Buscar en
Angiología
Toda la web
Inicio Angiología Caracterización y biocompatibilidad de las prótesis vasculares de poliuretano ...
Información de la revista
Vol. 54. Núm. 4.
Páginas 270-281 (Enero 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 54. Núm. 4.
Páginas 270-281 (Enero 2002)
Acceso a texto completo
Caracterización y biocompatibilidad de las prótesis vasculares de poliuretano estabilizado con polidimetilsiloxano
Characterization and biocompatibility of vascular prostheses made of polyurethane stabilized with polydimethylsiloxane
Caracterização e biocompatibilidade de próteses vasculares em poliuretano estabilizado com polidimetilsiloxano
Visitas
4402
N. García-Honduvillaa,
Autor para correspondencia
natalio.garcia@uah.es

correspondence: Departamento de Ciencias Morfológicas y Cirugía. Facultad de Medicina. Universidad de Alcalá. Ctra. N-II, km 33,600. E-28871 Alcalá de Henares (Madrid). Fax: +34 918 854 885.
, M.J. Gimenoa, R. López-Sáncheza, C. Corralesa, G. Soldanib, V. Samouillanc, J. Bujána, J.M. Bellóna
a Departamento de Ciencias Morfológicas y Cirugía. Facultad de Medicina. Universidad de Alcalá. Alcalá de Henares, Madrid, España.
b Laboratory of Biomaterials and Graft Technologies. Hospital G. Pasquinuci. Massa, Italia.
c Laboratoire de Physique des Polymères. INSERM. Toulouse, Francia.
Este artículo ha recibido
Información del artículo
Summary
Introduction

Biomaterial research and development efforts have yielded new vascular prosthesis showing improved behaviour as small calibre grafts.

Objective

The present study was designed to evaluate the biological behaviour of vascular prostheses made of polyurethane.

Material and methods

Prostheses: polyurethane-polydimethylsiloxane (PU-PDMS). Characterization: fragments of PU-PDMS were examined by light and scanning electron microscopy. The electrical charge of the prosthetic material's inner surface was determined by spectral analysis. Biocompatibility: fragments (1cm2) of PU-PDMS were grafted to the dorsal muscle of New Zealand rabbits (n= 18) and maintained for 3 or 8 months when they were subjected to morphological, immunohistochemical (anti-actin) and foreign body reaction (RAM11) analysis. Seeding: fragments (1cm2) were seeded with endothelial cells from human umbilical vein. Follow-up times were 24, 48, 72h and 7 days.

Results

The biomaterial is of fibrous composition and has numerous pores. The inner biomaterial surface shows areas of negative charge. At three months, the prosthesis was observed to be embedded in a highly vascularised neoformed tissue that was rich in white blood and foreign body reaction cells. Eight months after grafting, the biomaterial was fully infiltrated by host tissue and enveloped by highly vascularised collagen. At 24h of seeding, endothelialisation of the prosthetic surface was noted, with the exposure of large pores that became lined with cells at subsequent stages.

Conclusions

The characteristics shown by the PU-PDMS prosthesis: structure, no rejection and good integration with host tissue in the mid- and long-term are suitable for its use as a vascular substitute.

Key words:
Biocompatibility
Endothelial cells
Polyurethane
Seeding
Tissue engineering
Vascular prostheses
Resumen
Introducción

El de sarrollo de nuevos biomateriales ha desembocado en la aparición de nuevas prótesis vasculares que mejoren el comportamiento de injertos protésicos de pequeño calibre.

Objetivo

El objetivo del presente trabajo es el estudio del comportamiento biológico de prótesis vasculares de poliuretano.

Material y métodos

Prótesis: poliuretano-polidimetilsiloxano (PU-PDMS). Caracterización: fragmentos de PU-PDMS se procesaron para su estudio en microscopia óptica y electrónica de barrido. Se determinó la carga eléctrica de la superficie interna mediante análisis espectral. Biocompatibilidad: fragmentos (1cm2) de PU-PDMS se implantaron en el músculo dorsal de conejos Nueva Zelanda (n= 18) durante 3 y 8 meses. Realizamos estudios morfológicos, inmunohistoquímicos (antiactina) y de reacción de cuerpo extraño (RAM11). Siembra:fragmentos de 1cm2 se sembraron con células endoteliales de vena umbilical humana. Tiempos de estudio: 24, 48, 72 horas y 7 días.

Resultados

La composición es fibrilar, con presencia de numerosos poros. Existencia de cargas negativas en la superficie interna del biomaterial. A los tres meses, la prótesis se embebe en tejido neoformado muy vascularizado y rico en células blancas y células de reacción a cuerpo extraño. A los 8 meses se puede observar la total integración del biomaterial, que aparece rodeado de colágeno y muy vascularizado. A las 24 horas de la siembra observamos una superficie endotelizada, que deja al descubierto grandes poros que se tapizan en los estadios posteriores.

Conclusiones

Las prótesis PU-PDMS presentan características adecuadas para utilizarse como sustitutos vasculares, gracias a su estructura, ausencia de rechazo y buena integración a cortoy medio plazo.

Palabras clave:
Palabras clave
Biocompatibilidad
Células endoteliales
Ingeniería tisular
Poliuretano
Prótesis vasculares
Siembra celular
Resumo

Introducao. O desenvolvimento de novos biomateriais conduziu ao aparecimento de novas próteses vasculares que melhoram o comportamento dos enxertos protésicos de pequeno calibre. Objectivo. O objectivo do presente trabalho é o estudo do comporta-mento biológico de próteses vasculares de poliuretano. Material e métodos. Prótese: po-liuretano-polidimetilsiloxano (PU-PDMS). Caracterizacao: foram processadosfragmen-tos de PU-PDMS para o seu estudo em mi-croscopia óptica e electrónica de varredura. Determinou-se a carga eléctrica da superficie interna por análise espectral. Biocompatibili-dade: implantaram-se fragmentos (1 cm2) de PU-PDMS no músculo dorsal de coelhos da Nova Zelandia (n=18) durante 3 a 8 meses. Realizámos estudos morfológicos, imunohis-toquímicos (antiactina) e de reaccao de corpo estranho (RAM11). Disseminacao: foram disseminados fragmentos de 1 cm2 com células endoteliais da veia umbilical humana. Tempos de estudo: 24, 48, 72 horas e 7 dias. Resultados. A composicao é fibrilar, com pre-senca de numerosos poros. Existencia de cargas negativas na superficie interna do biomaterial. Aos tres meses, a prótese embebe-se no tecido neoformado, muito vascularizado e rico em células brancas e células de reaccao a corpo estranho. Aos 8 meses pode-se observara totalintegracao do biomaterial, que aparece rodeado de colagénio e muito vasculari-zado. As 24 horas da disseminacao observamos uma superficie endotelizada, que deixa em des-coberto grandes poros que se tapam nas fases posteriores. Conclusoes. As próteses PU-PDMS apresentam características adequadas para serem utilizadas como substitutos vasculares, gracas á sua estrutura, ausencia de re-jeicao e boa integracao a curto e médioprazo.

Palavras chave:
Biocompatibilidade
Células endoteliais
Disseminacao celular
Engenha-ria tecidual
Poliuretano
Próteses vasculares
El Texto completo está disponible en PDF
Bibliografía
[1.]
Voorhees A.B., Jaretzki A., Blakemore A.H..
The use of tubes constructed from vinyon N cloth in bridging arterial defects: a preliminary report.
Ann Surg., 135 (1952), pp. 332-336
[2.]
Mackenzie D.C., Loewenthall J..
Endothelial growth in nylon vascular grafts.
Br J Surg., 48 (1960), pp. 212-217
[3.]
Campbell C.D., Goldfarb D., Detton D.D., Roe R., Goldsmith K., Diethrich E.B..
Expanded polytetrafluoroethylene as a small artery substitute.
ASAIO Trans, 20 (1974), pp. 86-90
[4.]
Herring M., Gardner A., Peigh P., Madison D., Baughman S., Brown J., et al.
Patency in canine inferior vena cava grafting: effects of graft material, size and endothelial seeding.
J Vasc Surg., 1 (1984), pp. 877-887
[5.]
Falkenback D., Lundberg F., Ribbe E., Ljungh A..
Exposure of plasma proteins on Dacron and ePTFE vascular graft material in a perfusion model.
Eur J Vasc Endovasc Surg., 19 (2000), pp. 468-475
[6.]
Soldani G., Panol G., Sasken H.F., Goddar M.B., Galletti P.M..
Small diameter polyurethane-polydimethylsiloxane vascular prostheses made by spraying, phase-inversion process.
J Mat Sci Mat Med., 3 (1993), pp. 106-113
[7.]
Gómez-Barrena E., Puértolas Rafales J.A..
Polietileno.
Biomateriales: aquí y ahora, pp. 31-43
[8.]
Marois Y., Sigot-Luizard M.F., Guidoin R..
Endotelial cell behavior on vascular prosthetic grafts: effect of polymer chemistry, surface structure, and surface treatment.
ASAIO J, 45 (1999), pp. 272-280
[9.]
Jeschke M.G., Hermanutz V., Wolf S.E., Köveker G.B..
Polyurethane vascular prostheses decreases neointimal formation compared with expanded polytetrafluoroethylene.
J Vasc Surg., 29 (1999), pp. 168-176
[10.]
Kao W.J..
Evaluation of leukocyte adhesion on polyurethanes: the effects of shear stress and blood proteins.
Biomaterials, 21 (2000), pp. 2295-2303
[11.]
Van Wachen P.B., Hendriks M., Blaauw E.H., Dijk F., Verhoeven M.L.P.M., Cahalan P.T., et al.
(Electron) microscopic observations on tissue integration of collagen-immobilized polyurethane.
Biomaterials, 23 (2002), pp. 1401-1409
[12.]
Kirkpatrick C.J., Alves A., Köhler H., Kriegsmann J., Bittinger F., Otto M., et al.
Biomaterial-induced sarcoma.
A novel model to study preneoplastic change. Am J Pathol, 156 (2000), pp. 1455-1467
[13.]
Dardik H., Greisler H..
History of prosthetic grafts.
Semin Vasc Surg., 12 (1999), pp. 1-7
[14.]
Lin D.T., Young T.H., Fang Y..
Studies on the effect of surface properties on the biocompatibility of polyurethane membranes.
Biomaterials, 22 (2001), pp. 1521-1529
[15.]
Young T.H., Lin D.T., Chen L.Y..
Human monocyte adhesion and activation on crystalline polymers with different morphology and wettability in vitro.
J Biomed Mater Res, 50 (2000), pp. 490-498
[16.]
Clowes A.W., Zacharias R.K., Kirkman T.R..
Early endothelial coverage of synthetic arterial grafts: porosity revisited.
Am J Surg., 153 (1987), pp. 501-504
[17.]
Brauker J.H., Carr-Brendel V.E., Martinson L.A., Crudele J., Johnston W.D., Johnson R.C..
Neovascularization of synthetic membranes directed by membrane microarchitecture.
J Biomed Mat Res, 29 (1995), pp. 1517-1524
[18.]
Sieminski A.L., Gooch K.J..
Biomaterial-microvasculature interactions.
Biomaterials, 21 (2000), pp. 33-2241
[19.]
Nygren H., Braide M., Karlsson C..
Different kinetics of the respiratory burst response in granulocytes, induced by serum from blood coagulated in contact with polymers materials.
Biomaterials, 21 (2000), pp. 173-182
[20.]
Park J.C., Song M.J., Hwang Y.S., Suh H..
Calcification comparison of polymers for vascular graft.
Yonsei Med J, 42 (2001), pp. 304-310
[21.]
Joshi R.R., Frautschi J.R., Phillips R.E. Jr, Levy R.J..
Phosphonated polyurethanes that resist calcification.
J Appl Biomater, 5 (1994), pp. 65-77
[22.]
Alferiev I., Vyavahare N., Song C., Connolly J., Hinson J.T., Lu Z., et al.
Bisphosphonate derivatized polyurethanes resist calcification.
Biomaterials, 22 (2001), pp. 2683-2693
[23.]
Buruiana T., Spridon D., Buruiana E.C., Hefco V., Uglea C.V..
Polyurethanes based on dihydroxamic acids.
Synthesis, chemical characterization, and biological activity. J Biomater Sci Polym Ed, 10 (1999), pp. 1159-1170
[24.]
Bellon J.M., Buján J., García-Honduvilla N., Navlet J., Hernando A., Turégano F..
Porcine endothelial cell seeding onto polytetrafluoroethylene (PTFE): a comparative study with grafts of different porosities.
Res Surg., 5 (1993), pp. 7-12
[25.]
Contreras M.A., Quist W.C., LoGerfo F.W..
Effect of porosity on small-diameter vascular graft healing.
Microsurgery, 20 (2000), pp. 15-21
[26.]
García-Honduvilla N., Scoccianti M., Buján J., Bellón J.M..
Caracterización de un nuevo tipo de prótesis de poliestireno.
Pat Vasc, 6 (2000), pp. 203-215
[27.]
Bellón J.M., Buján J., Honduvilla N.G., Hernando A., Navlet J..
Endotelial cell seeding of polytetrafluoroethylene vascular prostheses coated with a fibroblastic matrix.
Ann Vasc Surg., 7 (1993), pp. 549-555
[28.]
Buján J., García-Honduvilla N., Hernando A., Bellón J.M..
Use a fibroblastic matrix improves the results of mesothelial cell seeding on vascular prostheses of polytetrafluoroethylene.
Histol Histopathol, 10 (1995), pp. 803-810
[29.]
Salacinski H.J., Punshon G., Krijgsman B., Hamilton G., Seifalian A.M..
A hybrid compliant vascular graft seeded with microvascular endothelial cells extracted from human omentum.
Artif Organs, 25 (2001), pp. 974-982
[30.]
Salacinski H.J., Tai N.R., Punshon G., Giudiceandrea A., Hamilton G., Seifalian A.M..
Optimal endothelialisation of a new compliant poly (carbonate-urea) urethane vascular graft with effect of physiological shear stress.
Eur J Vasc Endovasc Surg., 20 (2000), pp. 342-352
[31.]
Giudiceandrea A., Seifalian A.M., Krijgsman B., Hamilton G..
Effect of prolonged pulsatile shear stress in vitro on endothelial cell seeded PTFE and compliant polyurethane vascular grafts.
Eur J Vasc Endovasc Surg., 15 (1998), pp. 147-154
[32.]
Stansby G., Berwanger C., Shukla N., Schmitz-Rixen T., Hamilton G..
Endothelial seeding of compliant polyurethane vascular graft material.
Br J Surg., 81 (1994), pp. 1286-1289
Copyright © 2002. SEACV
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos