Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Efecto de los agonistas PPAR sobre los valores de ARNm de genes implicados en el...
Información de la revista
Vol. 16. Núm. 3.
Páginas 90-98 (Enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 3.
Páginas 90-98 (Enero 2004)
Acceso a texto completo
Efecto de los agonistas PPAR sobre los valores de ARNm de genes implicados en el metabolismo lipídico de macrófagos humanos
Ppar agonist effects on mrna levels of genes involved in lipid metabolism in human macrophages
Visitas
2975
A. Cabrero, M. Cubero, G. Llaverías, M. Jové, A. Planavila, M. Vázquez-Carrera
Autor para correspondencia
mvazquezcarrera@ub.edu

Correspondencia: Unitat de Farmacologia. Facultat de Farmàcia. Universitat de Barcelona. Avda. Diagonal, 643. 08028 Barcelona. España.
Unidad de Farmacología. Departamento de Farmacología y Química Terapéutica. Facultad de Farmacia. Universidad de Barcelona. Barcelona. España
Este artículo ha recibido
Información del artículo
Fundamento

Los receptores activados por proliferadores peroxisómicos (peroxisome proliferator-activated receptors [PPAR]) desempeñan un papel fundamental en el control del metabolismo lipídico de los macrófagos. El objetivo del presente estudio ha sido determinar los efectos de 3 activadores de PPAR (bezafibrato, fenofibrato y troglitazona) sobre las concentraciones de ARNm de genes implicados en el metabolismo lipídico de macrófagos humanos y células espumosas.

Material y métodos

Se han utilizado cultivos primarios de monocitos humanos separados por centrifugación en gradiente de densidad a partir de buffy coats de donantes. Los monocitos así obtenidos se cultivan en suero humano inactivado durante 10 días para permitir su maduración a macrófagos y, posteriormente, se convierten en células espumosas por exposición a lipoproteínas de baja densidad acetiladas (150 ag/ml) durante 48 h. Los valores de ARNm se determinaron mediante reacción en cadena de la polimerasa de la transcriptasa inversa (RT-PCR). Los resultados se expresan como la media ± desviación estándar de 3 experimentos.

Resultados

Los macrófagos humanos tratados durante 24 h con bezafibrato 100 dM, un fármaco que activa los 3 subtipos de PPAR (a,///y y), mostraron un incremento en los valores de ARNm de cd36 y ap2 del 87% (p 0,01) y el 230%, respectivamente, mientras que las expresiones de PPAR, PPAR, acil- CoA oxidasa, carnitina palmitoiltransferasa I (CPT-I), ATP-binding cassette transporter 1 (abcd1), colesteril éster hidrolasa neutra y lectin-like oxidized low density receptor-1 (lox-1) no resultaron modificadas. Por el contrario, el tratamiento con agonistas selectivos pparpp(100 (M de fenofibrato) y mm(5 (M de troglitazona) provocó diferentes efectos. El fenofibrato incrementó los valores de ARNm de PPARii(el 62%; p 0,05) y lox-1 (el 180%; p 0,05), mientras que la troglitazona aumentó la expresión de CPT-I (el 75%; P 0,05). Cuando se estudió el efecto de estos fármacos en las células espumosas derivadas de macrófagos, se observó que la troglitazona incrementaba un 134% (P 0,05) y un 66% (P 0,01) los valores de ARNm de abca1 y CPT-I, respectivamente, mientras que los 3 fármacos estudiados incrementaron de forma significativa los valores de ap2 (aproximadamente, un 100%). Puesto que la troglitazona incrementaba la expresión de genes implicados en la e-oxidación mitocondrial de ácidos grasos (CPT-I), así como en el transporte reverso de colesterol (abca1), se determinó si estos cambios afectaban a la acumulación intracelular de ésteres de colesterol. En células espumosas derivadas de macrófagos se observó una reducción (el 32%; P 0,01) en la acumulación intracelular de colesterol tras el tratamiento con troglitazona, pero no tras el tratamiento con bezafibrato o fenofibrato.

Conclusión

Se necesitan estudios complementarios para establecer si la inducción en la expresión de CPT-I por la troglitazona reduce la disponibilidad de ácidos grasos necesarios para la síntesis de ésteres de colesterol y la formación de las células espumosas.

Palabras clave:
Troglitazona
Macrófagos
Células espumosas
CPT-I
ABCA1
Background and aim

Peroxisome proliferatoractivated receptors (PPARs) are key regulators of macrophage lipid metabolism. The aim of this study was to compare the effects of three PPAR activators (bezafibrate, fenofibrate and troglitazone) on mRNA levels of genes involved in lipid metabolism in human macrophages and foam cells

Material and methods

Human monocytes were isolated by gradient-density centrifugation from buffy coats of human donors. Mononuclear cells were then incubated with heat-inactivated human serum, and on day 10 completely differentiated to macrophages. Differentiated macrophages were then lipid-loaded during a 48-hour incubation with 150 mg/mL acetyl-LDL. Relative levels of specific mRNAs were assessed by RT-PCR. Results are expressed as mean ± standard deviation of 3 experiments

Results

Treatment of human macrophages for 24 hours with 100 mM bezafibrate, a non-selective drug that activates the three PPAR subtypes (PPARa, PPARb/d and PPARg), produced 87% (p < 0.01) and 230% rises in CD36 and aP2 mRNA levels, respectively, whereas expressions of PPARg, PPARa, acyl-CoA oxidase, carnitine palmitoyltransferase I (CPT-I), ATP-binding cassette transporter 1 (ABCA1), neutral cholesteryl ester hydrolase, and lectin-like oxidized lowdensity lipoprotein receptor-1 (LOX-1) were not modified. However, treatment with selective PPARa (fenofibrate at 100 mM) and PPARg (troglitazone at 5 mM) activators had different effects. Fenofibrate increased PPARa (62%; p < 0.05) and LOX-1 (180%; p < 0.05) mRNA levels, whereas troglitazone up-regulated CPT-I expression (75%; p < 0.05). When the effects of these 3 drugs were assessed in macrophage-derived foam cells, troglitazone caused rise a 134% (p < 0.05) and a 66% (p < 0.01) rises in ABCA1 and CPT-I mRNA levels, respectively, whereas the three drugs significantly increased aP2 transcripts (approx. 100% induction). Given that troglitazone treatment resulted in the up-regulation of genes involved in the mitochondrial b-oxidation of fatty acids (CPT-I) and in the reverse cholesterol transport pathway (ABCA1), we subsequently determined whether these changes affected intracellular cholesterol ester accumulation. In macrophage-derived foam cells, a significant reduction (32%; p < 0.01) was observed in intracellular cholesterol accumulation after troglitazone, but not after bezafibrate or fenofibrate treatment

Conclusion

Further studies are required to ascertain whether CPT-I induction by troglitazone reduces the availability of fatty acids for synthesizing cholesterol esters, thereby leading to less foam cell formation

Key words:
Troglitazone
Macrophages
Foam cells
CPT-I
ABCA1
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.R. Guyton.
The arterial wall and the atherosclerotic lesion.
Curr Opin Lipidol, 5 (1994), pp. 376-381
[2.]
T. Mazzone, C. Reardon.
Expression of heterologous human apolipoprotein E by J774 macrophages enhances cholesterol efflux to HDL3.
J Lipid Res, 35 (1994), pp. 1345-1353
[3.]
B. Desvergne, W. Wahli.
Peroxisome proliferator-activated receptors: nuclear control of metabolism.
Endocr Rev, 20 (1999), pp. 649-688
[4.]
P. Tontonoz, L. Nagy, J. Alvarez, et al.
PPARPPpromotes monocyte/macrophage differentiation and uptake of oxidized LDL.
Cell, 93 (1998), pp. 241-252
[5.]
G. Chinetti, S. Lestavel, V. Bocher, et al.
PPAR55and PPARaaactivators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway.
Nature Med, 7 (2001), pp. 53-58
[6.]
C.G. Ericsson, A. Hamsten, J. Nilsson, et al.
Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients.
Lancet, 347 (1996), pp. 849-853
[7.]
E.D. Rosen, B.M. Spiegelman.
Peroxisome proliferator-activated receptor- ligands and atherosclerosis: ending the heartache.
J Clin Invest, 106 (2000), pp. 629-631
[8.]
H. Vosper, L. Patel, T.L. Graham, et al.
The peroxisome proliferatoractivated receptor delta promotes lipid accumulation in human macrophages.
J Biol Chem, 276 (2001), pp. 44258-44265
[9.]
W.R. Oliver, J.L. Shenk, M.R. Snaith, et al.
A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport.
Proc Natl Acad Sci USA, 98 (2001), pp. 5306-5311
[10.]
M. Vázquez, D. Zambón, Y. Hernández, et al.
Lipoprotein composition and oxidative modification during therapy with gemfibrozil and lovastatin in patients with combined hyperlipidaemia.
Br J Clin Pharmacol, 45 (1998), pp. 265-269
[11.]
F. Guardiola, R. Codony, M. Rafecas, et al.
Selective gas chromatographic determination of cholesterol in eggs.
J Am Oil Chem Soc, 71 (1994), pp. 867-871
[12.]
S.K. Basu, J.L. Goldstein, R.G. Anderson, et al.
Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts.
Proc Natl Acad Sci USA, 73 (1976), pp. 3178-3182
[13.]
W.M. Freeman, S.J. Walker, E.V. Kent.
Quantitative RT-PCR: pitfalls and potential.
BioTechniques, 26 (1999), pp. 112-125
[14.]
P.J. Brown, D.A. Winegar, K.D. Plunket, et al.
A ureido-thioisobutyric acid (GW9578) is a subtype-selective PPARalpha agonist with potent lipid-lowering activity.
J Med Chem, 2 (1999), pp. 3785-3788
[15.]
J.J. Klansek, P. Yancey, R.W. St Clair, et al.
Cholesterol quantitation by GLC: artifactual formation of short-chain steryl esters.
J Lipid Res, 36 (1995), pp. 2261-2266
[16.]
J.D. McGarry, N.F. Brown.
The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis.
Eur J Biochem, 244 (1997), pp. 1-14
[17.]
K.F. Buhman, M. Accad, R.V. Farese.
Mammalian acyl-CoA:cholesterol acyltransferases.
Biochim Biophys Acta, 1529 (2000), pp. 142-154
[18.]
M. Moinat, M. Kossovsky, J.M. Chevey, et al.
Balance between fatty acid degradation and lipid accumulation in cultured smooth muscle cells and IC-21 macrophages exposed to oleic acid.
Comp Biochem Physiol, 98 (1991), pp. 147-150
[19.]
R. Galetto, M. Albajar, J.I. Polanco, et al.
Identification of a peroxisome- proliferator-activated-receptor response element in the apolipoprotein E gene control region.
Biochem J, 357 (2001), pp. 521-527
[20.]
W.A. Boisvert, J. Spangenberg, L.K. Curtiss.
Treatment of severe hypercholesterolemia in apolipoprotein E-deficient mice by bone marrow transplantation.
J Clin Invest, 96 (1995), pp. 1118-1124
[21.]
M.F. Linton, J.B. Atkinson, S. Fazio.
Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation.
Science, 267 (1995), pp. 1034-1037
[22.]
S. Ghosh.
Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing, and expression of full-length cDNA.
Physiol Genomics, 2 (2000), pp. 1-8
[23.]
S. Ghosh, R. Natarajan.
Cloning of the human cholesteryl ester hydrolase promoter: identification of functional peroxisomal proliferator- activated receptor responsive elements.
Biochem Biophys Res Commun, 284 (2001), pp. 1065-1070
[24.]
P.D. Pelton, L. Zhou, K.T. Demarest, et al.
PPARPPactivation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes.
Biochem Biophys Res Commun, 261 (1999), pp. 456-458
[25.]
N. Kume, T. Kita.
Lectin-like oxidized low-density lipoprotein receptor- 1 (LOX-1) in atherogenesis.
Trends Cardiovasc Med, 11 (2001), pp. 22-25
Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos