

Cardiocore

257/25 - OPTIMIZACIÓN DE LAS DOSIS DE RADIACIÓN EN EL LABORATORIO DE HEMODINÁMICA

A. Gutiérrez Barrios¹, F. Medina Camacho², H. Camacho², M. Alba Sánchez³, G. Calle Pérez⁴ y R. Vázquez García⁵

¹FEA Cardiología; ⁴FEA Cardiología. Responsable Unidad de Hemodinámica; ⁵FEA Cardiología. Jefe de Servicio. Hospital Universitario Puerta del Mar. Cádiz. ²Enfemero de Hemodinámica; ³FEA Cardiología. Hospital de Jerez.

Resumen

Introducción y objetivos: La exposición a radiación en los laboratorios de hemodinámica puede causar graves complicaciones. Objetivo: analizar si la optimización de protocolos de radiación reduce la exposición en el laboratorio de hemodinámica.

Material y métodos: Desde eneroཌ instauramos un protocolo con menos radiaciones, incluyendo fluoroscopia a 7,5 frames/segs. Además se concienció al personal para utilizar este protocolo lo máximo posible, junto a otras recomendaciones generales. Se incluyeron de manera retrospectiva 170 procedimientos consecutivos desde octubreཋ hasta febreroཌ, 110 era angioplastias coronarias (ACTP). Los procedimientos quedaron divididos en dos grupos: Antes de la actualización (Grupo A) y después (Grupo B).

Resultados: Tras la optimización, el nuevo protocolo se utilizo en un 97%. La mayoría de procedimientos fueron radiales en ambos grupos (87,5% vs 86,4%, p = 0,8). No hubo diferencias en las características clínicas de los pacientes ni en la complejidad de los procedimientos. Los mismos operadores realizaron los procedimientos en ambos grupos. El contraste (152 \pm 115 vs 161 \pm 121 ml, p = 0,4) y el tiempo de escopia (13,5 \pm 14 vs 12,9 \pm 13 min, p = 0,7) tampoco se diferenciaron. Sin embargo la dosis de entrada en el paciente (EFD) se redujo significativamente (379 \pm 379 vs 687 \pm 748, mGy, p = 0,001) suponiendo una reducción del 44,6% en el global y un 48,3% (IC95% 21,2-75,4%) entre las ACTP. La dosis área producto (DAP) se redujo un 71,1% Gy·cm² (IC95% 30,2%-90,1%).

Conclusiones: La optimización de protocolos de radiación junto con la sensibilización activa del personal se tradujo en una reducción de la exposición a radiaciones. Se deberían promover estas dos medidas para mejorar la seguridad tanto de los pacientes como del personal.