Buscar en
Enfermedades Infecciosas y Microbiología Clínica (English Edition)
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica (English Edition) Multicenter clinical evaluation of a novel transcription-mediated amplification ...
Journal Information
Vol. 41. Issue 8.
Pages 462-467 (October 2023)
Share
Share
Download PDF
More article options
Visits
59
Vol. 41. Issue 8.
Pages 462-467 (October 2023)
Original article
Full text access
Multicenter clinical evaluation of a novel transcription-mediated amplification assay for SARS-CoV-2 molecular testing
Evaluación clínica multicéntrica de un nuevo ensayo de amplificación mediada por transcripción para la detección molecular de SARS-CoV-2
Visits
59
Miguel Fernández-Huertaa, Paula Salmerónb, Yolanda Hernández-Hermidaa, Cristina Andrésb, Jordi Niubóa, Laura Calatayuda,c, M. Ángeles Domíngueza,d,e, Tomàs Pumarolab, Carmen Ardanuya,c,e, Andrés Antónb, Jordi Càmaraa,c,
Corresponding author
jcamara@bellvitgehospital.cat

Corresponding author.
a Microbiology Department, Hospital Universitari Bellvitge, University of Barcelona-IDIBELL, L’Hospitalet de Llobregat, Spain
b Respiratory Viruses Unit, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
c CIBER de Enfermedades Respiratorias (CIBERER), ISCIII, Madrid, Spain
d Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
e Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
This item has received
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Tables (4)
Table 1. Comparison between TMA and RT-PCR assays (n=610).
Table 2A. Analytical evaluation of discrepant results (n=49).
Table 2B. Comprehensive analysis of discrepant results (n=49).
Table 3. Summary of the discrepant analysis described in Tables 2A and 2B (n=49).
Show moreShow less
Additional material (1)
Abstract
Introduction

The onset and spread of COVID-19 pandemic has forced clinical laboratories to rapidly expand testing capacity for SARS-CoV-2. This study evaluates the clinical performance of the TMA Procleix SARS-CoV-2 assay in comparison to the RT-PCR assay Allplex™ SARS-CoV-2 for the qualitative detection of SARS-CoV-2 RNA.

Methods

Between November 2020 and February 2021, 610 upper-respiratory specimens received for routine SARS-CoV-2 molecular testing were prospectively collected and selected at the Hospital Universitari Vall d’Hebron and the Hospital Universitari Bellvitge in Barcelona, Spain. All samples were processed in parallel with the TMA and the RT-PCR assays, and results were compared. Discrepancies were retested by an additional RT-PCR method and the clinical history of these patients was reviewed.

Results

Overall, the level of concordance between both assays was 92.0% (κ, 0.772). Most discordant results (36/38, 94.7%) corresponded to samples testing positive with the TMA assay and negative with the RT-PCR method. Of these discrepant cases, most (28/36, 77.8%) were finally classified as confirmed or probable SARS-CoV-2 cases according to the discrepant analysis.

Conclusion

In conclusion, the TMA Procleix SARS-CoV-2 assay performed well for the qualitative detection of SARS-CoV-2 RNA in a multisite clinical setting. This novel TMA assay demonstrated a greater sensitivity in comparison to RT-PCR methods for the molecular detection of SARS-CoV-2. This higher sensitivity but also the qualitative feature of this detection of SARS-CoV-2 should be considered when making testing algorithm decisions.

Keywords:
SARS-CoV-2
COVID-19
Transcription-mediated amplification
Resumen
Introducción

El inicio y la expansión de la pandemia por COVID-19 han forzado a los laboratorios clínicos a ampliar rápidamente la capacidad de detección de SARS-CoV-2. Evaluamos el rendimiento clínico del ensayo de TMA Procleix SARS-CoV-2 en comparación con el ensayo de RT-PCR Allplex™ SARS-CoV-2 para la detección cualitativa de ARN de SARS-CoV-2.

Métodos

Entre noviembre de 2020 y febrero de 2021 se seleccionaron prospectivamente 610 muestras del tracto respiratorio superior recibidas de rutina en el Hospital Universitario Vall d’Hebron y el Hospital Universitario de Bellvitge en Barcelona, España, para el diagnóstico molecular de SARS-CoV-2. Todas las muestras fueron procesadas en paralelo con los ensayos de TMA y RT-PCR, y se compararon los resultados. Las discrepancias se estudiaron por un método adicional de RT-PCR y se revisaron las historias clínicas de los pacientes.

Resultados

En general, la concordancia entre ambos ensayos fue del 92,0% (κ, 0,772). La mayoría de los casos discrepantes (36/38, 94,7%) correspondían a muestras positivas con el ensayo de TMA y negativas con el método de RT-PCR. De estos, la mayoría (28/36, 77,8%) fueron finalmente clasificados como casos confirmados o probables de SARS-CoV-2 de acuerdo al análisis de discrepantes.

Conclusión

El ensayo de TMA Procleix SARS-CoV-2 funcionó bien para la detección cualitativa de ARN de SARS-CoV-2 en un entorno clínico multicéntrico. Este ensayo TMA demostró una mayor sensibilidad en comparación con métodos de RT-PCR para la detección molecular de SARS-CoV-2. Esta mayor sensibilidad, pero también el carácter cualitativo de esta detección de SARS-CoV-2, se deben considerar en el diagnóstico de la infección.

Palabras clave:
SARS-CoV-2
COVID-19
Amplificación mediada por transcripción
Full Text
Introduction

The onset and rapid spread of COVID-19 pandemic has forced clinical laboratories to rapidly expand testing capacity for SARS-CoV-2.1,2 As quarantine measures are gradually being relaxed and novel disturbing SARS-CoV-2 variants are emerging, there is potential risk for upsurge in cases and rates of viral transmission. Accurate and sensitive viral detection methods with high-throughput diagnostic capability are essential for rapid clinical decision-making, implementing infection prevention practices and guiding public health responses. In this regard, numerous nucleic acid amplification tests (NAATs), granted with emergency-use authorization (EUA) by the Food and Drug Administration (FDA), are available for the molecular detection of SARS-CoV-2 in upper respiratory specimens.3

Most SARS-CoV-2 NAATs are based on real-time reverse transcription PCR (RT-PCR) techniques, such as the RT-PCR assay Allplex™ SARS-CoV-2 (Seegene, Inc., South Korea). Nevertheless, in accordance with the need for pandemic-scale diagnostic testing, transcription-mediated amplification (TMA) methods like the TMA Procleix SARS-CoV-2 assay (Grifols International, S.A., Spain) also emerged as part of the diagnostic arsenal against COVID-19.4

If appropriately optimized, NAATs are highly sensitive and specific. Nevertheless, in real-life clinical performance several preanalytical and analytical issues may occasionally affect sensitivity and specificity of NAATs. Thus, the quick communication of these experiences is urgently required to better understand the potential benefits and limitations of the implementation of each technique into SARS-CoV-2 testing strategies.

Herein, we evaluate the clinical performance of the TMA Procleix SARS-CoV-2 assay in comparison to the RT-PCR assay Allplex™ SARS-CoV-2 for the qualitative detection of SARS-CoV-2 RNA. A comprehensive analysis of discrepant results between both methods is conducted to assess the relevance of these cases in the management of SARS-CoV-2 infected individuals.

MethodsSample selection and laboratory procedures

Between November 2020 and February 2021, 154 and 456 upper-respiratory specimens received for routine SARS-CoV-2 molecular testing were prospectively collected and randomly selected for the current evaluation at the Hospital Universitari Vall d’Hebron (HUVH) and the Hospital Universitari Bellvitge (HUB) in Barcelona, Spain; respectively. The selection included nasopharyngeal and nasal swabs, placed in viral transport medium (VTM) from various manufacturers, collected from symptomatic and asymptomatic individuals, with no bias towards age or gender.

The detailed methodology for the current evaluation was conducted as follows (Fig. S1). VTM aliquots from selected fresh specimens were manually transferred into sterile tubes containing lysis buffer in a 1:1 proportion. If available, surplus specimen material was stored at −80 for subsequent analysis. SARS-CoV-2 molecular testing was first performed with the TMA Procleix SARS-CoV-2 assay. Using the same inactivated aliquot, nucleic acid extraction was performed with automated systems recommended by the manufacturer and SARS-CoV-2 detection was sequentially executed using the RT-PCR assay Allplex™ SARS-CoV-2.

In case of discrepant results, stored samples were thawed, inactivated and processed with an additional RT-PCR technique: the Alinity m SARS-CoV-2 assay (Abbott Molecular, US) or the RT-PCR cobas® SARS-CoV-2 test (Roche Molecular Systems, US). Also, discrepant cases were further analyzed through an exhaustive review of the medical record.

All technical procedures were performed as described by the manufacturers and results were interpreted according to the manufacturer's criteria.

Description of the TMA Procleix SARS-CoV-2 assay

The TMA Procleix SARS-CoV-2 assay is a novel multiplex NAAT based on TMA methodology for the qualitative molecular detection of SARS-CoV-2 virus.4 The assay, EUA granted by the FDA, incorporates an exogenous internal control, and specifically targets the viral N gene. The test is ready to be run on the fully automated all-in-one Procleix Panther system (Grifols International, S.A.) using 750μL material from upper-respiratory swabs. In this regard, the assay provides a ratio value that corresponds to an analytical parameter based on chemiluminescense with a qualitative interpretation. Values ≥1.00 are considered reactive/positive, according to the manufacturer's criteria.

Data analyses

Statistical analyses were performed using GraphPad Prism version 8.0.1 (GraphPad Software Inc., USA). The Cohen's kappa statistic (κ) was used to evaluate the agreement between both assays, and 95% confidence intervals (CI) were calculated by exact methods.

Minor disagreement was defined as a positive test with one assay and an inconclusive test with the other. In the current comparison, only the RT-PCR assay Allplex™ SARS-CoV-2 could yield inconclusive results, defined by the manufacturer as those cases testing positive for the E target, but negative for both the N and the RdRP/S targets. Major disagreement was considered that reverting from positive to negative depending on the study assay. If available, discrepant specimens were retested with an additional RT-PCR method and managed as follows. A confirmed case of SARS-CoV-2 was considered that discrepancy testing positive with the additional RT-PCR assay. A probable case was considered that testing negative with the additional RT-PCR technique, but having epidemiological or clinical data suggestive and compatible with recent history of SARS-CoV-2 infection. Unresolved cases were reported as inconclusive.

Institutional Review Board approval (PR(AG)259/2020) was obtained from the HUVH Clinical Research Ethics Committee.

Results

The qualitative comparison of the 610 study samples is displayed in Table 1. Overall, the level of concordance between both assays was 92.0% (95% CI, 89.5–94.0%), with a κ value of 0.772 (0.715–0.830). Of the 38 major discrepancies, 36 (94.7%) corresponded to samples testing positive with the TMA Procleix SARS-CoV-2 assay and negative with the RT-PCR assay Allplex™ SARS-CoV-2.

Table 1.

Comparison between TMA and RT-PCR assays (n=610).

TMAProcleix SARS-CoV-2  RT-PCRAllplex™ SARS-CoV-2Level of concordance% (95% CI)  Kappa value(95% CI) 
  Positive  Inconclusiveb  Negative     
Positivea  106  11  36  92.0 (89.5–94.0)0.772 (0.715–0.830)
Negative  455 
a

The instrument provides a ratio value that corresponds to an analytical parameter based on chemiluminescense with a qualitative interpretation. Values ≥1.00 are considered reactive/positive, according to the manufacturer's criteria. In this regard, all positive results yielded ratio values ≥2.00.

b

Inconclusive cases are considered those testing positive for the E target, but negative for both the N and the RdRP/S targets with the RT-PCR Allplex™ SARS-CoV-2 assay, according to the manufacturer's criteria.

Abbreviations: TMA: transcription-mediated amplification; RT-PCR: real-time reverse-transcriptase PCR; CI: confidence interval.

A comprehensive analysis of discrepant results is detailed in Tables 2A and 2B. While Table 2A focuses on the analytical approach of this evaluation, Table 2B provides an in-depth analysis of discrepant cases by incorporating some key epidemiological features from the medical record. The main conclusions of this assessment are summarized in Table 3. Overall, from the 36 discrepancies mentioned above, 28 (77.8%) were finally classified as confirmed (11/36) or probable (17/36) SARS-CoV-2 cases. On the other hand, both major discrepancies testing positive with the RT-PCR assay Allplex™ SARS-CoV-2 but negative with the TMA Procleix SARS-CoV-2 assay remained inconclusive. Finally, eight of the 11 minor disagreements (72.7%), were at last reported as confirmed (6/11) or probable (2/11) SARS-CoV-2 cases.

Table 2A.

Analytical evaluation of discrepant results (n=49).

Case  TMA ProcleixRT-PCR Allplex™Type ofdisagreement  RT-PCR Alinity mAnalyticalresult 
    Ratioa    Ct  Result  Ctc   
  Result  N  Result  E  RdRP  N      RdRP & N   
4.18  NA  NA  NA  Major  NA 
NA  NA  NA  37.59  Major  NDd  –  ND 
3.92  NA  NA  NA  Major  40.99 
3.81  NA  NA  NA  Major  39.53 
3.81  Ib  37.96  NA  NA  Minor  40.94 
4.00  NA  NA  NA  Major  NA 
4.24  NA  NA  NA  Major  NA 
4.24  Ib  38.02  NA  NA  Minor  40.03 
4.18  NA  NA  NA  Major  NDd  –  ND 
10  4.20  Ib  36.91  NA  NA  Minor  NDd  –  ND 
11  3.73  NA  NA  NA  Major  NA 
12  4.15  NA  NA  NA  Major  40.90 
13  4.36  NA  NA  NA  Major  39.60 
14  4.21  NA  NA  NA  Major  37.21 
15  4.16  NA  NA  NA  Major  40.90 
16  4.05  Ib  37.88  NA  NA  Minor  NDd  –  ND 
17  NA  NA  NA  37.63  Major  NDd  –  ND 
18  4.21  NA  NA  NA  Major  NA 
19  4.23  Ib  38.06  NA  NA  Minor  40.99 
20  4.50  NA  NA  NA  Major  40.99 
21  4.46  NA  NA  NA  Major  NA 
22  3.95  NA  NA  NA  Major  NA 
23  3.97  NA  NA  NA  Major  NA 
24  4.00  NA  NA  NA  Major  NA 
25  4.12  38.23  NA  NA  Minor  40.99 
Case  TMAProcleix SARS-CoV-2RT-PCRAllplex™ SARS-CoV-2Type of disagreement  RT-PCR cobas® SARS-CoV-2Analytical result 
  Result  Ratioa  Result  Ct  Result  Ct 
    N    E  RdRP  N      ORF-1ab  E   
26  4.17  NA  NA  NA  Major  NA  NA 
27  3.78  NA  NA  NA  Major  Ib  NA  35.63  Ib 
28  3.84  NA  NA  NA  Major  Ib  NA  37.73  Ib 
29  4.16  NA  NA  NA  Major  NA  NA 
30  3.93  NA  NA  NA  Major  32.4  34.98 
31  3.90  NA  NA  NA  Major  NA  NA 
32  4.22  NA  NA  NA  Major  Ib  NA  38.47  Ib 
33  4.02  NA  NA  NA  Major  NA  NA 
34  3.95  NA  NA  NA  Major  NA  NA 
35  4.28  NA  NA  NA  Major  36.19  37.22 
36  3.92  Ib  36.58  NA  NA  Minor  33.15  35.01 
37  4.05  NA  NA  NA  Major  NA  NA 
38  4.59  Ib  38.15  NA  NA  Minor  33.35  34.51 
39  4.03  NA  NA  NA  Major  NA  NA 
40  4.25  NA  NA  NA  Major  Ib  NA  38.01  Ib 
41  4.22  NA  NA  NA  Major  35.58  35.87 
42  3.99  NA  NA  NA  Major  NA  NA 
43  3.84  NA  NA  NA  Major  NA  NA 
44  4.04  Ib  38.18  NA  NA  Minor  NA  NA  Ib 
45  4.46  Ib  38.26  NA  NA  Minor  NA  NA  Ib 
46  4.04  NA  NA  NA  Major  Ib  NA  37.94  Ib 
47  4.35  NA  NA  NA  Major  30.80  31.60 
48  4.15  Ib  38.14  NA  NA  Minor  NA  NA  Ib 
49  4.33  NA  NA  NA  Major  NA  NA 
a

