covid
Buscar en
Gaceta Médica de Bilbao
Toda la web
Inicio Gaceta Médica de Bilbao Expresión de proteínas relacionadas con resistencia a múltiples drogas (MDR-P...
Journal Information
Vol. 104. Issue 2.
Pages 51-63 (January 2007)
Share
Share
Download PDF
More article options
Vol. 104. Issue 2.
Pages 51-63 (January 2007)
Full text access
Expresión de proteínas relacionadas con resistencia a múltiples drogas (MDR-Proteínas) y su implicación pronóstica en la supervivencia en el cáncer de pulmón
Multidrug Resistence Proteins (MDR-Proteins) expresión and prognostic value on survival in lung cancer
MDR-proteinaren espresioa eta duten garrantzia birikako minbizi iraupenean
Visits
2407
Afredo Paredes-Lario1,
Corresponding author
gepecelm@sc.ehu.es

Correspondencia: Miguel Echenique-Elizondo. Catedrático de Cirugía, Facultad de Medicina. UD San Sebastián, Universidad del País Vasco, P. Dr. Begiristain, 105., 20014. San Sebastián. Gipuzkoa. España UE., Tfno. +34-943017319, Fax +34-9430017330
, Carlos Blanco-García2, Miguel Echenique-Elizondo3
1 Servico de Oncología. Hospital Donostia. Donostia-San Sebastián. Gipuzkoa. España UE.
2 Servico de Radioterapia. Hospital Donostia. Donostia-San Sebastián. Gipuzkoa. España UE.
3 Departamento de Cirugía. Universidad del País Vasco. Bizkaia. España UE.
This item has received
Article information
Resumen
Introducción

La reducción en la acumulación intracelular de los fármacos, es uno de los mecanismos más frecuentes de resistencia a los antineoplásicos. Las proteinas transportadoras de membrana juegan un papel esencial en éste fenómeno.

Material y Métodos

Se recogieron 147 muestras tumorales procedentes de 143 pacientes. De éstas, 35 eran broncoscópicas y 112 quirúrgicas. Resultaron válidas para el estudio 101 muestras correspondientes a 99 pacientes. Las muestras tumorales criocongeladas fueron sometidas a análisis inmunohistoquímico para la detección de las tres MDR-proteínas, Pgp, Mrp1 y Lrp

Resultados

No expresaban ninguna proteína, 16 casos. Expresaban una sola proteína, 32 casos: 3 Pgp, 11 Mrp1 y 18 Lrp=0. Expresaban dos proteínas, 34 casos: 24 Pgp y Lrp, 5 Mrp1 y Pgp, 5 Mrp1 y Lrp=0. Expresaban las tres proteínas, 17 casos.No hemos detectado relación significativa entre la edad y la expresión de Pgp (p=0.74), Mrp1 (p=0.95), o Lrp (p=0.26). No detectamos diferencias significativas entre sexos, tanto al analizar por el número (p=0.72), como por el tipo (p=0.39) de proteínas expresadas de forma simultánea.Tampoco detectamos diferencias significativas entre los diferentes estadios tumorales, tanto para el número (p=0.55), como para el tipo (p=0.21) de MDR-proteínas expresada. Tampoco detectamos diferencias significativas entre los diferentes grados histológicos, tanto para el número (p=0.59), como para el tipo (p=0.51) de MDR-proteínas expresadas simultáneamente esadas simultáneamente. La tendencia de Pgp y Lrp a expresase asociadas ha resultado muy significativa (p<0.01), no ocurrió lo mismo para la sociación Pgp y Mrp1 (p=0.18) o Mrp1 y Lrp (p=0.26).

Conclusiones

El cáncer de pulmón expresa con frecuencia MDR-proteínas.De las tres MDR-proteínas estudiadas, Pgp Mrp1 y Lrp, es Lrp la más frecuentemente expresada. Los adenocarcinomas expresan menos Mrp1 que el resto de los tipos histológicos.Los carcinomas escamosos expresan menos Lrp que los adenocarcinomas y carcinomas indiferenciados de célula grande.Una proporción importante de pacientes expresan de forma simultánea más de una MDR-proteína.Los carcinomas escamosos, son los que con más frecuencia expresan Pgp, Mrp1 y Lrp de forma simultánea. Pgp se expresa fundamentalmente asociada a Lrp. No encontramos relación significativa en cuanto a la supervivencia y la expresión de Lrp (p=0,41), Mrp1 (p=0,51), Pgp (p=0,21) o cuando se epresan las tras asociadas (p=0,56).

Palabras clave:
MDR-proteinas
Cáncer
Pulmón
Supervivencia
Summary
Background

Intracelular drug acumulation reduction plays an important role in resistente to chemotherapy in neoplasms. MDR-proteins regulate this cell activity.

Methods

- 147 tumor simples were collected from 143 patients. 35 were done by bronchoscopy and 112 were surgical specimens. 101 samples from 99 patients were valid for the study. Cryopreservation and immunohystochemestry for detection of MDR-proteins:Pgp, Mrp1 y Lrp, was done by monoclocal murine Ab.

Results

16 cases did not expressed any protein.One protein was expressed in 32 cases: 3 Pgp, 11 Mrp1 and18 Lrp=0. Two proteins were expressed in 34 cases: 24 Pgp and Lrp, 5 Mrp1 y Pgp, 5 Mrp1 y Lrp=0. 17 cases expressed all three proteins, 17 casos. No diferences were observed in this expresión according to age: Pgp (p=0.74), Mrp1 (p=0.95), Lrp (p=0.26), sex:: numerical (p=0.72), type (p=0.39) of simultaneoulsy expressed proteins. Neither differences were observed according tumor: numerical (p=0.55), type(p=0.21)and pathology grade: both numerical (p=0.59) or type considered (p=0.51). Tendency of simultaneous expresión of Pgp and Lrp has been very significant a (p<0.01). The same was not observed in the association between Mrp1 and Lrp (p=0.26).

Conclussions

Lung cancer frequently express MDR-proteins. Lrp is the most frequent. Adenocarcinoma express less Mrp1 than the rest of patholy classes. Squamous carcinoma express less Lrp than adenocarcinoma and large-cell undifferenciatd carcinomas. More than two proteins are expressed simultaneously in significant number of cases. Squamous-cell carcinomas tend to express Pgp, Mrp1 and Lrp simultaneously. Pgp is expressed usually associated to Lrp. No differences in survival and MDR-proteins expression has been found when considered Lrp (p=0,41), Mrp1 (p=0,51), Pgp (p=0,21) and even when proteins expressed simultaneoulsy (p=0,56).

Key words:
MDR-proteins
Lung
Cancer
Survival
Laburpena
Sarrera

Zelularen barruen neoplasia aurkako botikaren konzentrazio murrizpena garrantzi handia du errezistenzia zortzen duten erabiltzen diren bide artean. Zelula azaleko garraio proteinak zerikusi haundia dute honen barru

Materiala eta Metodoak

147 birikako tumore mostrak jasoak izan ziren 143 gaixoetik. Hoeitatik 35 bronkoskopia bidez egindakoak izan ziren eta 112 zirujiaren bidez egindakoak. 101 mostrak – 99 gaixoetakoak – baliogarriak izan ziren ikerketa aurrera eramatateko. Krio-hoztatutako mostrak inmuno-histokimiko prozeduraren bidez ikertuak izan ziren hiru MDR-proteinaren – Pgp, Mrp1 eta Lrp – azalgarritasuna ikusia izana erakusteko.

Emaitzak

16 kasutan ez zen agertzen proteina bat ere. Proteina bakarra azaltzen zen 32 kasuetan : 3 Pgp, 11 Mrp1 eta 8 Lrp=0. Bi proteinak azaltzen ziren 34 kasuetan: 24 Pgp eta Lrp, 5 Mrp1 eta Pgp, 5 Mrp1 eta Lrp. Hiru proteinak ikusten ziren 17 kasuetan. Ez dugu ikusi erlaziorik adina eta proteina hauen espresio artean: Pgp (p=0.74), Mrp1 (p=0.95) edo Lrp (p=0.26) eta ez da sexuen artean (p=0.72) ere. Ez dugu ikusi ezberditasunik tumore estadioa kontutan hartua izan denean (p=0.55) edo tumore mota ikertu denean (p=0.21). Berdina gertatu da gradu histologikoa kontutan hartu denean (p=0.59) bai proteina bat soilik agertzen denean edo beste baterekin elkarturik dagoenean. Pgp-k eta Lrp-k tendentria dute elkarturik azal izan dezan (p<0.01), baina berdina ez da gertatzen Pgp eta Mrp1 –hekin (p=0.18) edo Mrp1 eta Lrp -ekin (p=0.26) kontutan hartzen direnean.

Ondorioak

Birikako minbiziak maiz erakusten ditu MDR-proteinak. Ikertuak izan diren hirugandik – Pgp, Mrp1 eta Lrp – Lrp gehien azaltzen dena da. Ez da garbi ikusten zer nolako balorea duten proteina hauek birikako minbiziaren bizi-iraupenean.

Hitz gakoak:
MDR-proteinak
Minbizia
Birika
Bizi iraupena
Full text is only aviable in PDF
Bibliografia
[1.]
Cardenal F., Lopez-Cabrerizo M.P., Anton A., et al.
Randomized phase III study of gemcitabine-cisplatin versus etoposide-cisplatin in the treatment of locally advanced or metastatic non-small cell lung cancer.
J Clin Oncol., 17 (1999), pp. 12-18
[2.]
Carney D.N., Shepherd F.A..
Treatment of SCLC: Chemotherapy. Textbook of Lung Cancer.
pp. 261-272
[3.]
Carr I.B..
Pleiotropic drug resistance in hepatocytes induced by carcinogens administered to rats.
Cancer Res., 47 (1987), pp. 5577-5583
[4.]
Beck W.T., Dalton W.S..
Mechanisms of Drug Resistance.
Cancer, Principles and Practice of Oncology, pp. 498-512
[5.]
Chu E., DeVita V.T..
Principles of Cancer Management: Chemotherapy.
Cancer, Principles and Practice of Oncology, 6, pp. 289-386
[6.]
Goldie J.H., Coldman A.J..
A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate.
Cancer treat Rep, 63 (1979), pp. 1727-1731
[7.]
Skipper H.E., Simpson-Herren L..
Relationship Between Tumor Stem Cell Heterogeneity and Responsiveness to Chemotherapy.
Important Advances in Oncology 1985, pp. 63-77
[8.]
Shepherd F.A., Carney D.N..
Treatment of NSCLC: Chemotherapy.
Textbook of Lung Cancer, pp. 213-242
[9.]
Nishio K., Nakamura T., Koh Y., et al.
Drug resístance in lung cancer.
Current Opinion in Oncology, 11 (1999), pp. 109-115
[10.]
Miller A.B., Hoogstraten B., Staquet M., Winkler A..
Reporting results of cancer treatment.
Cancer, 47 (1981), pp. 207-214
[11.]
Doyle L.A..
Mechanisms of Drug Resistance in Human Lung Cancer Cells.
Semin Oncol., 20 (1993), pp. 326-337
[12.]
Tamm I., Schriever F., Dörken B..
Apoptosis: implications of basic research for clinical oncology.
Lancet Oncol., 2 (2001), pp. 33-42
[13.]
Bradshaw D., Arceci R.J..
Clinical Relevance of Transmembrane Drug Efflux as a Mechanism of Multidrug Resistance.
J Clin Oncol., 16 (1998), pp. 3674-3690
[14.]
Gottesman M.M., Fojo T., Bates S.E..
Multidrug Resistance In Cancer : Role Of Atp-Dependent Transporters.
Nature Reviews Cancer, 2 (2002), pp. 48-58
[15.]
Morrow Ch.S., Cowan K.H..
Mechanisms of Antineoplastic Drug Resistance.
Cancer, Principles and Practice of Oncology, pp. 340-348
[16.]
Tan B., Piwnica-Worms D., Ratner L..
Multidrug resistance transporters and modulation.
Current Opinion in Oncology, 12 (2000), pp. 450-458
[17.]
Ishikawa T., Ali-Osman F..
Glutathione-Associated Cis-Diammine-Dicloroplatinum (II) Metabolism And ATP-Depedent Efflux From Leukemia Cells.
J Biol Chem., 268 (1993), pp. 20116-20125
[18.]
Plasencia C., Tarón M., Abad A., et al.
Genes de quimiorresistencia.
Manual de Oncología Clínica y Molecular, pp. 145-159
[19.]
Dano K..
Active outward transport of daunomycin in resistant Ehrlich ascitis tumor cells.
Biochim Biophys Acta, 323 (1973), pp. 466-483
[20.]
Dalton W.S..
Overcoming the Multidrug-Resistant Phenotype.
Cancer, Principles and Practice of Oncology, pp. 2655-2666
[21.]
Borst P., Evers R., Kool M., et al.
A Family of Drug Transporters: the Multidrug Resistance-Associated Proteins.
J Natl Cancer Inst, 92 (2000), pp. 1295-1302
[22.]
Jedlitschky G., Leier I., Buchholz U., et al.
ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein.
Cancer Res., 54 (1994), pp. 4833-4836
[23.]
Rappa G., Loico A., Flavell R., et al.
Evidence that the multidrug resitance protein (MRP) functions as a co-transporter of glutathione and natural product toxins.
Cancer Res., 57 (1997), pp. 5232-5237
[24.]
Carney D.N., Shepherd F.A..
Treatment of SCLC: Chemotherapy.
Textbook of Lung Cancer, pp. 261-272
[25.]
Scheper R.J., Broxterman H.J., Scheffer G.L., et al.
Overexpression of a Mr 1 10.000 Vesicular Protein in Non-P-Glycoprotein-Mediated Multidrug Resistance.
Cancer Res., 53 (1993), pp. 1475-1479
[26.]
Slovak M.L., Pelkey Ho J., Cole S.P.C., et al.
The LRP gene encoding a major vault protein associated with drug resistance maps proximal to MRP on cromosoma 16 : Evidence that chromosoma breakage plays a key role in MRP or LRP gene amplification.
Cancer Res., 55 (1995), pp. 4214-4219
[27.]
Scheffer G.L., Wijngaard P.L.J., Flens M.J., Izquierdo M.A., et al.
The drug resistance-related protein LRP is the human major vault protein.
Nature Med., 1 (1995), pp. 578-582
[28.]
Kedersha N.L., Rome L.H..
Isolation and Characterization of a Novel Ribonucleoprotein Particle: Large Structures Contain a Single Species of Small RNA.
J Cell Biol., 103 (1986), pp. 699-709
[29.]
Boyle P., Gandini S., Gray N..
Epidemiology of lung cancer: A century of great success and ignominious failure.
Textbook of Lung Cancer, pp. 13-25
[30.]
Beer T.W., Rowlands D.C., Crocker J..
Detection of the multidrug resistance marker P-glycoprotein by immunohistochemistry in malignant lung tumors.
Thorax, 51 (1996), pp. 526-529
[31.]
Simon M.F., Schindler M..
Cell biological mechanisms of multidrug resistance in tumors.
Proc. Natl. Acad. Sci. USA, 91 (1994), pp. 3497-3504
[32.]
Godstein L.J..
MDR1 Gene Expression in Solid Tumours.
Eur J Cancer, 32A (1996), pp. 1039-1050
[33.]
Radosevich J.A., Robinson P.G., Rittmann-Grauer L.S., et al.
Inmunohistochemical analysis of pulmonary and pleural tumors with the monoclonal antibody HYB-612 directed againts the multidrug-resistance (MDR-1) gene product P-glycoprotein.
Tumor Biol., 10 (1989), pp. 252-257
[34.]
Scagliotti G.V., Novello S., Selvaggi G..
Multidrug resistance in non-small-cell lung cancer.
Annals of Oncology, 10 (1999), pp. S83-S86
[35.]
Choi J.H., Lim H.Y., Joo H.J., et al.
Expression of multidrug resistance-associated protein 1, P-glycoprotein, and thymidylate synthase in gastric cancer patients treated with 5-fluorouracil and doxorubicin-based adyuvant chemotherapy after curative resection.
Br J Cancer, 86 (2002), pp. 1578-1585
[36.]
Zhou J., Higashi K., Ueda Y., et al.
Expression of multidrug resistance protein and messenger RNA correlate with (99m)Tc-MIBI imaging in patients with lung cancer.
J Nucl Med., 42 (2001), pp. 1476-1483
[37.]
Volm M., Mattern J., Samsel B..
Overexpression of P-glycoprotein and glutathione S-transferase-pi in resistant non-small-cell lung carcinomas of smokers.
Br J Cancer, 64 (1991), pp. 700-704
[38.]
Segawa Y., Ohnoshi T., Hiraki S., et al.
Immunohistochemical Detection of P-glycoprotein and Carcinoembryonic Antigen in Small Cell Lung Cancer: With Reference to Predictability of Response to Chemotherapy.
Acta Med Okayama, 47 (1993), pp. 181-189
[39.]
Hsia T.C., Lin C.C., Wang J.J., et al.
Relationship Between Chemotherapy Response of Small Cell Lung Cancer and P-glycoprotein or Multidrug Resistance-Related Protein Expression.
Lung, 180 (2002), pp. 173-179
[40.]
Oguri T., Isobe T., Fujitaka K., et al.
Association between expression of the MRP3 gene and exposure to platinum drugs in lung cancer.
Int J Cancer, 93 (2001), pp. 584-589
[41.]
Thomas H., Coley H.M..
Overcoming Multidrug Resistance in Cancer: An Update on the Clinical Strategy of Inhibiting P-Glycoprotein.
Cancer control., 10 (2003), pp. 159-165
[42.]
Bates S.E., Chen C., Robey R., et al.
Reversal of multidrug resistance: lessons from clinical oncology.
Novartis Foundation Symposium, 243 (2002), pp. 83-102
Copyright © 2007. Academia de Ciencias Médicas de Bilbao
Article options