleiotropic effects on the cells involved in atherosclerotic lesions, as macrophages. The aim of this study was to analyse gene expression in human macrophages in vitro incubated with oxidized-LDL with and without atorvastatin in the culture medium to assess atorvastatin response genes which could explain the statin benefits in an independent hypolipidemic pathway.

Material and method

Human mononuclear cells from 10 unrelated subjects were isolated and cultured in Macrophage-SFM at 37 °C and 5% CO2 distributed among 4 culture flasks for each subject. Oxidized-LDL (ox-LDL) 50 mg/l was added to all culture media at ninth day, and also atorvastatin 1 µmol/l to 2 of 4 culture flasks. After incubation for 18 h, total RNA was isolated using Trizol-LS and purified with RNeasy kit. We pooled 15 µg of total RNA from cultures added with ox-LDL (pool ox- LDL) (n = 10) and from cultures added with atorvastatin and ox-LDL (pool Atv+ox-LDL) (n = 10). Biotin labeled cRNA was synthesized from total RNA and both pools were analysed with the GeneChip Human Genome U133A microarray(Affymetrix). Results were analysed with the Microarray suite 5.0 software.

Results

Out of 22,283 genes present in the microarray, 7,661 genes (34.4%) and 8,871 (39.8%) were expressed in the ox-LDL and Atv+ox-LDL pooles, respectively. The gene expression profile comparison between Atv+ox-LDL pool versus ox- LDL pool showed the following results: 11 upregulated genes with a Signal Log Ratio (SLR) of 2.2 to 1.0 and 190 with a SLR < 1.0, 31 downregulated genes with a SLR of –3.9 to –1.0 and 28 with a SLR > –1.0, and 9,356 genes without gene expression change.

Conclusions

Atorvastatin induces gene expression changes in those related to the biosynthetic cholesterol pathway and in other independent metabolic pathways.

Key words:
Atorvastatin
HMG-CoA reductase
Macrophage
Microarray
El Texto completo está disponible en PDF
Bibliografía
[1.]
Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the scandinavian simvastatin survival study (4s).
Lancet, 344 (1994), pp. 1383-1389
[2.]
Long-term Intervention with Pravastatin in Ischaemic Disease (LIPID) study group. prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels.
N Engl J Med, 339 (1998), pp. 1349-1357
[3.]
F.M. Sacks, M.A. Pfeffer, L.A. Moye, J.L. Rouleau, J.D. Rutherford, T.G. Cole, et al.
The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels: cholesterol and recurrent events trial investigators.
N Engl J Med, 335 (1996), pp. 1001-1009
[4.]
J. Shepherd, S.M. Cobbe, I. Ford, C.G. Isles, A.R. Lorimer, P.W. MacFarlane, et al.
Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia: west of scotland coronary prevention study group.
N Engl J Med, 333 (1995), pp. 1301-1307
[5.]
J.M. Mostaza, C. Lahoz.
Grandes estudios clínicos de prevención cardiovascular con inhibidores de la hmg-coa reductasa.
Clin Invest Arterioscler, 14 (2002), pp. S15-S27
[6.]
D.J. Maron, S. Fazio, M.F. Linton.
Current perspectives on statins.
Circulation, 101 (2000), pp. 207-213
[7.]
S. Bergoñón.
Seguridad de los inhibidores de hmg-coa reductasa.
Clin Invest Arterioscler, 14 (2002), pp. S48-S60
[8.]
West of scotland coronary prevention study group. influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Stydy (WOSCOPS).
Circulation, 97 (1998), pp. 1440-1445
[9.]
B.G. Brown, X.Q. Zhao, D.E. Sacco, J.J. Albers.
Lipid lowering and plaque regression. new insights into prevention of plaque disruption and clinical events in coronary disease.
Circulation, 87 (1993), pp. 1781-1791
[10.]
J. Pekkanen, S. Linn, G. Heiss, C.M. Suchindran, A. Leon, B.M. Rifkind, et al.
Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease.
N Engl J Med, 322 (1990), pp. 1700-1707
[11.]
G.G. Schwartz, A.G. Olsson, M.D. Ezekowitz, P. Ganz, M.F. Oliver, D. Waters, et al.
Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the miracl study: a randomized controlled trial.
JAMA, 285 (2001), pp. 1711-1718
[12.]
M. Takemoto, J.K. Liao.
Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors.
Arterioscler Thromb Vasc Biol, 21 (2001), pp. 1712-1719
[13.]
L.M. Blanco-Colio, J. Tuñón, J.L. Martín-Ventura, B. Muñoz, A. Gómez, M. Ortego, et al.
Efectos pleiotrópicos de los inhibidores de la hmg-coa reductasa. I. efectos antiinflamatorios e inmunomoduladores.
Clin Invest Arterioscler, 14 (2002), pp. S28-S37
[14.]
U. Laufs, V. La Fata, J. Plutzky, J.K. Liao.
Upregulation of endothelial nitric oxide synthase by hmg coa reductase inhibitors.
Circulation, 97 (1998), pp. 1129-1135
[15.]
A.H. Wagner, T. Kohler, U. Ruckschloss, I. Just, M. Hecker.
Improvement of nitric oxide-dependent vasodilatation by hmg-coa reductase inhibitors through attenuation of endothelial superoxide anion formation.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 61-69
[16.]
O. Hernández-Perera, D. Pérez-Sala, J. Navarro-Antolin, R. Sánchez-Pascual, G. Hernández, C. Díaz, et al.
Effects of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells.
J Clin Invest, 101 (1998), pp. 2711-2719
[17.]
V. Lahera, N. De las Heras, E. Cediel, D. Sanz-Rosa, V. Cachofeiro.
Efectos pleiotrópicos de los inhibidores de la hmg-coa reductasa. II. efectos sobre la pared vascular.
Clin Invest Arterioscler, 14 (2002), pp. S38-S47
[18.]
A. Corsini, L. Arnaboldi, M. Raiteri, P. Quarato, A. Faggiotto, R. Paoletti, et al.
Effect of the new hmg coa reductase inhibitor cerivastatin (bay w6228) on migration, proliferation and cholesterol synthesis in arterial myocites.
Pharmacological Res, 33 (1996), pp. 55-61
[19.]
G. Dangas, J.J. Badimon, D.A. Smith, A.H. Unger, D. Levine, J.H. Shao, et al.
Pravastatin therapy in hyperlipidemia: effects on thrombus formation and the systemic hemostatic profile.
J Am Coll Cardiol, 33 (1999), pp. 1294-1304
[20.]
S. Colli, S. Eligini, M. Lalli, M. Camera, R. Paoletti, E. Tremoli.
Vastatins inhibit tissue factor in cultured human macrophages: a novel mechanism of protection against atherothrombosis.
Arterioscler Thromb Vasc Biol, 17 (1997), pp. 265-272
[21.]
M. Ortego, C. Bustos, M.A. Hernández-Presa, J. Tuñón, C. Díaz, G. Hernández, et al.
Atorvastatin reduces NF-κB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells.
Atherosclerosis, 147 (1999), pp. 253-261
[22.]
S. Bellosta, D. Via, M. Canavesi, P. Pfister, R. Fumagalli, R. Paoletti, et al.
Hmg-coa reductase inhibitors reduce mmp-9 secretion by macrophages.
Arterioscler Thromb Vasc Biol, 18 (1998), pp. 1671-1678
[23.]
M.A. Hernández-Presa, J.L. Martín-Ventura, M. Ortego, A. Gómez-Hernández, J. Tuñón, P. Hernández-Vargas, et al.
Atorvastatin reduces the expression of cyclooxygenase-2 in a rabbit model of atherosclerosis and in cultured vascular smooth muscle cells.
Atherosclerosis, 160 (2002), pp. 49-58
[24.]
A.C. Sposito, M.J. Chapman.
Statin therapy in acute coronary syndromes. mechanistic insight into clinical benefit.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 1524-1534
[25.]
W. Palinski, C. Napoli.
Unraveling pleiotropic effects of statins on plaque rupture.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 1745-1750
[26.]
R.J. Havel, H.A. Eder, J.H. Bragdon.
The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum.
J Clin Invest, 34 (1955), pp. 1345-1353
[27.]
M.M. Bradford.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
Ann Biochem, 72 (1976), pp. 248-254
[28.]
H.F. Hoff, T.E. Whitaker, J. O’Neil.
Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition.
J Biol Chem, 267 (1992), pp. 602-609
[29.]
D.A.K. McGlashan, T.R.E. Pilkington.
A method of lipoprotein electrophoresis using agarose gel.
Clin Chim Acta, 22 (1968), pp. 646-647
[30.]
U. Zorn, C. Haug, E. Celik, R. Wennauer, A. Schmid-Kotsas, M.G. Bachem, et al.
Characterization of modified low density lipoprotein subfractions by capillary isotachophoresis.
[31.]
P. Greenspan, E.P. Mayer, S.D. Fowler.
Nile red: a selective fluorescent stain for intracellular lipid droplets.
J Cell Biol, 100 (1984), pp. 965-973
[32.]
P. Chomczynski, N. Sacchi.
Single-step method of RNA isolation by acid guanidinium thiocynate-phenol-chloroform extraction.
Anal Biochem, 162 (1987), pp. 156-159
[33.]
P. Chomczynski.
A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples.
Biotechniques, 15 (1993), pp. 532-534
[34.]
W.R. Pearson, T. Wood, Z. Zhang, W. Miller.
Comparison of DNA sequences with protein sequences.
Genomics, 46 (1997), pp. 24-36
[35.]
D.J. Mackay, A. Hall.
Rho gtpases.
J Biol Chem, 273 (1998), pp. 20685-20688
[36.]
I.M. Zohn, S.L. Campbell, R. Khosravi-Far, K.L. Rossman, C.J. Der.
Rho family proteins and ras transformations: the rhoad less traveled gets congested.
Oncogene, 17 (1998), pp. 1415-1438
[37.]
C. Bucci, R.G. Parton, I.H. Mather, H. Stunnenberg, K. Simons, B. Hoflack, et al.
The small gtpase rab5 functions as a regulatory factor in the early endocytic pathway.
Cell, 70 (1992), pp. 715-728
[38.]
E.J. Tisdale.
Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway.
J Biol Chem, 276 (2001), pp. 2480-2486
[39.]
E.Y. Shin, K.S. Shin, C.S. Lee, K.N. Woo, S.H. Quan, N.K. Soung, et al.
Phosphorylation of p85 beta pix, a rac/cdc42-specific guanine nucleotide exchange factor, via the ras/erk/pak2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth.
J Biol Chem, 277 (2002), pp. 44417-44430
[40.]
L.M. Blanco-Colio, A. Villa, M. Ortego, M.A. Hernández-Presa, A. Pascual, J.J. Plaza, et al.
3-Hydroxy-3-methyl-glutaryl coenzyme a reductase inhibitors, atorvastatin and simvastatin, induce apoptosis of vascular smooth muscle cells by down regulation of bcl-2 expression and rho a prenylation.
Atherosclerosis, 161 (2002), pp. 17-26
[41.]
J.D. Horton, J.L. Goldstein, M.S. Brown.
Srebp: activators of the complete program of cholesterol and fatty acid synthesis in the liver.
J Clin Invest, 109 (2002), pp. 1125-1131
[42.]
T. Yang, P.J. Espenshade, M.E. Wright, D. Yabe, Y. Gong, R. Aebersold, et al.
Crucial step in cholesterol homeostasis: sterols promote binding of scap to insig-1, a membrane protein that facilitates retention of srebp in er.
Cell, 110 (2002), pp. 489-500
[43.]
D. Yabe, M.S. Brown, J.L. Goldstein.
Insig-2, a second endoplasmic reticulum protein that binds scap and blocks export of sterol regulatory element-binding proteins.
Proc Natl Acad Sci USA, 99 (2002), pp. 12753-12758
[44.]
B.A. Janowski.
The hypocholesterolemic agent ly295427 up-regulates insig-1, identifying the insig-1 protein as a mediator of cholesterol homeostasis through srebp.
Proc Natl Acad Sci USA, 99 (2002), pp. 12675-12680
[45.]
I. Shimomura, H. Shimano, J.D. Horton, J.L. Goldstein, M.S. Brown.
Differential expression of exons 1a and 1c in mrnas for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells.
J Clin Invest, 99 (1997), pp. 838-845
[46.]
Y. Sun, M. Hao, Y. Luo, C.P. Liang, D.L. Silver, C. Cheng, et al.
Stearoyl-coa desaturase inhibits atp-binding cassette transporter a1-mediated cholesterol efflux and modulates membrane domain structure.
J Biol Chem, 278 (2003), pp. 5813-5820
[47.]
S. Lund-Katz, H.M. Laboda, L.R. McLean, M.C. Phillips.
Influence of molecular packing and phospholipid type on rates of cholesterol exchange.
Biochemistry, 27 (1998), pp. 3416-3423

Este trabajo ha sido financiado en parte por la Fundación Española de Arteriosclerosis/Beca Pfizer, y los proyectos IBE 2002-BIO-03, FIS 00/0952, FIS RT/G03-181 y FIS RT/C03-01.

Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos