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ABSTRACT

Background subtraction models based on mixture of Gaussians have been extensively used for detecting objects in
motion in a wide variety of computer vision applications. However, background subtraction modeling is still an open
problem particularly in video scenes with drastic illumination changes and dynamic backgrounds (complex
backgrounds). The purpose of the present work is focused on increasing the robustness of background subtraction
models to complex environments. For this, we proposed the following enhancements: a) redefine the model
distribution parameters involved in the detection of moving objects (distribution weight, mean and variance), b)
improve pixel classification (background/foreground) and variable update mechanism by a new time-space dependent
learning-rate parameter, and c) replace the pixel-based modeling currently used in the literature by a new space-time
region-based model that eliminates the noise effect caused by drastic changes in illumination. Our proposed scheme
can be implemented on any state of the art background subtraction scheme based on mixture of Gaussians to
improve its resilient to complex backgrounds. Experimental results show excellent noise removal and object motion
detection properties under complex environments.

Keywords: Background subtraction, Mixture of Gaussians, Expectation-Maximization Method.

RESUMEN

Los modelos de substraccion de fondo basados en mezcla de Gaussianas han sido ampliamente usados para la
deteccién de objetos en movimiento en diversas aplicaciones de visién computacional. Sin embargo, la substraccion
de fondo sigue siendo un problema abierto, particularmente en escenas de video donde existen cambios drasticos de
iluminacion y fondo dinamico. El presente trabajo tiene por objetivo incrementar la robustez de los modelos de
substraccién de fondo en ambientes complejos, para esto se propone: a) redefinir los parametros de la distribucion de
mezclas que afectan la deteccion de objetos en movimiento (peso, media y varianza de la distribucion); b) mejorar la
clasificacion de pixels (fondo/objeto) y el mecanismo de actualizacion de las variables mediante la aplicaciéon de un
nuevo parametro de velocidad de aprendizaje que depende de la historia temporal y espacial de los objetos en
movimiento c¢) reemplazar el modelo de substraccion de fondo a nivel de pixel usado actualmente por un modelo que
cubre una region espacio-temporal para la eliminacion de ruido causado por cambios drasticos de iluminacion. Las
propuestas pueden ser implementadas en cualquier esquema de sustraccion de fondo basado en mezcla de
Gaussianas para mejorar su respuesta en situaciones de fondos complejos. Resultados experimentales del modelo
muestran su excelente capacidad para la eliminacion de ruido y deteccion de objetos en movimiento en ambientes de
fondo complejo.

1. Introduction

Background subtraction models have been widely
used for detecting or localizing moving objects in
video scenes. It represents a fundamental step in
several computer vision applications, such as
video surveillance, vehicular traffic analysis, object
tracking, and recently human activity recognition
(running, dancing, jumping, etc.) [1-6]. However,
background subtraction is not an easy task,
schemes must be able to adapt to complex
environments such as illumination changes,
different weather conditions in the scene (snow,

rain, wind, etc.), and subtle changes in the
backgrounds such as waves on the water, water
fountains, moving tree branches, etc. (Fig.1). False
positives can be induced by drastic illumination
changes, while false negatives may be due to
similarities between objects and background [1].

Several schemes have been developed to deal

with the above problems, which can be
categorized in three groups [7]: a) temporal
difference, in these techniques the difference
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Figure 1. Examples of video scenes with dynamic background and drastic illumination
changes. (a) PETS 2000, (b) Watersurface, (c) Campus, and (d) Fountain sequences.

between two or three consecutive video frames is
significantly bigger in regions with motion, thus
motion can be segmented with respect to static
regions; b) optical flow, the goal of optical flow
estimation is to compute an approximation to the
motion field from time-varying image intensity
relative to the observer in the scene (usually a
camera). Objects with different motion pattern than
the background are tagged as objects in motion
(for example, background camera motion can be
distinguished from the objects in motion); c)
background subtraction, it builds a pixel-based
model of the background in an image sequence so
that, regions significantly different from the model
are classified as foreground objects.

Among these categories, background subtraction
models have proven to be more robust under
different background environments (depending of
course on the way the background is modeled).
Generally speaking, background subtraction
models in the literature include the following three
modules: background model, variables-update
mechanism, and training for the initialization of the
model. The simplest background model considers
a unimodal distribution for modeling the pixel
intensity and/or color, as in Pfinder application [8]
for object tracking. Pfinder uses a multiclass
statistical model requiring a static scene for the
initialization process in order to yield good results
(no reports are available for outdoor
environments). Horprasert et al., 1999 [9],

introduced new parameters for the modeling of an
image pixel (a big step forward in background
subtraction): mean, standard deviation of the
color space (RGB), luminance variation and
chrominance variation. Monnet et al., 2003 [10],
proposed a real-time scheme for modeling
dynamic scenes such as ocean waves and trees
shaken by the wind; however, the scheme
requires a long initialization period without objects
in motion in order to model the background.
Additionally, there are difficulties in detecting
objects moving in the same direction as the
waves. Mittal and Paragios, 2004 [11], developed
a background subtraction model based on
adaptive kernels. The scheme works on complex
backgrounds, but the computational cost is high.

Li et al, 2004 [12], proposed a Bayesian
architecture that incorporates spatial and
temporal spectral properties in order to

characterize each background pixel. Their method
can deal with both static and dynamic
backgrounds. In Ridder et al.,, 1995 [13], each
pixel is modeled with the Kalman filter, showing
robustness to illumination changes. In the work of
Piccardi & Jan, 2004 [14] and Han et al., 2007
[15], the mean-shift method is applied to model
the background.

Currently, the Gaussian mixture model is one of
the most popular schemes for background
subtraction, because of its ability to handle slow
illumination changes, slow and periodic object
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motion, camera noise, etc. The article of Stauffer
and Grimson, 1999 [16], is one of the most
representative works in this area. They modeled
each pixel with a mixture of Gaussians and
applied the Expectation-Maximization method for
updating the model parameters. The system can
deal with illumination changes (up to a certain
degree), detect slow object motion, and objects in
motion can be removed from the scene. Following
this idea, Shen, et al.,, 2012 [17], applied the
mixture Gaussian model on sensor networks with
restricted energy supply and limited CPU
processing capabilities. Their contribution is the
application of compressive sensing to reduce the
dimensionality of the problem (number of pixels to
process) for both, energy consumption and real-
time scene processing.

Our goal in this work is to increase the robustness
of background subtraction schemes based on the
Gaussian mixture model. In particular, we propose
the following enhancements for scenes in complex
environments (dynamic backgrounds): a) Noise
elimination  during pixel classification as
background or foreground; b) reduction of drastic
variations in illumination; and c) elimination of high
frequency motion that affects the identification of
moving objects. Our proposal can be implemented
in any state of the art scheme in the literature
based on mixture of Gaussians in order to deal
with dynamic backgrounds.

The paper is organized as follows. Section 2
introduces the background subtraction algorithm
based on Gaussian mixture models. Section 3
describes the proposed changes to the
background subtraction algorithm in order to deal
with complex backgrounds. Finally, conclusions
are presented in section 4.

2. Mixture of Gaussians Method for
Background Subtraction

Background subtraction or background modeling in
computer vision refers to estimating an image
background from a sequence of images or video
using a statistical model. The main assumption is
that the observer (camera) is static, and only

objects move around in the scene. One of the
easiest ways for background modeling is to take
an image of the scene without objects in motion;
this represents the background model. Any object
not represented in the background image can be
identified by using the absolute difference between
consecutive frames, that is every pixel in the image
I(ti‘j) (image at time f) is coAmpared against the
estimated background image B:

Tag(i,j) = |B(i,j) — 1§ < Th

This solution is sufficient under controlled
environments. In arbitrary conditions such as
outdoor scenes, illumination is a time-dependent
variable for which adaptive models of the
background are required. In the following section
we introduce the concept of adaptive
background models using mixture of Gaussians
and current updates.

2.1 Mixture of Gaussians (MoG)

Gaussian mixture model was introduced by
Stauffer and Grimson in 1999 [16]. The idea of
scheme is to provide a pixel-based multimodal
representation of the background for the
elimination of repetitive motion such as water-light
reflection, moving tree branches, etc. They
considered a pixel X(x,,y,) in the video sequence
as a random process represented as a time series.
At any time t, what is known about the pixel
X (xy,Y0) is its history:

{X(lxol}’O)' ""X(txo'J/o)} = {I(ixo'J’o): I=<is t}'

where I! is the sequence of images up to time t.
Fig.2 shows the pixels in a scene with strong
illumination variation (pixels in red) and pixels with
real object motion (pixels in blue). The actual
problem is to filter out the noise (red pixels) while
preserving those pixels representing real objects in
motion (blue pixels). For this, the history {X?, ..., X'}
is modeled by a mixture of K Gaussian
distributions; so the probability of observing the
current pixel Xt is

P(x*10Y) = X, wi * n(X*|uf, XF ) (1)
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Figure 2. Pixels in complex backgrounds can be considered as random process. Pixels in
red shows drastic variations in illumination, while pixels in blue shows objects in motion.

where K is the number of distributions, w{ is an
estimate of the weight (what portion of the data is
accounted for by this Gaussian) of the " Gaussian
in the mixture at time ¢, u! is the mean value of the
" Gaussian in the mixture at time t, YXtis the
covariance matrix of the /" Gaussian in the mixture
at time t, O¢ represents the vector of parameters
in the model @ = (Wf, ..., wk, i, ..., uk, XF ) at time
t, and n() is the Gaussian probability density
function

XX =
. r _livt  NTY-1(yt _
e (— S T - W)

2)
K is determined by the available memory and
computational power, which can be considered

fixed [16, 17], variable [20], or adaptive [19] (more
complicated regions require more Gaussian

components than stable ones). Also for
computational reasons the covariance matrix is
assumed to be of form [15]

Sh=of
In order to compute the vector of parameters that

best represents the data history {X1,...,X'}, the
maximum likelihood estimation function is applied

@) = [ [peule)
i=1

and maximizing

0" = argmax L(O|X)

" ®)

yields
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2.2 Background Subtraction

Once the mixture of Gaussians is defined for
background subtraction, the next steps is to
determine which of the K distribution the actual
pixel X' belongs to and update the vector
parameter of the model. For this, Stauffer y
Grimson, 1999 [16], estimated the concordance
p(k|Xt,0°4) of the pixel Xt with every single
distribution k € K of the mixture. The concordance
is positive if Xt < 2.5¢ from y, which can also be
expressed in terms of the Mahalanobis distance

di = (X* = )" X' (X — ) (4)

with positive concordance if dk < 2.5 (that is,
98.76% of a 1-D Gaussian distribution). For higher
dimensions, the X2 (Chi-square) distribution with n
degrees of freedom and confidence interval y is
used instead; positive concordance is represented
by di<X?,. In practice, p(k|X,0°%) s
approximated by

p(k|Xt,0°%) = q, =
{1 for the distribution with the minimum distance
0 all others
()

If several distributions have the same minimum
distance, the one that maximizes wy/||Z;||r (where
F is the Frobenius norm) is selected. This is in
favor of the distribution that accounts for the most
pixels (big w and small variance). If none of the
distributions matches the new pixel, the least
probable distribution is replaced by a new
distribution with mean u = X¢, high o? and small
weight w, /||1Z;|lz. This is the way new objects are
incorporated to the background. Finally, the K

distributions are sorted with respect to wy/||Z¢|lF,
and only the combination of the first B
distributions that overcome the threshold Th are
selected as the background model.

The last step is to compute the binary image
(background-foreground) out of the background
model. The B distributions are compared with the
distribution of the new pixel (let’s call it) k, then if
k € B, the new pixel is part of the background
otherwise is part of a moving object. The weight
of new pixel distribution is updated as follows:

Wi = (1 — awy, + aqy, (6)
where a =1/(N + 1), q. =1 for the distribution
with the minimum distance or q,, = 0 for the rest
(Eq. 5). Similarly, u, and o, for the new pixel

distribution are also updated

Uie = (1 — pIie—1 + pX;

T (7)
2:lgc.t =(1- p)zi,—lt + p(Xt - :ufc.t) (Xt - #k,t)
where
p = an(X*|fy, 6x) (8)

2.3 Learning Rate (a)

One of the main problems with adaptive mixture
Gaussian models is to balance the speed at which
objects are taken into the background once they
stop moving; this is known as learning rate. In the
literature, the learning rate is controlled by a fixed
global value « €[0,1]; unfortunately, the
adaptability or convergence of the distributions to
new situations maybe different for different
applications or even the same scene. Objects can
remarkably be absorbed either too slow or too fast,
affecting the segmentation of background and
foreground (see example of Fig.3). If a is chosen
too big (close to 1), the convergence speed
improves but the model becomes very sensitive to
environmental noise. Under these situations, the
model is indifferent to past events (see Eq. 6).
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a=0.1

(b)

Figure 3. Learning rate speeds at which objects are absorbed by the
background model. (a) Original video sequence and (b) visual effect.

2.4 External Factors Affecting Moving Object
Detection

As mentioned in section 1, subtle changes in the
background such as water waves, water fountains,
rain, moving tree branches, etc., inhibit the correct
classification of background and objects in motion
in a scene. To tackle these problems (up to a
certain extent), Teixeira et al., 2007 [21], assumed
that illumination variations in a scene are caused
by a multiplicative factor k affecting the real color
of the pixel. Under this case, the resultant color
vector is co-linear to the reference vector (Fig.4).
The co-linearity test consists in evaluating the
angle between the current pixel v¢ and the
reference pixel v" (previous pixel value),

v’
el

©)

cosf =

If cosO is greater than a threshold Th; = 1, the
vector is considered co-linear, which confirms that
the pixel change was produced by an illumination
change. Fig.2 (second row) shows some examples
for which Teixeira’'s algorithm [21] (known as

cascade algorithm), identifies some pixels as co-
linear (pixels marked in red) and some other as
objects in motion (pixels marked in blue). Co-linear
pixels maintain their previous classification
(background in this case), keeping only the pixels
representing motion as shown in Fig.2 third row.

3. Proposed Changes for Robust Background
Subtraction

In this section, we describe our contribution for
improving background subtraction and object-
motion detection (section 2) in complex
environments (outdoor scenes in Fig.1). We have
selected the cascade algorithm [21] as a test bed
and reference point to measure the performance
quality of our proposal. Cascade algorithm is
known as one of best schemes for background
subtraction, but any scheme in the literature based
on MoG can also be used for this purpose.

In particular, our proposal considers the
modification of the following parameters for robust
background subtraction model: variance of the
model (0°), learning rate (a), new distance metric

532
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Figure 4. Effects of additive noise (vy) and
illumination changes (multiplicative factor k)
in the original pixelc v, yielding v;.

for estimating the density function of the current
pixel, and the use of spatio-temporal region for the
MoG instead of the commonly used pixel-based
representation.

3.1 Variance (0°) and Learning Rate (a)

The definition of variance (02) and weight (w) (see
Eq. 1 and Eq. 6), are of great importance for the
segmentation of the scene background and
foreground. Background pixels have small o? and
big w because they represent more stable
conditions, that is new pixels are found in
concordance with the current background
distribution. One of the problems in previous
methods is that the variance is not bounded to a
minimum. In an image sequence in which most of
the pixels are considered as background, the
variance may take very small values (< 1x10E -16)
introducing noise in the segmented scene (very
narrow Gaussian distribution for which some pixels
may incorrectly be classified as objects, such as
the red pixels in Fig.2 second row). To avoid this
situation, we propose the use of each color
component (or channel) for the pixel classification
and define a minimum variance value each
component may take:

Algoritmo 1: New o2 definition
forallk € {1to K}
forAll z € {1to NChannels}
Si oy, < SigmaMinimum,
Oy = SigmaMinimum,
end
end
end

where K is the number of distributions in the MoG,
NChannels is the number of channels in the

chosen color space (3 channels for the YUV color
space). In our experiments, the best values for
SigmaMinimum, = [2.0, 2.3, 2.3]. With this new
definition, drastic illumination changes (Y
component) can be filtered out by testing
separately the stability of the UV components (as
shown at the end of this section and section 3.3).

The learning rate a (speed at which parameters
are updated in Egs. 6-8) is considered as a fixed
global parameter in most schemes, which is not
always useful in scenes with different object-
motion speed. We propose a decreasing quasi-
global space-time variable a to control not only the
speed at which objects are absorbed by the
background, but also to filter out illumination
changes of the background. Initially, our a takes in
a big value and gradually decreases to a minimum
threshold a,,;,- Once the system is statistically
stable (background has been completely modeled)
a smaller value of a can now be used only in
statistical stable regions of the scene (it is not a
global parameter anymore). After some
experiments with a, the definition with the best
results is

1
a(t) = {1tlog t?

Xmin

(10)

The space dependency of a(t) is somewhat
hidden, it is not related to specific coordinates.
What we mean is that, a(t) changes according to
the statistics of each region in particular (which in
turns depends on the moving objects in the scene).
For example, a scene without moving objects will
have only one time-varying learning rate defined
by Eq. 10; a more complex scene will have as
many learning rates as objects in the scene with
different statistical behavior. To incorporate the
advantages of a small a, we verify if the current
pixel iteration t and the previous t-n iterations (for
n=3) were identified as foreground (moving object),
in this case we fix a = 0.005 (therefore a depends
on the particular statistics on each region).

The advantages of Eq.10 are:

* The initial frames have big learning rate value (for
t=0, a="%), useful in sequences with many objects
in motions, which need to be quickly absorbed by
the background.
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* It can deal with drastic changes in illumination
(recall that small learning rate means more weight
to past history as shown in Egs. 6-8).

* The problem of fast object assimilation by the
background is eliminated once the system stabilizes.

The results of the new parameter definition for the
variance and learning rate are shown in Figs.5-7
with a = 0.005, a-dual (our definition in Eqg. 10), and
a-dual with variance threshold following Algorithm-1
respectively for three different video shots. The
three columns in each figure represent the original
video sequence, the difference between two frames,
and detected motion by the MoG. It can be seen
that our proposal removes additional noise coming
from illumination changes (Fig.7).

They should have descriptive captions. They should
be mentioned in the main text.

PETS2001_DS3_TE1_C1 Sequence

Background

Difference Motion

Seq-231

Seq-886

Seq-2380

Lo A

Figure 5. Background model with a=0.005.

PETS2001_DS3_TE1_C1 Sequence
Background

Difference Motion

Seq-231

Seq-886

aw i

Sexqp-2380

Figure 6. Background model with
dual a, without variance threshold.

PETS2001_DS3_TE1_C1 Sequence
Background Difference Motion
#
2
S .
3 '
77 P O A

Figure 7. Background model with dual
a, and variance with threshold (Algorithm 1).

3.2 Pixel Based vs Region Based Background
Modeling

In previous schemes, each pixel in the scene is
modeled with a MoG. In order to filter out high
frequency motion present in the background, we
propose a region-based background modeling
represented by a space-time cube with dimension
mnt, where mn represent the spatial-dimension
and t the time-dimension (Fig.8). In the model,
each region mnt is represented by the arithmetic
mean with m= n=t= 5.

t-2

t-1
o

m | la > Pixel X' (i, )

n

Figure 8. Cube region for the
background subtraction model.

On scenes with dynamic background such as the
Waterfountain and WaterSurface our region-based
model shows excellent results as shown in Fig.9.
The second row represents the pixel-based model
and the third row our region-based model using the
arithmetic mean. Depending on the frequency of
each particular scene background, mnt dimension
can be adjusted accordingly.
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Pixel Based

Reglon Based

I Jo-fhes

Region Based
.

Fiaure 9. Comparison between pixel-based and reaion-based Backaorund model.

3.3 Background-Foreground Classification

A s mentioned in section 2.2, the Mahalanobis
distance (Eq. 4) is the main metrics for deciding
which mixture of Gaussian better represents the
current pixel [16, 18, 21]. This distance makes
use of a global threshold for both illumination and
color components. In our proposal we
differentiate the confidence interval for each color
component YUV; color components (UV) are set
to higher confidence interval than the illumination
component (Y). In case of drastic changes in
illumination, our decision is based only on the
color components; if they do not change, we
conclude the region classification has not
changed at all (filtering out illumination changes).
In our case, we use the following distance metric
to find the concordance of the region with a
specific distribution

D*Z_ — (xi_”k.f)z (11)
k,j Ok
where the index k represents the distribution of the
mixture to be used in the evaluation, and |
represents the color components YUV. The
confidence interval for the experiments are YUV=
{99.9%, 99.5%, 99.5%)} equivalent to Th = {10.83,
7.88, 7.88}. The results between D’ (Eq.11) and

D;; (Eq. 4) are shown in Fig.10. Our proposed
distance for each color component (last row in
Fig.10) is more robust to illumination changes than
the one considering the same threshold values for
all components.

Sequence PETS2001_DS3_TE1_C1

e — S —

-

Original Sequence

Distance Metric D

Distance Metric D**

Figure 10. Threshold differentiation for the
YUV color-space. Results in the second row
shows no threshold differentiation; results
in the third row use Th={10.83, 7.88, 7.88}.
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Method

Cascade Algorithm [21]

Seq-324

WaterSurface

1y

PETS2001.3.1

So-2006

Figure 11. Object detection using the cascade
algorithm [21] and our final proposal.

3.4 Final Scheme Implementation

We implemented the entire set of proposals
described in sections 3.1-3.3 into the Cascade
algorithm [21], and evaluate its performance
against the original or unmodified algorithm using
two different video sequences WaterSurface, and
PETS2001_3 1 as shown in Fig.11. As can be
seen, our proposed method adapts very rapidly to
drastic changes in illumination and dynamic
backgrounds without missing real objects in motion
(greater than the filter size described in section
3.2). It is important to point out that our proposal
completely eliminates high frequency background
noise due to the presence of water-wave motion.

In general terms, our results are excellent and in
agreement with our theoretical assumptions and
developments for the following reasons: a) the
inclusion of independent threshold for each color
component (YUV) eliminates drastic illumination
changes. It was confirmed that cloud and sun
motions affect primarily the Y component and not
UV components; b) the introduction of a minimum
variance for each color component (Algorithm 1)
reduces the number of false positives in the
presence of noise (MoG are not too narrow
anymore as previous works); c) the application of a
space-time filter eliminates up to a certain extent
high-frequency noise immerse in complex
environments or backgrounds such as water

waves, rain, tree-branches shaken by wind, etc.
Finally, the most important characteristic in our
model is that all these variables are tunable for a
specific background modeling application.

4. Conclusions

We have shown that background subtraction
schemes base on mixture of Gaussians exhibit
some deficiencies when applied to complex
environments, that is scenes with dynamic
background or drastic illumination changes in the
background (as for example water waves, water
fountains, tree branches motion, rain, etc.). In this
work we proposed some simple but effective
techniques that notably improve current results
reported in the literature. In particular our proposal
includes: a) new time-space adaptive learning rate
parameter; b) new variance definition with
minimum threshold; c¢) different confidence
intervals and distance metrics for each color
representation YUV; d) pixel-based modeling is
replaced by time-space dependent region-based
model representation (cube). Our scheme shows
excellent results compared to Teixeira, et al., 2997
[21], which is considered one of the best schemes
in the literature.
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