The ratio provided by the instrument corresponds to an analytical parameter based on chemiluminescense with a qualitative interpretation. Values ≥1.00 are considered reactive/positive, according to the manufacturer's criteria.

b

Inconclusive cases are considered: (i) those testing positive for the E target, but negative for both the N and the RdRP/S targets with the RT-PCR Allplex™ SARS-CoV-2 assay, according to the manufacturer's criteria, (ii) those testing positive for the E target, but negative for the ORF-1ab target with the RT-PCR cobas® SARS-CoV-2 assay, according to the manufacturer's criteria, and (iii) those unresolved after the discrepant analytical testing.

c

The two SARS-CoV-2-specific probes are labelled with the same fluorophore, so the test provides a unique Ct value for both RdRP and N targets.

d

Specimens unavailable for discrepant analytical testing.

A minor disagreement is considered that discrepancy testing positive with one assay but inconclusive with the other study technique. Contrary, a major disagreement is considered that reverting from positive to negative depending on the study assay.

Abbreviations: TMA: transcription-mediated amplification; RT-PCR: real-time reverse-transcriptase PCR; Ct: cycle-threshold; P: positive; N: negative; I: inconclusive; NA: not amplified; ND: not determined.

Table 2B.

Comprehensive analysis of discrepant results (n=49).

Case  Age  Gender  Centre  Analytical result  SC2 serostatusa  SC2 NAAT last month  SC2 NAAT subsequent week  Relevant clinical history  Conclusion 
39.7  HUB  ND  ND  History of SC2 infection  Probable 
41.2  HUB  ND  ND  ND  Unknown 
65.5  HUB  ND  History of SC2 infection  Confirmed 
55.1  HUB  ND  Pneumonia  Confirmed 
23.5  HUB  ND  ND  Contact of SC2 infected individual  Confirmed 
47.9  HUB  ND  ND  History of SC2 infection  Probable 
21.1  HUB  ND  ND  History of SC2 infection  Probable 
68.9  HUB  ND  History of SC2 infection  Confirmed 
56.7  HUB  ND  Nb  ND  History of SC2 infection  Probable 
10  20.0  HUB  ND  History of SC2 infection  Probable 
11  8.0  HUB  ND  ND  ND  Unknown 
12  85.2  HUB  ND  ND  Contact of SC2 infected individual  Confirmed 
13  56.8  HUB  ND  ND  History of SC2 infectionc  Confirmed 
14  25.4  HUB  ND  ND  ND  Unknown  Confirmed 
15  45.2  HUB  ND  History of SC2 infection  Confirmed 
16  39.2  HUB  ND  ND  ND  History of SC2 infection  Probable 
17  66.3  HUB  ND  ND  ND  ND  Symptomatic contact of SC2 infected individual 
18  34.1  HUB  ND  History of SC2 infection  Probable 
19  70.4  HUB  ND  ND  ND  History of SC2 infectionc  Confirmed 
20  46.8  HUB  ND  History of SC2 infection  Confirmed 
21  45.9  HUB  Nb  ND  History of SC2 infection  Probable 
22  31.8  HUB  ND  ND  ND  History of SC2 infectionc  Probable 
23  5.0  HUB  ND  ND  ND  Unknown 
24  61.0  HUB  ND  ND  Unknown 
25  2.0  HUB  ND  ND  Unknown  Confirmed 
26  36.1  HUVH  ND  ND  ND  History of SC2 infectiond  Probable 
27  1.8  HUVH  ND  ND  ND  Asymptomatic screening  Probable 
28  31.6  HUVH  ND  History of SC2 infection  Probable 
29  57.7  HUVH  ND  ND  ND  History of SC2 infectiond  Probable 
30  14.9  HUVH  ND  ND  ND  Symptomatic contact of SC2 infected individual  Confirmed 
31  37.8  HUVH  ND  ND  ND  Contact of SC2 infected individual 
32  37.4  HUVH  ND  ND  ND  Symptomatic contact of SC2 infected individual  Probable 
33  26.5  HUVH  ND  ND  ND  Mild symptoms compatible with COVID-19 
34  54.1  HUVH  ND  History of SC2 infection  Probable 
35  94.8  HUVH  ND  ND  History of SC2 infection  Confirmed 
36  59.1  HUVH  ND  ND  ND  Mild symptoms compatible with COVID-19  Confirmed 
37  44.5  HUVH  ND  History of SC2 infection  Probable 
38  42.7  HUVH  ND  ND  ND  Mild symptoms compatible with COVID-19  Confirmed 
39  19.4  HUVH  ND  ND  History of SC2 infectionc  Probable 
40  57.1  HUVH  ND  ND  ND  Asymptomatic screening 
41  18.1  HUVH  ND  History of SC2 infectionc  Confirmed 
42  57.5  HUVH  ND  ND  History of SC2 infectionc  Probable 
43  56.3  HUVH  ND  ND  ND  Contact of SC2 infected individual 
44  11.9  HUVH  ND  ND  ND  Asymptomatic screening 
45  50.6  HUVH  ND  ND  ND  Contact of SC2 infected individual 
46  58.4  HUVH  ND  History of SC2 infection  Probable 
47  63.6  HUVH  ND  ND  History of SC2 infectiond  Confirmed 
48  30.0  HUVH  ND  ND  ND  Mild symptoms compatible with COVID-19 
49  16.4  HUVH  ND  ND  ND  Contact of SC2 infected individual 
a

SC2 serostatus refers to the presence or absence of antibodies suggestive and compatible with history of SARS-CoV-2 infection, disregarding vaccination.

b

These cases correspond to non-reactive results near the positivity threshold. Of note, this phenomenon may suggest the initial immune response against SARS-CoV-2 with the incipient production of specific antibodies.

c

History of positive SARS-CoV-2 NAAT before the last month.

d

History of positive SARS-CoV-2 antigen test in the last month.

Abbreviations: SC2: SARS-CoV-2; NAAT: nucleic acid amplification test; M: male; F: female; P: positive; HUB: Hospital Universitari Bellvitge; HUVH: Hospital Universitari Vall d’Hebron; N: negative; ND: not determined; I: inconclusive.

Table 3.

Summary of the discrepant analysis described in Tables 2A and 2B (n=49).

Type of disagreementAnalytical resultbN. (%)ConclusioncN. (%)
    Positive  Negative  Inconclusived  Not determinede  Confirmed  Probable  Inconclusive 
TMA Procleix Positive/RT-PCR Allplex™ Negative (n=36)  Major  11 (30.6)  19 (52.8)  5 (13.9)  1 (2.8)  11 (30.6)  17 (47.2)  8 (22.2) 
TMA Procleix Negative/RT-PCR Allplex™ Positive (n=2)  Major  –  –  –  2 (100.0)  –  –  2 (100.0) 
TMA Procleix Positive/RT-PCR Allplex™ Inconclusivea (n=11)  Minor  6 (54.6)  –  3 (27.3)  2 (18.2)  6 (54.6)  2 (18.2)  3 (27.3) 
a

Inconclusive cases are considered those testing positive for the E target, but negative for both the N and the RdRP/S targets with the RT-PCR Allplex™ SARS-CoV-2 assay, according to the manufacturer's criteria.

b

The statements correspond to the analytical result of discrepant of cases, presented in Table 2A. In this assessment, discrepancies were further studied with an additional RT-PCR technique for SARS-CoV-2 testing.

c

The statements correspond to the comprehensive analysis of discrepant results, presented in Table 2B. In this assessment, discrepant cases were further studied through a comprehensive clinical and epidemiological review of the medical record.

d

Unresolved cases after the discrepant analytical testing (identified as I-inconclusive in Tables 2A and 2B).

e

Specimens unavailable for discrepant analytical testing (identified as ND-not determined in Tables 2A and 2B).

A minor disagreement is considered that discrepancy testing positive with one assay but inconclusive with the other study technique. Contrary, a major disagreement is considered that reverting from positive to negative depending on the study assay.

Discussion

The current wide availability of commercial assays to address the critical need for large-scale SARS-CoV-2 testing also requires comprehensive analytical, clinical and real-life experiences to better understand the strengths and limitations of each diagnostic technique. The present multicenter study compares the clinical performance of the TMA Procleix SARS-CoV-2 assay to a commercial RT-PCR test for the qualitative detection of SARS-CoV-2 RNA.

Overall, the TMA Procleix SARS-CoV-2 assay performed well for the detection of SARS-CoV-2 compared to the RT-PCR assay AllplexTM SARS-CoV-2, with a substantial agreement between assays (κ, 0.772). Most major discrepancies (95%) corresponded to samples testing positive with the TMA Procleix SARS-CoV-2 assay, but reverting to negative results with the RT-PCR test. When pondering the discrepant analyses, many of these cases (31%) were analytically confirmed to be positive for SARS-CoV-2, while many others (47%) were classified as probable positive according to the epidemiological and clinical history. These results suggest that the TMA Procleix SARS-CoV-2 assay may be more sensitive for the detection of SARS-CoV-2 RNA compared to RT-PCR methods, similar to what has been reported for this and other TMA tests such as the Aptima SARS-CoV-2 assay (Hologic, Inc., US).4–7 On the other hand, most minor discrepancies, these were specimens testing positive with the TMA test but inconclusive with the RT-PCR assay Allplex™ SARS-CoV-2, were also reported as confirmed or probable SARS-CoV-2 cases in accordance with the hypothesis of an inherent higher sensitivity of the TMA assay. In this regard, findings from an in vitro supplemental experiment, using 10-fold dilutions in five SARS-CoV-2 positive samples, analytically reinforce this conclusion (Fig. S2).

Our study evidences that the TMA Procleix SARS-CoV-2 assay is highly sensitive. The methodology used strongly suggests that this feature, compared to RT-PCR methods, is not a matter of pre-analytical variability rather the intrinsic chemistry behind TMA technology.8,9 Despite the presumptively high specificity of this technique, the increased sensitivity and the lack of quantitative/semi-quantitative parameters as a rough measure of SARS-CoV-2 RNA load (such as the cycle-threshold [Ct] value in RT-PCR methods) may hinder the clinical interpretation of some positive results, particularly among asymptomatic individuals, thus overestimating the true prevalence/incidence of active and transmissible infections. In low-prevalence settings, over-reporting positive cases may lead to unnecessary community isolation and contact tracing.10 Nevertheless, in this scenario the low incidence of COVID-19 may also allow confirmation of positive TMA results with RT-PCR methods to limit this inherent deviation and optimize the clinical specificity of SARS-CoV-2 testing.10 Moreover, pooling strategies, nowadays common for SARS-CoV-2 testing in clinical laboratories,11,12 may clearly benefit from this highly sensitive TMA method.4

The study does require some considerations. First, information is missing in some discrepant cases due to the retrospective nature of the epidemiological and clinical data collection, and some specimens were unavailable for discrepant analytical testing. Also, at some point of the study, the TMA Procleix SARS-CoV-2 assay was used to actively select positive results, thus biasing the true positivity rate during that period. Furthermore, we did not strictly included acute SARS-CoV-2 infections and, as a consequence, some cases may correspond to the final stages of COVID-19 disease with uncertain clinical relevance. Finally, although chemiluminescense ratios ≥1.00 with the TMA Procleix SARS-CoV-2 assay are considered reactive/positive for SARS-CoV-2 according to the manufacturer's criteria, all positive results in this evaluation yielded ratio values ≥2.00. Of note, in our experience, positive ratios between 1.00 and 2.00 are rarely confirmed with RT-PCR methods.

In conclusion, the TMA Procleix SARS-CoV-2 assay performed well for the qualitative detection of SARS-CoV-2 RNA in a multisite clinical setting. Furthermore, this novel TMA assay demonstrated greater sensitivity in comparison to RT-PCR tests for the molecular detection of SARS-CoV-2, and this performance characteristic should be considered when making testing algorithm decisions. Nevertheless, additional experiences are required to fully refine the applicability of this methodology to the volatile dynamics of COVID-19 pandemic.

Funding

This study was supported by a grant from Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES, CB06/06/0037), an initiative of the Instituto de Salud Carlos III, Madrid, Spain. Co-funded by the European Regional Development Fund/European Social Fund (ERDF/ESF, “Investing in your future”).

Conflicts of interest

None.

Acknowledgments

We wish to thank all the staff of the Microbiology Departments of Hospital Universitari de Bellvitge and Hospital Vall d’Hebron who contributed to this project on a daily basis. We thank CERCA Programme/Generalitat de Catalunya for institutional support.

Appendix A
Supplementary data

The following are the supplementary data to this article:

References
[1]
N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, et al.
A novel coronavirus from patients with pneumonia in China, 2019.
N Engl J Med, 382 (2020), pp. 727-733
[2]
C.B.E.M. Reusken, E.K. Broberg, B. Haagmans, A. Meijer, V.M. Corman, A. Papa, et al.
Laboratory readiness and response for novel coronavirus (2019-nCoV) in expert laboratories in 30 EU/EEA countries January 2020.
[3]
Food and Drug Administration (FDA). Individual EUAs for molecular diagnostic tests for SARS-CoV-2. Available from: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-molecular-diagnostic-tests-sars-cov-2 [consulted 22.4.21].
[4]
S. Sauleda, L. Palacios, V. Brès, M. Piñana, L. Alonso-Hernandez, M. Bes, et al.
Clinical evaluation of the Procleix SARS-CoV-2 assay, a sensitive, high-throughput test that runs on an automated system.
Diagn Microbiol Infect Dis, (2021),
[5]
A.J. Gorzalski, H. Tian, C. Laverdure, S. Morzunov, S.C. Verma, S. VanHooser, et al.
High-throughput transcription-mediated amplification on the Hologic Panther is a highly sensitive method of detection for SARS-CoV-2.
J Clin Virol, 129 (2020), pp. 104501
[6]
J. Pham, S. Meyer, C. Nguyen, A. Williams, M. Hunsicker, I. McHardy, et al.
Performance characteristics of a high-throughput automated transcription-mediated amplification test for SARS-CoV-2 detection.
J Clin Microbiol, 58 (2020), pp. e01669-e1720
[7]
E. Smith, W. Zhen, R. Manji, D. Schron, S. Duong, G.J. Berry.
Analytical and clinical comparison of three nucleic acid amplification tests for SARS-CoV-2 detection.
J Clin Microbiol, 58 (2020), pp. e01134-e1220
[8]
A. Hatzakis, H. Papachristou, S.J. Nair, J. Fortunko, T. Foote, H. Kim, et al.
Analytical characteristics and comparative evaluation of Aptima HIV-1 Quant Dx assay with Ampliprep/COBAS TaqMan HIV-1 test v2.0.
[9]
W.P. Hofmann, V. Dries, E. Herrmann, B. Gärtner, S. Zeuzem, C. Sarrazin.
Comparison of transcription mediated amplification (TMA) and reverse transcription polymerase chain reaction (RT-PCR) for detection of hepatitis C virus RNA in liver tissue.
J Clin Virol, 2 (2005), pp. 289-293
[10]
J.P. Skittrall, M. Wilson, A.A. Smielewska, S. Parmar, M.D. Fortune, D. Sparkes, et al.
Specificity and positive predictive value of SARS-CoV-2 nucleic acid amplification testing in a low-prevalence setting.
Clin Microbiol Infect, 27 (2021), pp. 469e9-469e15
[11]
S. Lohse, T. Pfuhl, B. Berkó-Göttel, J. Rissland, T. Geißler, B. Gärtner, et al.
Pooling of samples for testing for SARS-CoV-2 in asymptomatic people.
Lancet Infect Dis, 20 (2020), pp. 1231-1232
[12]
L. Mutesa, P. Ndishimye, Y. Butera, J. Souopgui, A. Uwineza, R. Rutayisire, et al.
A pooled testing strategy for identifying SARS-CoV-2 at low prevalence.
Nature, 589 (2021), pp. 276-280
Copyright © 2022. Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica
Article options
Tools
Supplemental materials
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos