Regístrese
Buscar en
Revista Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial
Toda la web
Inicio Revista Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial Ensino pré‐clínico de prótese fixa. Proposta de modelos de aprendizagem
Journal Information
Vol. 57. Issue 1.
Pages 21-29 (January - March 2016)
Share
Share
Download PDF
More article options
Visits
3603
Vol. 57. Issue 1.
Pages 21-29 (January - March 2016)
Investigação original
DOI: 10.1016/j.rpemd.2015.11.004
Open Access
Ensino pré‐clínico de prótese fixa. Proposta de modelos de aprendizagem
Pre‐clinical education in fixed prosthodontics. Proposal of learning models
Visits
...
Paulo Rocha‐Almeidaa,
Corresponding author
prochalmeida@gmail.com

Autor para correspondência.
, César L. Silvaa, José C. Reis‐Camposa,c, Nuno V. Ramosc, Mário A.P. Vazb,c, João C. Sampaio‐Fernandesa,c
a Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
b Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
c INEGI – Instituto Nacional de Engenharia e Gestão Industrial, Porto, Portugal
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (7)
Show moreShow less
Tables (2)
Tabela 1. Estatísticas das classificações médias de cada grupo de parâmetros por etapa
Tabela 2. Estatísticas das classificações médias totais de parâmetros por etapa
Show moreShow less
Resumo
Objetivos

Este trabalho teve como objetivo comparar o método de aprendizagem clássico de preparações dentárias com um novo método de aprendizagem, usando modelos com referenciações e guias de aprendizagem.

Métodos

Foram arbitrariamente selecionados 30 alunos, divididos em 2 grupos de 15 – grupo A e grupo B (controlo). Houve 2 fases no estudo (diagnóstico e aprendizagem). Conceberam‐se modelos devidamente calibrados com referenciações e guias de aprendizagem que foram preparados pelo grupo A. O grupo B preparou segundo o método clássico. Os resultados foram lidos e comparados pelo sistema PREPassistant®, segundo uma grelha de avaliação pré‐concebida.

Resultados

Não se verificaram diferenças estatisticamente significativas na fase de diagnóstico. Verificaram‐se diferenças estatisticamente significativas entre os grupos A e B na fase de aprendizagem, com melhor desempenho do grupo A.

Conclusões

Os modelos obtidos em CAD e avaliados com o PREPassistant® permitem uma evolução significativa na técnica de preparação dentária e a fase de aprendizagem pode ser mais rápida e intuitiva. Foi possível criar modelos padronizados para a técnica de preparação dentária, segundo o eixo da preparação e da margem de acabamento cervical.

Palavras‐chave:
PREPassistant®
Desenho assistido por computador
Preparação dentária
Ensino dentário
Informática dentária
Abstract
Objectives

This study aimed to compare the classic learning method of dental preparations with a new learning method, using templates with referrals and learning guides.

Methods

In this study, 30 students were selected arbitrarily, divided in two groups of 15 ‐ Group A and Group B (control). There were two phases (diagnostic and learning). Conceived models were calibrated with referrals and learning guides that were prepared by group A. Group B prepared according to the classical method and results were read and compared by the PREPassistant® system according to a preconceived evaluation grid.

Results

There were no statistically significant differences in the diagnostic phase. In the learning stage, differences between groups A and B were statistically significant; being the group A the best performing group.

Conclusions

The models obtained in CAD and evaluated by the PREPassistant® allow significant developments in dental preparation technique and the learning phase can be more quickly and intuitively developed. It was possible to create standardized models for the dental preparation technique according to the axis of the preparation and of the cervical margin finishing.

Keywords:
PREPassistant®
Computer‐aided design
Tooth preparation
Dental education
Dental informatics
Full Text
Introdução

A capacidade de preparar e restaurar a estrutura de um dente danificado é uma competência fundamental para os médicos dentistas1–4. O treino pré‐clínico constitui, neste âmbito, uma parte importante do desenvolvimento da aprendizagem para a prática clínica5,6.

A procura do desenvolvimento de competências clínicas nos alunos tem recebido contribuições de tecnologias de simulação7, permitindo atingir metas sem que os pacientes sejam colocados em risco8, ao mesmo tempo que permite a identificação de alunos com dificuldades9. Contudo, a simulação nunca irá substituir o contexto situacional e as interações complexas adquiridas através do contacto com pacientes reais10–12.

O PREPassistant® (KaVo®, KaVo Dental Corp, Alemanha) é um instrumento de auxílio na aprendizagem pré‐clínica de Prótese Fixa na Faculdade de Medicina Dentária da Universidade do Porto (FMDUP) aplicado na avaliação de preparações dentárias, permitindo aumentar a objetividade da avaliação pré‐clínica e a eficácia das análises do trabalho realizado pelos alunos13–18.

Este sistema oferece uma análise de qualidade da preparação do dente, através da medição de posições, distâncias e ângulos. O sistema compreende uma unidade de leitura ótica, que produz imagens bidimensionais e tridimensionais, e um software (PREPassist 2.0 Alpha), que possibilita a análise das imagens, detetando erros que, de outra forma, seriam difíceis de identificar. Através da sobreposição das imagens obtidas das preparações do instrutor e do aluno, o PREPassistant® faz a medição das diferenças em pontos específicos17. Os parâmetros espaciais e respetivas ponderações são determinados previamente pelos instrutores19.

O PREPassistant® permite a utilização do desenho da preparação ideal e torna possível uma aprendizagem interativa, permitindo ao aluno a comparação da sua preparação e, assim, a avaliação quantitativa dos desvios entre as 2 preparações15,16,20–23. Alguns autores indicaram que o sistema opera com precisão e repetibilidade aceitável para fins práticos e oferece uma verdadeira simulação clínica aos utilizadores14,17.

Na literatura podem, no entanto, ser encontrados estudos que revelam desvantagens associadas ao sistema PREPassistant®, designadamente, custos de implementação e manutenção elevados, obrigatoriedade de utilização de dentes KaVo®, baixa concordância entre este e outros métodos de avaliação, incapacidade em avaliar todos os fatores necessários a uma preparação aceitável, como a localização e a rugosidade de acabamento – o que remete para a problemática da subjetividade – e ainda o limitado número de estudos de análise e caracterização da reprodutibilidade deste sistema17,18,22,24.

Refira‐se ainda que um dos principais problemas colocados no ensino da preparação dentária para Prótese Fixa é a dificuldade de explicar aos estudantes a necessidade de transformar a forma da coroa dentária numa forma troncocónica, com especificidades várias, numa visão tridimensional. Habitualmente, a preparação é feita de forma completa e sem faseamento, o que dificulta a compreensão.

O presente estudo teve como objetivo comparar o método de aprendizagem clássico de preparações dentárias com um novo método de aprendizagem, por etapas e usando modelos com referenciações e guias de aprendizagem e avaliação informatizada.

Materiais e métodos

Foram arbitrariamente selecionados 30 alunos do 3.° ano que concluíram a unidade curricular de Prótese Fixa, exclusivamente teórica, com sucesso e que nunca contactaram com o treino da preparação dentária em prótese fixa. O referido estudo foi realizado em condições de exame na sala dos fantomas da FMDUP.

Os 30 alunos foram divididos em 2 grupos de 15 alunos, designados por grupo A e grupo B (controlo).

Foram idealizados e desenhados 4 tipos de modelos de aprendizagem (modelo original) e respetivos calibradores (modelo instrutor) utilizando o software de CAD (computer‐aided design) Solidworks (Solidworks, MA, EUA):

  • Modelo tipo 1 (fig. 1) – correspondente ao dente 15 com norma de referenciação no eixo da preparação e na margem de acabamento cervical; com respetivo calibrador.

    Figura 1.

    Modelo tipo 1 de dente 15 com guias de orientação de eixo de inserção e da margem cervical (A), respetivo calibrador (B) e relação da preparação dentária do modelo tipo 1 com o dente íntegro (C).

    (0.17MB).
  • Modelo tipo 2 (fig. 2) – modelo de treino da margem de acabamento cervical, da parede axial e conicidade, com cilindro de orientação oclusal de eixo da preparação dentária e marcação referenciada de controlo de desgaste e conicidade na parede axial; com respetivo calibrador.

    Figura 2.

    Modelo tipo 2 de treino da margem de acabamento cervical, parede axial e comicidade (A), respetivo calibrador (B) e relação do modelo integro tipo 2 com o respetivo calibrador: vista vestibular‐lingual (C).

    (0.15MB).
  • Modelo tipo 3 (fig. 3) – modelo de treino do desgaste da face oclusal e do bisel da cúspide funcional, com sulcos de profundidade de controlo de desgaste oclusal e marcações axiais ideais de limite de desgaste oclusal e do bisel da cúspide funcional; com respetivo calibrador.

    Figura 3.

    Modelo tipo 3 de treino do desgaste da face oclusal e bisel da cúspide funcional (A), respetivo calibrador (B) e relação do modelo integro tipo 3 com o respetivo calibrador (C).

    (0.15MB).
  • Modelo tipo 4 (fig. 4) – modelo de treino da margem de acabamento cervical, da parede axial, da conicidade da parede axial, do desgaste da face oclusal e do bisel da cúspide funcional; com respetivo calibrador.

    Figura 4.

    Modelo tipo 4 de treino da margem de acabamento cervical, parede axial, conicidade da parede axial, desgaste da face oclusal e bisel da cúspide funcional (A), respetivo calibrador (B) e relação do modelo integro tipo 4 com o respetivo calibrador (C).

    (0.17MB).

Os modelos originais foram referenciados com marcação da margem externa da linha de acabamento cervical e marcação vertical do eixo de inserção nos sentidos vestibulo‐lingual (V‐L) e mesio‐distal (M‐D).

Para ultrapassar o problema associado à preparação dentária do instrutor do sistema PREPassistant®, que é obtida manualmente (não se conseguindo, por isso, 2 preparações iguais), o modelo instrutor foi desenhado em CAD, baseado na forma e no sistema de referenciação do modelo original. Assim, foi obtida uma preparação final referenciada e calibrada.

Os modelos foram idealizados para o treino da preparação dentária nos critérios:

  • margem de acabamento cervical: controlo de espessura (espessura na margem [EM]) e da posição da linha de acabamento (posição cervical [PC]);

  • parede axial: da angulação (angulação axial [AA]) e do desgaste (espessura axial [EA]);

  • face oclusal: da espessura (espessura oclusal [EO]), da angulação das vertentes vestibular e lingual (angulação das vertentes [AV]) e do bisel da cúspide funcional (CP).

Os modelos virtuais acima descritos foram convertidos em modelos reais por prototipagem por estereolitografia (Estereolitografia Viper SI2, 3D Systems, Rock Hill, SC, EUA), com resina epoxídica (Ref. SL7810, 3D Systems, Rock Hill, SC, EUA) de consistência similar à do dente natural.

A ambos os grupos de estudantes foi ministrada uma aula prévia de 10 minutos sobre os princípios das preparações dentárias. O grupo A recebeu uma explicação do objetivo da preparação dos modelos 2 e 3, que visam a aprendizagem com referências e por etapas. Ao grupo B foi explicada a técnica para a preparação do modelo 4, que simula a aprendizagem como um todo, tal como é feita classicamente.

O estudo foi constituído por 2 fases (fig. 5): uma primeira, fase de avaliação diagnóstica, que visou a avaliação inicial da destreza dos alunos em cada grupo; e uma segunda, fase de aprendizagem, que consistiu na execução das preparações dos modelos respeitantes a cada grupo.

Figura 5.

Desenho do estudo.

(0.58MB).

Na fase de avaliação diagnóstica foram executadas 30 preparações dentárias e na fase de aprendizagem 90, contabilizando um total de 120 preparações. As preparações dentárias foram sequencialmente numeradas e a sua correspondência com o operador não foi revelada.

Na FMDUP a avaliação das preparações dentárias é efetuada tendo em consideração os seguintes grupos de parâmetros, apresentados na figura 6:

  • 1.

    Avaliação na margem cervical com ponderação de 35%;

  • 2.

    Avaliação na parede axial com ponderação de 35%;

  • 3.

    Avaliação na face oclusal com ponderação de 20%;

  • 4.

    Acabamento da preparação dentária com ponderação de 10%.

Figura 6.

Ponderação relativa dos critérios da avaliação da preparação dentária.

(0.94MB).

As preparações foram previamente pulverizadas com um spray (CEREC® OptiSpray, Sirona Dental System, LLC, Alemanha), para permitir melhor leitura pelo scanner 3D, e posteriormente analisadas no sistema PREPassistant®. O scanner 3D digitaliza as preparações dentárias com uma definição de 20μm, permitindo examinar detalhes e compará‐los com os da preparação do instrutor.

O encontro de posições para a sobreposição das 2 amostras é realizado pela técnica best fit da área não preparada, ou seja, pela sobreposição da nuvem de pontos coincidente. Desta forma, conseguiu‐se uma combinação fixa entre amostras original‐instrutor e consequentemente, criar a grelha de avaliação. Este procedimento foi realizado para os 4 tipos de modelos de amostras. Simultaneamente, foi montada e bloqueada a grelha de avaliação nos diferentes planos, garantindo igual procedimento no processamento das amostras.

Para criar uma grelha de avaliação no sistema PREPassistant® foi necessário emparelhar a amostra ORIGINAL com a INSTRUTOR. Deste modo, foi obtido um sistema completamente calibrado.

Depois da amostra orientada tridimensionalmente e a coincidir com os planos de referenciação, construiu‐se uma grelha de avaliação personalizada utilizando planos nos sentidos V‐L e M‐D ou em corte axial.

Devido ao número e aos critérios de análise das amostras no grupo A e no grupo B serem diferentes, estas foram agrupadas para análise por emparelhamento. Na etapa 1, correspondente à fase diagnóstica, emparelharam‐se as amostras A1 (grupo A) e B1 (grupo B). Nas etapas 2 e 3, correspondentes à fase de aprendizagem, agruparam‐se os critérios de análise das amostras A2 e A4 (grupo A) com B2 (grupo B) e A3 e A5 (grupo A) com B3 (grupo B) como ilustrado na figura 7.

Figura 7.

Emparelhamento das amostras.

(0.11MB).

Atendendo à natureza das variáveis, no estudo descritivo dos dados foram usadas médias, medianas, máximos e mínimos.

A escala de avaliação é de 1 a 5 valores, pelo que na comparação entre os 2 métodos de ensino (Grupo A e Grupo B), em cada etapa, executou‐se o teste não paramétrico de Wilcoxon‐Mann‐Whitney.

A análise estatística descritiva e inferencial foi efetuada com o software SPSS (v. 19; SPSS Inc., Chicago, Illinois, EUA). Considerou‐se um índice de confiança de 95% (p0,05).

Resultados

Cada uma das amostras preparadas pelos alunos foi analisada individualmente com a grelha de avaliação correspondente, sendo os resultados por grupo de parâmetros apresentados na tabela 1.

Tabela 1.

Estatísticas das classificações médias de cada grupo de parâmetros por etapa

Grupo Parâmetros    Grupo AGrupo Bp
    Me.  Méd  Mín  Máx  Me.  Méd  Mín  Máx 
EC  Etapa 1
Etapa 2
Etapa 3 
4,00
4,00
4,00 
4,00
3,73
3,66 
2,00
2,00
1,00 
5,00
5,00
5,00 
4,00
4,00
2,00 
3,80
3,13
2,73 
2,00
1,00
1,00 
5,00
5,00
5,00 
0,472
0,314
0,070 
PC  Etapa 1
Etapa 2
Etapa 3 
3,00
4,00
5,00 
3,40
3,80
3,66 
2,00
2,00
1,00 
5,00
5,00
5,00 
3,00
5,00
5,00 
3,66
3,86
4,00 
2,00
1,00
1,00 
5,00
5,00
5,00 
0,500
0,772
0,612 
AA  Etapa 1
Etapa 2
Etapa 3 
2,00
3,00
3,00 
1,73
3,33
3,06 
1,00
1,00
1,00 
3,00
5,00
4,00 
2,00
2,00
2,00 
1,93
2,06
2,00 
1,00
1,00
1,00 
3,00
3,00
4,00 
0,440
0,005*
0,006* 
EA  Etapa 1
Etapa 2
Etapa 3 
4,00
5,00
4,00 
3,66
4,40
4,06 
2,00
1,00
1,00 
4,00
5,00
5,00 
3,00
3,00
2,00 
3,40
2,40
2,13 
2,00
1,00
1,00 
5,00
5,00
5,00 
0,178
<0,001*
<0,001* 
EO  Etapa 1
Etapa 2
Etapa 3 
3,00
5,00
4,00 
23,13
4,40
3,66 
1,00
2,00
2,00 
4,00
5,00
5,00 
3,00
3,00
4,00 
2,86
2,66
3,06 
2,00
1,00
1,00 
4,00
5,00
4,00 
0,393
0,002*
0,233 
AV  Etapa 1
Etapa 2
Etapa 3 
3,00
4,00
4,00 
2,86
4,26
4,00 
1,00
3,00
1,00 
5,00
5,00
5,00 
4,00
3,00
4,00 
3,13
3,53
3,9 
1,00
1,00
1,00 
5,00
5,00
5,00 
0,547
0,049*
0,768 
CP  Etapa 1
Etapa 2
Etapa 3 
2,00
4,00
5,00 
2,53
4,00
4,06 
1,00
1,00
1,00 
5,00
5,00
5,00 
3,00
4,00
4,00 
2,86
3,33
3,06 
1,00
1,00
1,00 
5,00
5,00
5,00 
0,605
0,196
0,053 

Me: mediana; Méd: média; Min: mínimo; Max: máximo. GP: grupo de parâmetros

* Diferenças estatisticamente significativas entre os grupos A e B para α=0,05.

De acordo com análise estatística inferencial, por grupo de parâmetros, não se observaram diferenças estatisticamente significativas, na etapa 1 (diagnóstica), entre os grupos A e B (p>0,05), existindo, porém, diferenças estatisticamente significativas:

  • Na etapa 2 – nos grupos de parâmetros AA, EA, EO e AV.

  • Na etapa 3 – nos grupos de parâmetros AA, EA e EO.

Na tabela 2 estão apresentados os resultados e as estatísticas das classificações totais por etapa. Verifica‐se que não existem diferenças estatisticamente significativas (p=0,835) na etapa 1 (diagnóstica) entre os grupos A e B. No entanto, verificaram‐se diferenças estatisticamente significativas entre os 2 grupos nas etapas 2 (p=0,001) e 3 (p=0,007).

Tabela 2.

Estatísticas das classificações médias totais de parâmetros por etapa

    Grupo AGrupo Bp
    Me.  Méd  Mín  Máx  Me.  Méd  Mín  Máx 
TP  Etapa 1
Etapa 2
Etapa 3 
2.95
3.27
3.11 
3.01
3.25
3.10 
2.60
2.58
2.10 
3.48
3.75
3.56 
2.99
2.82
2.57 
3.01
2.65
2.59 
2.67
1.57
1.50 
3.58
3.54
3.42 
0.835
0.001*
0.007* 

Me: mediana; Méd: média; Min: mínimo; Max: máximo. TP: total de parâmetros

* Diferenças estatisticamente significativas entre os grupos A e B para α=0,05.

Discussão

Em relação à evolução da aprendizagem dos alunos, foi possível verificar que na fase diagnóstica não se observaram diferenças estatisticamente significativas de valores totais por grupo de parâmetros entre os grupos A e B. Na fase de aprendizagem observaram‐se diferenças estatisticamente significativas, com melhores resultados no grupo A – na etapa 2 nos grupos de parâmetros AA, EA, EO e AV e na etapa 3 nos grupos de parâmetros AA e EA.

Da análise de valor médio por total de grupos de parâmetros apenas se verificaram diferenças com significância estatística nas etapas 2 e 3, com melhor desempenho no grupo A.

No presente estudo foi possível verificar que os modelos de treino foram eficazes na fase de aprendizagem (etapas 2 e 3), no que respeita a preparações dentárias para prótese fixa. As diferenças observadas na evolução da aprendizagem com auxílio dos modelos idealizados prendem‐se sobretudo com o desgaste da parede axial (AA e EA) e da face oclusal (EO e AV). Em relação ao desgaste oclusal, a existência de sulcos de desgaste oclusais no modelo 3 contribuiu de forma significativa para a melhoria dos resultados. Estes resultados estão de acordo com estudos de diversos autores4,11,12 que recomendam a execução de sulcos de marcação de profundidade como método de controlo de desgaste.

Uma das limitações deste estudo prende‐se com o tipo de material das amostras obtidas para as preparações dos alunos, que não consegue simular exatamente as caraterísticas físicas dos tecidos dentários, o que dificulta a preparação. Também alguns critérios clínicos – como o estado do dente, a orientação do dente na arcada dentária e sua relação com dentes vizinhos, a retenção da preparação, oclusão e outros aspetos funcionais, bem como a ansiedade do paciente – não foram considerados.

Conclusões

Nas condições desta investigação, onde se estudou a progressão da aprendizagem de preparações dentárias para coroas cerâmicas em alunos finalistas do 3.° ano da FMDUP, conclui‐se que os modelos originais, por nós concebidos e desenhados em CAD, e avaliados no sistema PREPassistant®, permitem uma evolução significativa na técnica de preparação dentária e que a fase de aprendizagem pode ser mais rápida e intuitiva.

Este estudo permitiu a criação de modelos padronizados para a técnica de preparação dentária segundo o eixo da preparação e da margem de acabamento cervical, e o modelo instrutor, indispensável na calibração do sistema PREPassistant®.

Esta investigação abre horizontes ao desenho em CAD, de modelos de aprendizagem especificamente orientados para determinados parâmetros.

Responsabilidades éticasProteção de pessoas e animais

Os autores declaram que para esta investigação não se realizaram experiências em seres humanos e/ou animais.

Confidencialidade dos dados

Os autores declaram que não aparecem dados de pacientes neste artigo.

Direito à privacidade e consentimento escrito

Os autores declaram que não aparecem dados de pacientes neste artigo.

Conflito de interesses

Os autores declaram não haver conflito de interesses.

Bibliografia
[1]
K.A. Eaton.
E‐learning – new technologies but slow progress?.
Int J Comput Dent., 7 (2004), pp. 115-117
[2]
H. Asselmeyer.
Trends, current developments, and concepts in distance learning and E‐learning.
Int J Comput Dent., 7 (2004), pp. 145-157
[3]
S. Hohne, R.R. Schumann.
Computer‐assisted learning in human and dental medicine.
Int J Comput Dent., 7 (2004), pp. 159-167
[4]
H.T. Shillingburg, S. Hobo, L.D. Whitsett, R. Jacobi, S.E. Brackett.
Fundamentals of Fixed Prosthodontics.
3ª Ed., Quintessence Publishing Co, (1997),
[5]
V.C. Petropoulos, N.S. Arbree, D. Tarnow, M. Rethman, J. Malmquist, R. Valachovic, et al.
Teaching implant dentistry in the predoctoral curriculum: A report from the ADEA Implant Workshop's survey of deans.
J Dent Educ., 70 (2006), pp. 580-588
[6]
P. Harrison, I. Polyzois, F. Houston, N. Claffey.
Patient satisfaction relating to implant treatment by undergraduate and postgraduate dental students--a pilot study.
Eur J Dent Educ., 13 (2009), pp. 184-188
[7]
M.D. Miller, procedures. Office.
Education, training, and proficiency of procedural skills.
Prim Care., 24 (1997), pp. 231-240
[8]
D.M. Gaba.
The future vision of simulation in health care.
Qual Saf Health Care., 13 (2004), pp. i2-i10
[9]
A. Urbankova, S.P. Engebretson.
Computer‐assisted dental simulation as a predictor of preclinical operative dentistry performance.
J Dent Educ., 75 (2011), pp. 1249-1255
[10]
W.C. McGaghie, V.J. Siddall, P.E. Mazmanian, J. Myers.
Lessons for continuing medical education from simulation research in undergraduate and graduate medical education: effectiveness of continuing medical education: American College of Chest Physicians Evidence‐Based Educational Guidelines.
Chest., 135 (2009), pp. 62S-68S
[11]
S. Rosenstiel, M. Land, J. Fujimoto.
Contemporany fixed prosthodontics.
2ª Ed., Mosby, (1995),
[12]
M.A. Bottino, R.F. Brunetti.
Princi??pios Biomeca??nicos dos Preparos Cavitários e Coronários.
Manual de Pro??tese Parcial Fixa., pp. 59-71
[13]
A.H.L. Tjan, R. Sarkissian.
Effect of preparation finish on retention and fit of complete crowns.
J Prosthetic Dent., 56 (1986), pp. 8
[14]
W. Hollis, L.A. Darnell, T.L. Hottel.
Computer assisted learning: A new paradigm in dental education.
J Tenn Dent Assoc., 91 (2011), pp. 14-18
[15]
J.A. Cardoso, C. Barbosa, S. Fernandes, C.L. Silva, A. Pinho.
Reducing subjectivity in the evaluation of pre‐clinical dental preparations for fixed prosthodontics using the Kavo PrepAssistant.
Eur J Dent Educ., 10 (2006), pp. 149-156
[16]
G. Arnetzl, R. Dornhofer, PREPassistant:.
a system for evaluating tooth preparations.
Int J Comput Dent., 7 (2004), pp. 187-197
[17]
N. Kournetas, B. Jaeger, D. Axmann, M. Groten, S. Lachmann, H. Weber, et al.
Assessing the reliability of a digital preparation assistant system used in dental education.
J Dent Educ., 68 (2004), pp. 1228-1234
[18]
T.C. Almeida, P.F.S. Fernandes, J.C.A. Sampaio Fernandes, C.L. Silva, A.R. Pinho.
O Sistema Kavo PREPassistant® no Ensino Pré‐Clínico de Prótese Fixa.
Rev Port Estomatol Med Dent Cir Max Fac., 50 (2009), pp. 105-109
[19]
A. Welk, M.P. Maggio, J.F. Simon, M. Scarbecz, J.A. Harrison, R.A. Wicks, et al.
Computer‐assisted learning and simulation lab with 40 DentSim units.
Int J Comput Dent., 11 (2008), pp. 17-40
[20]
A. Welk, C. Splieth, D. Seyer, M. Rosin, M. Siemer, G. Meyer.
German dental faculty attitudes towards computer‐assisted simulation systems correlated with personal and professional profiles.
Eur J Dent Educ., 10 (2006), pp. 87-95
[21]
M. Schittek, N. Mattheos, H.C. Lyon, R. Attstrom.
Computer assisted learning. A review.
Eur J Dent Educ., 5 (2001), pp. 93-100
[22]
B. Jäger, N. Kournetas, M. Groten, S. Lachmann, H. Weber, J. Geis-Gerstorfer.
PREPassist as digital assistance for dental education.
Int Poster J Dent Oral Med, 2003 (2003), pp. 169
[23]
J.C. Sampaio-Fernandes, M.S. Fernandes, P. Fonseca, P.R. Almeida, J.C. Reis Campos, M.H. Figueiral.
Avaliação de nichos oclusais com tecnologia 3D.
Rev Port Estomatol Med Dent Cir Max Fac, 54 (2013), pp. e38
[24]
C.L. Taylor, N.J. Grey, J.D. Satterthwaite.
A comparison of grades awarded by peer assessment, faculty and a digital scanning device in a pre‐clinical operative skills course.
Eur J Dent Educ., 17 (2013), pp. e16-e21
Copyright © 2015. Sociedade Portuguesa de Estomatologia e Medicina Dentária
Article options
Tools
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

es en pt
Política de cookies Cookies policy Política de cookies
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí. To improve our services and products, we use "cookies" (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here. Utilizamos cookies próprios e de terceiros para melhorar nossos serviços e mostrar publicidade relacionada às suas preferências, analisando seus hábitos de navegação. Se continuar a navegar, consideramos que aceita o seu uso. Você pode alterar a configuração ou obter mais informações aqui.