Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Seguridad farmacológica y ambiental: disrupción endocrina
Journal Information
Vol. 55. Issue S1.
La erradicación de la deficiencia de yodo en españa
Pages 63-68 (January 2008)
Share
Share
Download PDF
More article options
Vol. 55. Issue S1.
La erradicación de la deficiencia de yodo en españa
Pages 63-68 (January 2008)
La erradicación de la deficiencia de yodo en España
Full text access
Seguridad farmacológica y ambiental: disrupción endocrina
Drug and environmental safety: thyroid endocrine disruption
Visits
3141
N. Olea Serrano
Corresponding author
nolea@ugr.es

Correspondencia: Dr. N. Olea. Laboratorio de Investigaciones Médicas. Hospital Clínico San Cecilio. Universidad de Granada. 18071 Granada. España.
, C. Freire Warden, M.F. Fernández Cabrera
Laboratorio de Investigaciones Médicas. Hospital Clínico San Cecilio. Universidad de Granada. Granada. España
This item has received
Article information

La exposición humana a compuestos químicos que interfieren con la homeostasis hormonal es bien conocida, a pesar de que la evidencia sea muy desigual para los distintos sistemas hormonales. Mientras que la disrupción endocrina de los esteroides (estrógenos y andrógenos) ha merecido gran atención, la de la homeostasis de las hormonas tiroideas está mal entendida, si se exceptúa lo que se refiere a la captación de yodo. La lista de disruptores endocrinos que interfieren con la síntesis, la circulación, la unión a receptores específicos, el metabolismo y la degradación de las hormonas tiroideas crece día a día. A los bifenilos policlorados (PCB), las dioxinas y los furanos, se unen ahora los compuestos bromados retardadores de la llama, los bisfenoles y los ftalatos. Cambios sutiles en las concentraciones de las hormonas tiroideas pueden ocasionar efectos adversos en períodos esenciales del desarrollo, de tal manera que se empieza a ver los efectos de tal exposición ahora, una vez que los mecanismos que ligan hormonas tiroideas y neurodesarrollo son cada vez más evidentes.

Palabras clave:
Disrupción endocrina
Compuestos químicos ambientales
Exposición humana

Human exposure to environmental chemicals that disrupt endocrine homeostasis has been related to several hormone systems. Sex hormones (estrogens and androgens) have received special attention, but thyroid hormone disruption is not so well known except in the special case of iodine intake deficiency. The list of chemicals that alter synthesis, circulation, binding to specific receptors, metabolism and degradation of thyroid hormones increases daily. Brominated flame retardants, bisphenols and phthalates are now included alongside polychlorinated biphenyls (PCBs), dioxins and furans. Subtle changes in circulating thyroid hormones may have undesirable effects during development. As our understanding of the role of thyroid hormones in neurodevelopment improves, exposure to environmental thyroid disruptors becomes a matter of increasing concern.

Key words:
Endocrine disruption
Environmental chemicals
Human exposure
Full text is only aviable in PDF
Bibliografía
[1.]
T.E. Colborn, C. Clement.
Chemically induced alterations in sexual and functional development: the Wildlife/Human Connection.
Princeton Scientific, (1992),
[2.]
N. Olea, M.F. Olea-Serrano.
Oestrogens and the environment.
Eur J Cancer Prev, 5 (1996), pp. 491-496
[3.]
T. Colborn.
Neurodevelopment and endocrine disruption.
Environ Health Perspect, 112 (2004), pp. 944-949
[4.]
J.E. Haddow, G.E. Palomaki, W.C. Allan, J.R. Williams, G.J. Knight, J. Gagnon.
Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child.
N Engl J Med, 341 (1999), pp. 549-555
[5.]
Draft detailed review paper on thyroid hormone disruption assays. Series on Testing Assessment. OECD Environment, Health and Safety Publications; 2005.
[6.]
P. Landrigan, A. Garg, D.B. Droller.
Assessing the effects of endocrine disruptors in the National Children's Study.
Environ Health Perspect, 111 (2003), pp. 1678-1682
[7.]
E. Gaitan.
Environmental goitrogens.
Contemporary endocrinology: Diseases of the thyroid, pp. 331-348
[8.]
M. Boas, U. Feldt-Rasmussen, N.E. Skakkebaek, K.M. Main.
Environmental chemicals and thyroid function.
Eur J Endocrinol, 154 (2006), pp. 599-611
[9.]
F. Massart, G. Massai, G. Placidi, G. Saggese.
Child thyroid disruption by environmental chemicals.
Minerva Pediatr, 58 (2006), pp. 47-53
[10.]
D.O. Carpenter, Y. Shen, T. Nguyen, L. Le, L.L. Lininger.
Incidence of endocrine diseases among residents of New York areas of concern.
Environ Health Perspect, 109 (2001), pp. 845-851
[11.]
Yodo y salud en el siglo XXI. Madrid: European Pharmaceutical Law Group; 2004.
[12.]
L. Álvarez, S. Hernández, R. Martínez, R. Kolliker-Frers, M.J. Obregón, D.L. Kleiman de Pisarev.
The role of type I and type II 5’ desiodinase on hexachlorobenzene-induced alteration of the hormonal thyroid status.
Toxicology, 207 (2005), pp. 349-362
[13.]
F.M. McNabb, C.T. Larsen, P.S. Pooler.
Ammonium perchlorate effects on thyroid function and growth in bobwhite quail chicks.
Environ Toxicol Chem, 23 (2004), pp. 997-1003
[14.]
F.M. McNabb, D.A. Jang, C.T. Larsen.
Does thyroid function in developing birds adapt to sustained ammonium perchlorate exposure?.
Toxicol Sci, 82 (2004), pp. 106-113
[15.]
J.P. Isanhart, F.M. McNabb, P.N. Smith.
Effects of perchlorate exposure on resting metabolism, peak metabolism, and thyroid function in the prairie vole (Microtus ochrogaster).
Environ Toxicol Chem, 24 (2005), pp. 678-684
[16.]
M. Tonacchera, A. Pinchera, A. Dimida, E. Ferrarini, P. Agretti, P. Vitti, et al.
Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter.
Thyroid, 14 (2004), pp. 1012-1019
[17.]
E. Breous, A. Wenzel, U. Loos.
The promoter of the human sodium/iodide symporter responds to certain phthalate plasticisers.
Mol Cell Endocrinol, 244 (2005), pp. 75-78
[18.]
C. Schmutzler, I. Hamann, P.J. Hofmann, G. Kovacs, L. Stemmler, B. Mentrup, et al.
Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver, heart and kidney.
Toxicology, 205 (2004), pp. 95-102
[19.]
F. Santini, P. Vitti, G. Ceccarini, C. Mammoli, V. Rosellini, C. Pelosini, et al.
In vitro assay of thyroid disruptors affecting TSH-stimulated adenylate cyclase activity.
J Endocrinol Invest, 26 (2003), pp. 950-955
[20.]
I.A. Meerts, Y. Assink, P.H. Cenijn, J.H. Van Den Berg, B.M. Weijers, A. Bergman, et al.
Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat.
Toxicol Sci, 68 (2002), pp. 361-371
[21.]
H.E. Purkey, S.K. Palaninathan, K.C. Kent, C. Smith, S.H. Safe, J.C. Sacchettini, et al.
Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: rationalizing rodent PCB toxicity.
Chem Biol, 11 (2004), pp. 1719-1728
[22.]
I.A. Meerts, J.J. Van Zanden, E.A. Luijks, I. Leeuwen-Bol, G. Marsh, E. Jakobsson, et al.
Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro.
Toxicol Sci, 56 (2000), pp. 95-104
[23.]
K. Yamauchi, A. Ishihara, H. Fukazawa, Y. Terao.
Competitive interactions of chlorinated phenol compounds with 3,3’,5-triiodothyronine binding to transthyretin: detection of possible thyroid-disrupting chemicals in environmental waste water.
Toxicol Applied Pharmacol, 187 (2003), pp. 110-117
[24.]
Y. Kudo, K. Yamauchi.
In vitro and in vivo analysis of the thyroid disrupting activities of phenolic and phenol compounds in Xenopus laevis.
Toxicol Sci, 84 (2005), pp. 29-37
[25.]
A. Ishihara, N. Nishiyama, S. Sugiyama, K. Yamauchi.
The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor.
Gen Comp Endocrinol, 134 (2003), pp. 36-43
[26.]
K.J. Van den Berg.
Interaction of chlorinated phenols with thyroxine binding sites of human transthyretin, albumin and thyroid binding globulin.
Chem-biol Interactions, 76 (1990), pp. 63-75
[27.]
M.C. Lans, C. Spiertz, A. Brouwer, J.H. Koeman.
Different competition of thyroxine binding to transthyretin and thyroxine-binding globulin by hydroxy-PCBs, PCDDs and PCDFs.
Eur J Pharmacol, 270 (1994), pp. 129-136
[28.]
B. Ulbrich, R. Stahlmann.
Developmental toxicity of polychlorinated biphenyls (PCBs): a systematic review of experimental data.
Arch Toxicol, 78 (2004), pp. 252-268
[29.]
N. Shimada, K. Yamauchi.
Characteristics of 3,5,3’-triiodothyronine (T3)-uptake system of tadpole red blood cells: effect of endocrine-disrupting chemicals on cellular T3 response.
J Endocrinol, 183 (2004), pp. 627-637
[30.]
K. Moriyama, T. Tagami, T. Akamizu, T. Usui, M. Saijo, N. Kanamoto, et al.
Thyroid hormone action is disrupted by bisphenol A as an antagonist.
J Clin Endocrinol Metab, 87 (2002), pp. 5185-5190
[31.]
R.T. Zoeller, R. Bansal, C. Parris.
Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain.
Endocrinology, 146 (2005), pp. 607-612
[32.]
T. Yamada-Okabe, T. Aono, H. Sakai, Y. Kashima, H. Yamada-Okabe.
2,3,7,8-tetrachlorodibenzo-p-dioxin augments the modulation of gene expression mediated by the thyroid hormone receptor.
Toxicol Applied Pharmacol, 194 (2004), pp. 201-210
[33.]
S. Kitamura, T. Suzuki, S. Sanoh, R. Kohta, N. Jinno, K. Sugihara, et al.
Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds.
Toxicol Sci, 84 (2005), pp. 249-259
[34.]
S. Kitamura, T. Kato, M. Iida, N. Jinno, T. Suzuki, S. Ohta, et al.
Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis.
Life Sci, 76 (2005), pp. 1589-1601
[35.]
W. Miyazaki, T. Iwasaki, A. Takeshita, Y. Kuroda, N. Koibuchi.
Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism.
J Biol Chem, 279 (2004), pp. 18195-18202
[36.]
S. Kitamura, N. Jinno, T. Suzuki, K. Sugihara, S. Ohta, H. Kuroki, et al.
Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture.
Toxicology, 208 (2005), pp. 377-387
[37.]
A.O. Cheek, K. Kow, J. Chen, J.A. McLachlan.
Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin.
Environ Health Perspect, 107 (1999), pp. 273-278
[38.]
K.J. Gauger, Y. Kato, K. Haraguchi, H.J. Lehmler, L.W. Robertson, R. Bansal, et al.
Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors.
Environ Health Perspect, 112 (2004), pp. 516-523
[39.]
R. Bansal, S.H. You, C.T. Herzig, R.T. Zoeller.
Maternal thyroid hormone increases HES expression in the fetal rat brain: an effect mimicked by exposure to a mixture of polychlorinated biphenyls (PCBs).
Brain Res Dev Brain Res, 156 (2005), pp. 13-22
[40.]
S.A. Roelens, V. Beck, G. Aerts, S. Clerens, G. Vanden Bergh, L. Arckens, et al.
Neurotoxicity of polychlorinated biphenyls (PCBs) by disturbance of thyroid hormone-regulated genes.
Ann N Y Acad Sci, 1040 (2005), pp. 454-456
[41.]
C. Seiwa, J. Nakahara, T. Komiyama, Y. Katsu, T. Iguchi, H. Asou.
Bisphenol A exerts thyroid-hormone-like effects on mouse oligodendrocyte precursor cells.
Neuroendocrinol, 80 (2004), pp. 21-30
[42.]
A.C. Bianco, D. Salvatore, B. Gereben, M.J. Berry, P.R. Larsen.
Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases.
Endocr Rev, 23 (2002), pp. 38-89
[43.]
F. Brucker-Davis.
Effects of environmental synthetic chemicals on thyroid function.
Thyroid, 8 (1998), pp. 827-856
[44.]
T. Kaminski, J. Kohrle, R. Kodding, R.D. Hesch.
Autoregulation of 3, 3’,5’-triiodothyronine production by rat liver microsomes.
Acta Endocrinol (Copenh), 98 (1981), pp. 240-245
[45.]
L.X. Zhou, S.S. Dehal, D. Kupfer, S. Morrell, B.A. McKenzie, E.D. Eccleston Jr, et al.
Cytochrome P450 catalyzed covalent binding of methoxychlor to rat hepatic, microsomal iodothyronine 5’-monodeiodinase, type I: does exposure to methoxychlor disrupt thyroid hormone metabolism?.
Arch Biochem Biophys, 322 (1995), pp. 390-394
[46.]
M.G. Wade, S. Parent, K.W. Finnson, W. Foster, E. Younglai, A. McMahon, et al.
Thyroid toxicity due to subchronic exposure to a complex mixture of 16 organochlorines, lead, and cadmium.
Toxicol Sci, 67 (2002), pp. 207-218
[47.]
A.G. Schuur, F.F. Legger, M.E. Van Meeteren, M.J. Moonen, I. Leeuwen-Bol, A. Bergman, et al.
In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons.
Chem Res Toxicol, 11 (1998), pp. 1075-1081
[48.]
A.G. Schuur, I. Leeuwen-Bol, W.M. Jong, A. Bergman, M.W. Coughtrie, A. Brouwer, et al.
In vitro inhibition of thyroid hormone sulfation by polychlorobiphenylols: isozyme specificity and inhibition kinetics.
Toxicol Sci, 45 (1998), pp. 188-194
[49.]
N. Nishimura, J. Yonemoto, Y. Miyabara, M. Sato, C. Tohyama.
Rat thyroid hyperplasia induced by gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.
Endocrinology, 144 (2003), pp. 2075-2083
[50.]
N. Nishimura, J. Yonemoto, Y. Miyabara, Y. Fujii-Kuriyama, C. Tohyama.
Altered thyroxin and retinoid metabolic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin in aryl hydrocarbon receptor-null mice.
Arch Toxicol, 79 (2005), pp. 260-267
[51.]
Sala M. Ribas-Fito, E. Cardo, C. Mazon, M.E. De Muga, A. Verdu, et al.
Organochlorine compounds and concentrations of thyroid stimulating hormone in newborns.
Occup Environ Med, 60 (2002), pp. 301-303
[52.]
M. Sala, J. Sunyer, C. Herrero, J. To-Figueras, J. Grimalt.
Association between serum concentrations of HCB and PCBs with thyroid hormone and liver enzymes in a sample of the general population.
Occup Environ Med, 58 (2001), pp. 172-177
[53.]
G. Morreale de Escobar, F. Escobar del Rey.
El yodo durante la gestación, lactancia y primera infancia, cantidades mínimas y máximas: de microgramos a gramos.
An Esp Pediatr, 53 (2000), pp. 1-5
[54.]
U. Feldt-Rasmussen, P.P. Hyltoft, O. Blaabjerg, M. Horder.
Long-term variability in serum thyroglobulin and thyroid related hormones in healthy subjects.
Acta Endocrinol (Copenh), 95 (1980), pp. 328-334
[55.]
C.A. Spencer, J.S. LoPresti, A. Patel, R.B. Guttler, A. Eigen, D. Shen, et al.
Applications of a new chemiluminometric thyrotropin assay to subnormal measurement.
J Clin Endocrinol Metab, 70 (1990), pp. 453-460
[56.]
S. Andersen, K.M. Pedersen, N.H. Bruun, P. Laurberg.
Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease.
J Clin Endocrinol Metab, 87 (2002), pp. 1068-1072
[57.]
M.F. Van den Hove, C. Beckers, H. Devlieger, F. De Zegher, P. De Nayer.
Hormone synthesis and storage in the thyroid of human preterm and term newborns: Effect of thyroxine treatment.
Biochimie, 81 (1999), pp. 563-570
[58.]
J. Walkowiak, J.A. Wiener, A. Fastabend, B. Heinzow, U. Kramer, E. Schmidt, et al.
Environmental exposure to polychlorinated biphenyls and quality of the home environment: effects on psychodevelopment in early childhood.
Lancet, 358 (2001), pp. 1602-1607
[59.]
N. Ribas-Fito, M. Torrent, D. Carrizo, L. Munoz-Ortiz, J. Julvez, J.O. Grimalt, et al.
In utero exposure to background concentrations of DDT and cogitive functioning among preschoolers.
Am J Epidemiol, 164 (2006), pp. 955-962
[60.]
B. Botella, J. Crespo, A. Rivas, I. Cerrillo, M.F. Olea-Serrano, N. Olea.
Exposure of women to organochlorine pesticides in Southern Spain.
Environ Res, 96 (2004), pp. 34-40
[61.]
I. Cerrillo, A. Granada, M.J. Lopez-Espinosa, B. Olmos, M. Jimenez, A. Cano, et al.
Endosulfan and its metabolites in fertile women, placenta, cord blood, and human milk.
Environ Res, 98 (2005), pp. 233-239
[62.]
M.F. Fernandez, P. Araque, H. Kiviranta, J.M. Molina-Molina, P. Rantakokko, O. Laine, et al.
PBDEs and PBBs in Southeastern Spanish Women.
Chemosphere, 66 (2006), pp. 377-383
[63.]
Fernandez MF, Olmos B, Granada A, López-Espinosa MJ, Molina-Molina JM, Fernandez JM, et al. Human exposure to endocrine disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: a nested case-control study. Environ Health Perspect. 2007; [en prensa].
[64.]
Lopez-Espinosa MJ, Granada A, Carreno J, Salvatierra M, Olea-Serrano F, Olea N. Organochlorine pesticides in placentas from Southern spain and some related factors. Placenta. Epub 2006 Nov 14
[65.]
J. Carreño, A. Rivas, A. Granada, J.M. Lopez-Espinosa, M. Mariscal, N. Olea, et al.
Exposure of young men to organochlorine pesticides in Southern Spain.
Environ Res, 103 (2007), pp. 55-61
Copyright © 2008. Sociedad Española de Endocrinología y Nutrición
Article options
Tools
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos