metricas
covid
Buscar en
Medicina Clínica (English Edition)
Toda la web
Inicio Medicina Clínica (English Edition) Simplified glycaemic management for patients with type 2 diabetes admitted for a...
Journal Information
Vol. 158. Issue 4.
Pages 173-177 (February 2022)
Share
Share
Download PDF
More article options
Visits
132
Vol. 158. Issue 4.
Pages 173-177 (February 2022)
Brief report
Full text access
Simplified glycaemic management for patients with type 2 diabetes admitted for acute decompensated heart failure using linagliptin
Control glucémico simplificado con linagliptina en pacientes con diabetes mellitus de tipo 2 ingresados por insuficiencia cardíaca descompensada
Visits
132
Luis M. Pérez-Belmontea,b,c,d,
Corresponding author
luismiguelpb1984@gmail.com

Corresponding author.
, Julio Osuna-Sánchezc,e, Juan Ignacio Rico-Roblesa,b, Michele Riccia, José P. Larac,1, Ricardo Gómez-Huelgasa,f,1
a Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Málaga, Spain
b Servicio de Medicina Interna, Hospital Helicópteros Sanitarios, Marbella, Spain
c Unidad de Neurofisiología Cognitiva, Centro de Investigaciones Médico Sanitarias (CIMES), Facultad de Medicina, Universidad de Málaga (UMA), Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
d Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
e Servicio de Medicina Interna, Hospital Comarcal de La Axarquía, Vélez-Málaga, Málaga, Spain
f Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
This item has received
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Tables (2)
Table 1. Sociodemographic, anthropometric, diabetes, heart failure, and previous medical history data of patients admitted for acute decompensated heart failure according to antihyperglycemic regimen: pre- and post-propensity matching analysis.
Table 2. Glycaemic control, insulin therapy, hypoglycaemia, length of hospital stay, and hospital complications outcomes of patients admitted for acute decompensated heart failure by antihyperglycaemic regimen: pre- and post-propensity matching analysis.
Show moreShow less
Abstract
Introduction and objectives

Hyperglycaemia in hospitalized patients with type 2 diabetes is preferably managed with insulin. We aimed to analyse the glycaemic efficacy, treatment simplicity, and safety of our hospital's antihyperglycemic regimens (linagliptin-basal insulin versus basal-bolus insulin) in patients with type 2 diabetes admitted for heart failure decompensation.

Patients and methods

In this real-world study, we included patients with mild-to-moderate hyperglycaemia managed with our antihyperglycemic regimens between 2016 and 2018. To match patients who started one of the regimens, a propensity matching analysis was used.

Results

After propensity matching, 146 patients were included in each group. There were no differences in mean blood glucose levels (163.6±21.2 vs 159.6±19.2mg/dl, p=.210). Patients on the linagliptin-basal insulin regimen had a lower total number of hypoglycaemic episodes (36 vs 64, p<.001), lower total insulin dose (24.1±5.3 vs 32.0±5.6 units, p<.001), and lower number of daily injections (2.4±.8 vs 4.0±.0, p<.001) than those on the basal-bolus regimen.

Conclusions

Linagliptin-basal insulin was a safe, simple, and efficacious regimen and could be considered standard of care for these vulnerable, high complex patients to simplify in-hospital management.

Keywords:
Type 2 diabetes
Heart failure
Linagliptin
Hospitalization
Hyperglycaemia
Resumen
Fundamentos y objetivos

La hiperglucemia hospitalaria se maneja preferiblemente con insulina. Nuestro objetivo fue analizar la eficacia glucémica, simplificación del tratamiento y seguridad de los regímenes hospitalarios de manejo de la hiperglucemia (insulina basal-linagliptina versus insulina basal-bolo) en pacientes con diabetes mellitus de tipo 2 ingresados por insuficiencia cardíaca descompensada.

Material y métodos

En este estudio de vida real, se incluyó a pacientes con hiperglucemia leve/moderada manejados con nuestros regímenes entre 2016 y 2018. Para emparejar a los pacientes que comenzaban alguno de los regímenes se usó un análisis de propensiones.

Resultados

Tras el análisis de propensiones, 146 pacientes fueron incluidos en cada grupo. No hubo diferencias en los niveles de glucosa medios (163,6±21,2 vs. 159,6±19,2mg/dl; p=0,210). Los pacientes con el régimen de insulina basal-linagliptina tuvieron menos hipoglucemias (36 vs. 64; p<0,001), menos insulina total (24,1±5,3 vs. 32±5,6 unidades; p<0,001) y menos inyecciones diarias (2,4±0,8 vs. 4±0; p<0,001) que los pacientes del régimen basal-bolo.

Conclusiones

El régimen de insulina basal-linagliptina fue seguro, simple y eficaz y podría ser considerado como tratamiento de referencia para estos pacientes vulnerables y con alta complejidad clínica, con lo que se simplificaría el manejo hospitalario.

Palabras clave:
Diabetes mellitus de tipo 2
Insuficiencia cardíaca
Linagliptina
Hospitalización
Hiperglucemia
Full Text
Introduction

Patients with type 2 diabetes (T2D) and heart failure (HF) are at high risk of adverse outcomes and hospitalization.1 Improved glycaemic control has been reported to reduce deaths and complications in hospitalized patients independently of the hemodynamic status.2

In non-critically ill patients with T2D, the multidose insulin regimen using once-daily basal insulin and bolus of rapid-acting insulin before meals is currently the preferred therapy for treating hyperglycaemia.3 Although this regimen has shown significant improvements in glycaemic control and reductions in complications,2 it is time- and labour-intensive and has been linked a higher risk of hypoglycaemia.4

The contraindications and relevant side effects of most non-insulin glucose-lowering drugs have limited their implementation in the hospital setting.3 However, in recent years, dipeptidyl peptidase-4 inhibitors (DPP-4i) alone or in combination with basal insulin have been demonstrated to be efficacious and safe.5–8 Based on this evidence and the fact that patients admitted for acute decompensated heart failure (ADHF) are more likely to suffer potential drug-related harm due to their polymorbididy and polypharmacy,9 we aimed to retrospectively analyze the glycemic efficacy (daily blood glucose (BG) levels during hospitalization), treatment simplifications (daily insulin dose, and number of daily insulin injections), and safety (hypoglycaemic episodes, and hospital complications) of the linagliptin-basal insulin regimen compared to basal-bolus insulin regimen in patients with T2D admitted for ADHF.

Patients and methods

We conducted an observational, multicentre, real-world study on non-critically ill patients with T2D admitted for ADHF who were managed with our hospital's antihyperglycemic protocol between 2017 and 2019. This protocol, fully described in the Lina-Real-World Study,7 includes two possible regimens: (a) Basal-bolus insulin: recommended for all hospitalized patients as standard of care; (b) Linagliptin-basal insulin: only recommended for patients with mild-to-moderate hyperglycaemia – admission glycated haemoglobin<8% (64mmol/mol) and admission BG<240mg/dL – who are treated without at-home injectable therapies and who do not meet the exclusion criteria (acute diabetic complications, type 1 diabetes, treatment with systemic glucocorticoid, cardiac surgery, acute renal function impairment, clinically-relevant liver disease, blood dyscrasias, gastrointestinal obstruction, pregnancy, those expected to be without oral intake, history of pancreatitis or active gallbladder disease, or previous gastrointestinal surgeries that induce chronic malabsorption). The target of therapy is to maintain fasting and pre-prandial BG levels between 140mg/dL and 180mg/dL. When patients on the linagliptin-basal insulin regimen experience treatment failure – two consecutive measurements or a mean daily BG level>240mg/dL–, they are switched to the basal-bolus regimen. The choice of which protocol to use is made by physicians according to their own clinical judgment.

In order to match patients who started one of the two regimens in a 1:1 manner, a propensity matching (PM) analysis with a caliper of 0.2 and a greedy matching algorithm were used. The probability of starting the linagliptin-basal regimen (as opposed to the basal-bolus regimen) was estimated using a logistic regression model that included variables that could have affected the treatment assignment or outcomes as independent variables (gender, age, anthropometric characteristics, previous medical history, T2D and HF characteristics, and laboratory findings including admission blood glucose, glycated haemoglobin, serum creatinine, N-terminal pro-B-type natriuretic peptide, and transaminase levels). In order to assess the adequacy of PM, we used the standardized difference (SD) found in post-matching patient characteristics. A significant imbalance was considered if SD>10% between baseline variables.

Written informed consent for the consultation of patient medical records was obtained from all participants. The study was approved by the Institutional Research Ethics Committee of Málaga and conducted in accordance with the Declaration of Helsinki.

Results

Of the total patients with T2D hospitalized for ADHF (n=1821), 637 (35%) met the criteria for treatment with the linagliptin-basal insulin regimen. Of these patients, 383 patients (60.6%) received the basal-bolus regimen and 254 (39.4%) received the lina-basal regimen. After PM, 146 patients were included in each regimen group. Sociodemographic, anthropometric, T2D, HF, and previous medical history data of patients according to antihyperglycaemic regimen before and after PM analysis are shown in Table 1. In regard to glycaemic control, there were no differences between treatment groups. However, total insulin dose and number of injections per day during hospital stay were significantly lower in the linagliptin-basal group. In addition, the linagliptin-basal insulin group had a lower total number of hypoglycaemic episodes, patients with 1 or ≥2 hypoglycaemic episodes, hypoglycaemia incidence rate, and patients with any BG<70 and <54mg/dL. All pre- and post-PM data are summarized in Table 2.

Table 1.

Sociodemographic, anthropometric, diabetes, heart failure, and previous medical history data of patients admitted for acute decompensated heart failure according to antihyperglycemic regimen: pre- and post-propensity matching analysis.

  Pre-propensity matching analysisPost-propensity matching analysis
  Basal-Bolus (n=383)  Linagliptin-basal (n=254)  Standardized Difference  p-Value  Basal-bolus (n=146)  Linagliptin-basal (n=146)  Standardized difference  p-Value 
Sociodemographic characteristics
Age (years)  72.7 (5.2)  73.4 (6.3)  0.012  0.201  72.5 (5.2)  72.9 (5.5)  0.002  0.423 
Female gender  182 (47.5%)  137 (53.9%)  0.081  0.083  75 (51.4%)  77 (52.7%)  0.002  0.427 
White race  383 (100.0%)  241 (94.9%)  0.022  0.128  146 (100.0%)  146 (100.0%)  0.001  0.534 
Anthropometric characteristics
Bodyweight (kg)  87.7 (7.2)  88.8 (10.1)  0.010  0.233  87.9 (7.3)  88.0 (9.5)  0.002  0.411 
Body Mass Index (kg/m228.8 (1.6)  28.9 (2.4)  0.009  0.299  28.8 (1.6)  28.8 (2.4)  0.002  0.419 
Body Mass Index ≥30  127 (33.2%)  86 (33.9%)  0.010  0.227  49 (33.6%)  49 (33.6%)  0.001  0.511 
Abdominal circumference (cm)  93.6 (6.7)  97.7 (10.6)  0.021  0.138  95.3 (7.8)  95.9 (8.5)  0.003  0.399 
Diabetes characteristics
Diabetes duration (years)  8.7 (3.4)  9.2 (3.3)  0.054  0.112  8.9 (3.4)  9.0 (3.4)  0.009  0.407 
Admission glycated haemoglobin (%)  7.3 (0.6)  7.4 (0.6)  0.017  0.189  7.3 (0.6)  7.3 (0.6)  0.001  0.517 
Admission blood glucose level (mg/dL)  156.8 (19.9)  160.2 (22.5)  0.030  0.157  158.7 (20.3)  159.4 (21.9)  0.003  0.391 
Admission diabetes therapy                 
Monotherapy  203 (53.0%)  158 (62.2%)  0.151  0.029  82 (56.2%)  84 (57.5%)  0.017  0.244 
Combination of oral agents  180 (47.0%)  96 (37.8%)  0.151  0.029  64 (43.8%)  62 (42.5%)  0.018  0.247 
Biguanide  230 (60.1%)  155 (61.0%)  0.011  0.274  88 (60.3%)  89 (61.0%)  0.009  0.301 
Sulfonylurea  50 (13.1%)  32 (12.6%)  0.012  0.202  19 (13.0%)  19 (13%)  0.001  0.540 
DPP-4 inhibitor  96 (25.1%)  69 (27.2%)  0.016  0.196  38 (26.0%)  39 (26.7%)  0.002  0.429 
SGLT-2 inhibitor  126 (32.9%)  83 (32.7%)  0.009  0.301  48 (32.9%)  48 (32.9%)  0.001  0.529 
Heart failure characteristics
NYHA functional classification      0.037  0.176      0.011  0.306 
II  241 (62.9%)  160 (63.0%)      92 (63.0%)  92 (63.0%)     
III  131 (34.2%)  89 (35.0%)      50 (34.2%)  51 (34.9%)     
IV  11 (2.9%)  5 (2.0%)      4 (2.8%)  3 (2.1%)     
Left ventricular ejection fraction  48.8 (23.2)  49.9 (24.8)  0.021  0.149  49 (23.3)  49.4 (24.0)  0.008  0.398 
Left ventricular ejection fraction<40%  164 (42.8%)  111 (43.7%)  0.011  0.252  63 (43.2%)  63 (43.2%)  0.001  0.519 
Principal cause of heart failure      0.022  0.147      0.017  0.242 
Ischemic  180 (47.0%)  124 (48.8%)      70 (47.9%)  71 (48.6%)     
Nonischemic  168 (43.9%)  113 (44.5%)      63 (43.2%)  65 (44.5%)     
Unknown  35 (9.1%)  17 (6.7%)      13 (8.9%)  10 (6.8%)     
Admission NT-proBNP (pg/mL)  2,166 (536)  2,410 (669)  0.061  0.091  2,288 (567)  2,351 (614)  0.019  0.201 
Heart failure medication
Diuretic  345 (90.1%)  218 (85.8%)  0.041  0.144  128 (87.7%)  126 (86.3%)  0.018  0.204 
ACE inhibitor  189 (49.3%)  118 (46.5%)  0.032  0.155  69 (47.3%)  68 (46.6%)  0.022  0.161 
ARB  134 (35.0%)  92 (36.2%)  0.020  0.148  52 (35.6%)  52 (35.6%)  0.002  0.448 
Sacubitril-valsartan  39 (10.2%)  28 (11.0%)  0.016  0.201  15 (10.3%)  16 (11.0%)  0.002  0.441 
Beta-blocker  295 (77.0%)  203 (79.9%)  0.042  0.101  114 (78.1%)  116 (79.5%)  0.020  0.191 
Mineralocorticoid receptor antagonist  114 (29.8%)  89 (35.0%)  0.055  0.098  46 (31.5%)  49 (33.6%)  0.024  0.185 
Digitalis  38 (9.9%)  21 (8.3%)  0.032  0.159  13 (8.9%)  13 (8.9%)  0.002  0.452 
Previous medical history
History of smoking  191 (49.9%)  144 (56.7%)  0.052  0.099  75 (51.4%)  81 (55.4%)  0.021  0.181 
History of alcohol abuse  142 (37.1%)  88 (34.6%)  0.039  0.109  53 (36.3%)  52 (35.6%)  0.009  0.299 
Hypertension  280 (73.1%)  162 (63.8%)  0.091  0.051  105 (71.9%)  96 (65.8%)  0.031  0.147 
Dyslipidaemia  289 (75.5%)  175 (68.9%)  0.072  0.088  109 (74.7%)  102 (70.0%)  0.021  0.162 
Chronic kidney disease  104 (27.2%)  63 (24.8%)  0.033  0.155  38 (26.0%)  38 (26.0%)  0.001  0.482 
Cerebrovascular disease  21 (5.5%)  18 (7.1%)  0.016  0.202  9 (6.2%)  10 (6.8%)  0.003  0.401 
Chronic obstructive pulmonary disease  150 (39.2%)  88(34.6%)  0.018  0.217  54 (37.0%)  53 (36.3%)  0.006  0.314 
Atrial fibrillation  134 (35.0%)  69 (27.2%)  0.049  0.101  47 (32.2%)  43 (29.5%)  0.009  0.292 

Values are shown as mean (standard deviations), absolute values, and percentages. Standardized difference>10% (>0.1) is considered to represent a non-negligible difference. Values were considered to be statistically significant when p<0.05 in the comparison analysis.

ACE: angiotensin-converting enzyme; ARB: angiotensin-receptor blocker; cm: centimetre; DPP-4: dipeptidyl peptidase-4; kg: kilogram; m2: square meter; mg/dL: milligram/decilitre; NT-proBNP: N-terminal pro-B-type natriuretic peptide; NYHA: New York Heart Association; pg/dL: picogram/decilitre; SGLT-2: sodium-glucose transporter 2.

Table 2.

Glycaemic control, insulin therapy, hypoglycaemia, length of hospital stay, and hospital complications outcomes of patients admitted for acute decompensated heart failure by antihyperglycaemic regimen: pre- and post-propensity matching analysis.

  Pre-propensity matching analysisPost-propensity matching analysis
  Basal-bolus (n=383)  Linagliptin-basal (n=254)  Standardized Difference  p-Value  Basal-bolus (n=146)  Linagliptin-basal (n=146)  Standardized Difference  p-Value 
Glycaemic control
Mean blood glucose level after admission (mg/dL)  156.8 (18.9)  165.2 (22.5)  0.127  0.040  159.6 (19.2)  163.6 (21.2)  0.010  0.210 
Pre-breakfast mean blood glucose level (mg/dL)  150.3 (17.1)  156.0 (18.7)  0.092  0.099  152.8 (18.2)  154.9 (19.0)  0.021  0.161 
Pre-lunch mean blood glucose level (mg/dL)  166.3 (20.2)  173.6 (22.9)  0.102  0.049  169.2 (21.1)  171.5 (22.2)  0.013  0.201 
Pre-dinner mean blood glucose level (mg/dL)  158.8 (17.9)  164.6 (20.3)  0.073  0.061  161.9 (18.2)  162.5 (20.0)  0.014  0.211 
Bedtime mean blood glucose level (mg/dL)  160.5 (19.0)  168.7 (21.2)  0.081  0.071  166.5 (20.7)  167.9 (21.1)  0.010  0.214 
Patients with mean blood glucose 100–140mg/dL  72 (18.8%)  39 (15.4%)  0.083  0.082  26 (17.8%)  24 (16.4%)  0.031  0.136 
Patients with mean blood glucose 140–180mg/dL  138 (36.0%)  107 (42.1%)  0.153  0.035  56 (38.4%)  59 (40.4%)  0.030  0.141 
Patients with mean blood glucose>200mg/dL  34 (8.9%)  30 (11.8%)  0.082  0.078  15 (10.3%)  16 (11.0%)  0.006  0.299 
Number of treatment failuresa  60 (15.7%)  56 (22.0%)  0.142  0.039  29 (19.9%)  31 (21.2%)  0.010  0.218 
Day of treatment failure  2.7 (1.4)  2.0 (1.3)  0.052  0.242  2.6 (1.4)  2.1 (1.3)  0.047  0.201 
Insulin therapy
Total insulin dose (Units per day)  33.1 (6.0)  21.2 (4.5)  0.344  <0.001  32.0 (5.6)  24.1 (5.3)  0.309  <0.001 
Total basal insulin dose (Units per day)  15.2 (2.9)  16.5 (3.0)  0.092  0.108  15.4 (2.9)  16.1 (2.9)  0.006  0.324 
Total prandial rapid-acting insulin dose (Units per day)  10.1 (3.1)  –  –  –  9.3 (3.0)  –  –  – 
Total supplemental rapid-acting insulin dose (Units per day)  5.8 (1.1)  6.3 (1.9)  0.056  0.257  6.0 (1.0)  6.1 (1.2)  0.005  0.381 
Number of injections per day during hospital stay  4.0 (0.0)  2.3 (0.8)  0.357  <0.001  4.0 (0.0)  2.4 (0.8)  0.341  <0.001 
Hypoglycaemia
Total number of hypoglycaemic episodes  88  29  0.421  <0.001  64  36  0.399  <0.001 
Patients with 1 hypoglycaemic episodes  57 (14.9%)  20 (7.9%)  0.306  <0.001  19 (13.0%)  12 (8.2%)  0.214  0.019 
Patients with ≥2 hypoglycaemic episodes  46 (12.0%)  8 (3.1%)  0.401  <0.001  16 (11.0%)  6 (4.1%)  0.322  <0.001 
Hypoglycaemia incidence rate (per 100 patients-years)  18.3  6.5    <0.001  17.0  7.4    <0.001 
Patients with any blood glucose<70mg/dL  45 (11.7%)  16 (6.3%)  0.254  0.015  16 (11.0%)  11 (7.5%)  0.211  0.020 
Patients with any blood glucose<54mg/dL  13 (3.4%)  3 (1.2%)  0.121  0.044  5 (3.4%)  2 (1.3%)  0.113  0.043 
Patients with any blood glucose<40mg/dL  7 (1.8%)  1 (0.4%)  0.103  0.044  2 (1.4%)  1 (0.7%)  0.088  0.184 
Length of hospital stay (days)  6.5 (1.6)  7.0 (1.8)  0.049  0.249  6.7 (1.7)  6.9 (1.7)  0.012  0.342 
Hospital complications
Total number of hospital complications  52 (13.6%)  25 (9.8%)  0.072  0.112  19 (13.0%)  15 (10.3%)  0.039  0.148 
Infection  14  0.095  0.104  0.017  0.222 
Acute respiratory failure  26  13  0.104  0.044  10  0.014  0.289 
Acute kidney injury  0.076  0.154  0.011  0.302 
Thromboembolism  0.083  0.152  0.012  0.301 
Bleeding  0.075  0.168  0.030  0.117 
Myocardial infarction  0.042  0.147  0.031  0.116 
Other  0.096  0.103  0.030  0.120 
Requiring admission to an intensive care unit  18  10  0.098  0.060  12  0.011  0.307 
Hospital deaths  16  0.092  0.064  0.015  0.291 

Values are shown as mean (standard deviations), absolute values, and percentages. Standardized difference of>10% (>0.1) is considered to represent a non-negligible difference. Values were considered to be statistically significant when p<0.05 in the comparison analysis. mg/dL: Milligram/decilitre.

a

Treatment failure is defined as either two consecutive measurements or a mean daily BG level>240mg/dL. When patients on the linagliptin-basal insulin regimen experience treatment failure, they are switched to the basal-bolus regimen.

Discussion

This real-world study found that the hospital antihyperglycemic regimen with linagliptin and basal insulin was found to be safer, as there were fewer hypoglycemic episodes; simpler, as there was a lower total daily insulin dose and fewer number of injections per day; and as efficacious in regards to glycemic control as a multidose basal-bolus insulin regimen in non-critically ill patients with mild-to-moderate hyperglycemia control who are treated at home without injectable therapies and who were admitted for ADHF.

As a result of the association between HF and T2D, patients are normally subjected to higher risk of hospitalization, poorer cardiovascular outcome, and polypharmacy, making the therapeutic approach very complex.10

In non-critically ill patients with T2D, the basal-bolus insulin regimen, which includes once-daily basal insulin and bolus of rapid-acting insulin before meals, is currently the preferred therapy for treating in-hospital hyperglycemia. This intensive regimen is used regardless of the age, the diabetes characteristics, admitting diagnosis, or the presence of multimorbidity and polypharmacy.2,3 In recent years, several studies have shown that the use of antihyperglycaemic regimens with DPP-4i were as efficacious and safe as multidose insulin regimens, and made easier the management of hyperglycaemia in hospitalized patients.5–8 However, all these studies have included general medicine and surgery patients and no subgroup analysis has been performed in any of them. Our study is the first to focus on patients with T2D admitted for ADHF. Patients benefited from a regimen including linagliptin, which led to a reduced insulin dose and fewer daily injection, maintaining the glycaemic efficacy. We also found a relevant reduction in hypoglycemic episodes, providing important data in regards to in-hospital safety. This reduction has been previously reported in general medicine and surgery patients with T2D.6–8 It is known that hypoglycemia can be more frequently induced in patients with a vulnerable profile who receive multidose insulin regimens.2,3,8

Limited evidence on the in-hospital use of other non-insulin glucose-lowering drugs exists. Although sodium-glucose transporter 2 inhibitors have shown clear benefits on HF outcomes, current evidence recommends avoiding routine in-hospital use until safety and effectiveness are established.3

Although our findings are important, we acknowledge several potential limitations. Firstly, the use of PM cannot exclude the possibility of unmeasured confounding factors due to the retrospective nature of our data. Secondly, we used a protocol that is not fully implemented in our area. Thirdly, due to the relatively low number of events or complications, their relationship to the antihyperglycemic regimen could not be conclusively determined. Fourthly, in our local protocol for the treatment of hospitalized T2D patients, only linagliptin is used. The reasons that underlie its use in our protocol are that there is no need for dose titration according to renal function and that its safety has been demonstrated in several studies.6–8 Thus, our findings cannot be extrapolated to other DPP-4 inhibitors. Finally, we only selected patients admitted for ADHF, though the reduction in hypoglycemic events could be extrapolated to other subgroups of T2D patients at high risk of drug-related harms, such as those with chronic hepatic, kidney impairment, or dementia.3,4 Further research is required in order to confirm these results and to provide more evidence.

In conclusion, we found that the in-hospital linagliptin-basal insulin regimen was safer and simpler than basal-bolus insulin regimen. It led to similar glycemic control in non-critically ill patients with mild-to-moderate glycemic control who were treated at home without injectable therapies and who were admitted for ADHF. A Linagliptin-basal insulin regimen could be considered standard of care for these vulnerable, high complex patients in order to simplify in-hospital management.

Funding sources

This work was funded by grants from Internal Medicine Department, cofounded by the Fondo Europeo de Desarrollo Regional-FEDER (CIBER, CB06/03/0018).

Conflict of interest

None declared.

Acknowledgements

We thank Claire Conrad for her help with the final English-language version.

References
[1]
C.M. Lara-Rojas, L.M. Pérez-Belmonte, M.D. López-Carmona, R. Guijarro-Merino, M.R. Bernal-López, R. Gómez-Huelgas.
National trends in diabetes mellitus hospitalization in Spain 1997–2010: analysis of over 5.4 millions of admissions.
Eur J Intern Med, 60 (2019), pp. 83-89
[2]
G.E. Umpierrez, D. Smiley, A. Zisman, L.M. Prieto, A. Palacio, M. Ceron, et al.
Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes (RABBIT 2 trial).
Diabetes Care, 30 (2007), pp. 2181-2186
[3]
American Diabetes Association. Diabetes care in the hospital: standards of medical care in diabetes-2020. Diabetes Care 2020;43:S193–202. http://dx.doi.org/10.2337/dc20-S015.
[4]
L. Boucai, W.N. Southern, J. Zonszein.
Hypoglycemia-associated mortality is not drug-associated but linked to comorbidities.
Am J Med, 124 (2011), pp. 1028-1035
[5]
F.J. Pasquel, R. Gianchandani, D.J. Rubin, K.M. Dungan, I. Anzola, P.C. Gomez, et al.
Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomized trial.
Lancet Diabetes Endocrinol, 5 (2017), pp. 125-133
[6]
C. Lorenzo-González, E. Atienza-Sánchez, D. Reyes-Umpierrez, P. Vellanki, G.M. Davis, F.J. Pasquel, et al.
Safety and efficacy of DDP4-Inhibitors for management of hospitalized general medicine and surgery patients with type 2 diabetes.
Endocr Pract, (2020;Apr 27),
[7]
L.M. Pérez-Belmonte, J.J. Gómez-Doblas, M. Millán-Gómez, M.D. López-Carmona, R. Guijarro-Merino, F. Carrasco-Chinchilla, et al.
Use of linagliptin for the management of medicine department inpatients with type 2 diabetes in real-world clinical practice (Lina-real-world study).
J Clin Med, 7 (2018), pp. 271
[8]
L.M. Pérez-Belmonte, J. Osuna-Sánchez, M. Millán-Gómez, M.D. López-Carmona, J.J. Gómez-Doblas, L. Cobos-Palacios, et al.
Glycaemic efficacy and safety of linagliptin for the management of non-cardiac surgery patients with type 2 diabetes in a real-world setting: Lina-Surg study.
[9]
M. Arrigo, P. Nijst, A. Rudiger.
Optimising heart failure therapies in the acute setting.
Card Fail Rev, 41 (2018), pp. 38-42
[10]
D.S.H. Bell, E. Goncalves.
Heart failure in the patient with diabetes: epidemiology, aetiology, prognosis, therapy and the effect of glucose-lowering medications.
Diabetes Obes Metab, 21 (2019), pp. 1277-1290

Jose P. Lara and Ricardo Gómez-Huelgas have contributed equally to this work and share the last authorship.

Copyright © 2021. Elsevier España, S.L.U.. All rights reserved
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos