Buscar en
Cirugía Española (English Edition)
Toda la web
Inicio Cirugía Española (English Edition) Indocyanine green (ICG) fluorescence guide for the use and indications in genera...
Journal Information
Vol. 100. Issue 9.
Pages 534-554 (September 2022)
Visits
2546
Vol. 100. Issue 9.
Pages 534-554 (September 2022)
Review article
Full text access
Indocyanine green (ICG) fluorescence guide for the use and indications in general surgery: recommendations based on the descriptive review of the literature and the analysis of experience
Guía de uso e indicaciones de la fluorescencia con verde de indocianina (ICG) en cirugía general: recomendaciones basadas en la revisión descriptiva de la literatura y el análisis de la experiencia
Visits
2546
Salvador Morales-Condea,b, Eugenio Licardieb, Isaias Alarcóna, Andrea Ballaa,c,
Corresponding author
andrea.balla@gmail.com

Corresponding author.
a Unit of Innovation in Minimally Invasive Surgery, Department of General and Digestive Surgery, University Hospital Virgen del Rocio, University of Sevilla, Sevilla, Spain
b Unit of General and Digestive Surgery, Hospital Quironsalud Sagrado Corazón, Sevilla, Spain
c UOC of General and Minimally Invasive Surgery, Hospital “San Paolo”, Civitavecchia, Rome, Italy
This item has received
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (5)
Show moreShow less
Abstract

Indocyanine Green is a fluorescent substance visible in near-infrared light. It is useful for the identification of anatomical structures (biliary tract, ureters, parathyroid, thoracic duct), the tissues vascularization (anastomosis in colorectal, esophageal, gastric, bariatric surgery, for plasties and flaps in abdominal wall surgery, liver resection, in strangulated hernias and in intestinal ischemia), for tumor identification (liver, pancreas, adrenal glands, implants of peritoneal carcinomatosis, retroperitoneal tumors and lymphomas) and sentinel node identification and lymphatic mapping in malignant tumors (stomach, breast, colon, rectum, esophagus and skin cancer). The evidence is very encouraging, although standardization of its use and randomized studies with higher number of patients are required to obtain definitive conclusions on its use in general surgery.

The aim of this literature review is to provide a guide for the use of ICG fluorescence in general surgery procedures.

Keywords:
Fluorescence
Indocyanine green (ICG)
Minimally invasive surgery
Colorectal surgery
Esophageal surgery
Gastric surgery
Lymph node mapping
Sentinel lymph node
Resumen

El verde de indocianina es una tinción fluorescente visible con luz cercana al infrarrojo. Es útil para la identificación de las estructuras anatómicas (tracto biliar, uréteres, paratiroides, conducto torácico), la vascularización de tejidos (en anastomosis en cirugía colorrectal, esofágica, gástrica, bariátrica, para plastias y colgajos en cirugía de pared abdominal, hepática, en hernias estranguladas en la isquemia intestinal), para la identificación de tumores (hígado, páncreas, suprarrenal, implantes en la carcinomatosis peritoneal, tumores retroperitoneales y linfomas) y para la identificación del ganglio centinela y del mapeo linfático de tumores malignos (cáncer de estómago, mama, colon, recto, esófago y piel). Las evidencias son muy alentadoras, aunque se necesita la estandarización de su uso y más estudios prospectivos y aleatorizados con mayor número de pacientes para obtener conclusiones definitivas sobre su uso.

El objetivo de esta revisión de la literatura es proveer una guía para el uso de la fluorescencia con verde de indocianina en procedimientos de cirugía general.

Palabras clave:
Fluorescencia
Verde de indocianina (ICG)
Cirugía mínimamente invasiva
Cirugía colorrectal
Cirugía esofágica
Cirugía gástrica
Mapeo de ganglios linfáticos
Ganglio linfático centinela
Full Text
Introduction

Fluorescence is a form of luminescence that distinguishes substances that can absorb energy in the form of electromagnetic radiation, and then emit some of that energy in the form of the same radiation, but at a different wavelength.1

Indocyanine green (ICG) is a visible fluorescent tricarbocyanine dye with near infra-red (NIR) or laser systems, which was approved by the Food and Drug Administration in 1956.2

ICG fluoresces when activated with NIR, with absorption and emission peaks at 805−835 nm, respectively.2,3 The fluorescence is detected using specific cameras that transmit this signal to a monitor, through which the structures in which the dye is found can be identified.3

After intravenous administration, ICG binds rapidly to plasma proteins and is eliminated unchanged by bile, with no enterohepatic recirculation, with a plasma half-life of 3−5 min and hepatic metabolism.2,3 When injected directly into tissue, ICG binds to proteins and reaches the nearest lymph node within minutes, then binds to regional lymph nodes 1−2 h after injection.3

Fluorescence has become widely used in general surgery over recent decades, particularly in minimally invasive surgery, due to the optical system and light sources required for the laparoscopic or robotic approach.3–8

The aim of this literature review is to provide guidance on the use of fluorescence in surgical procedures and to analyse its main applications in general surgery.

Method for using indocyanine greenPreparation of indocyanine green

ICG is usually administered diluted with distilled water.3,6,9–12 ICG is diluted with albumin when used to identify the tumour draining sentinel lymph node.9,10 Its use with albumin is due to its ability to stop in that first draining lymph node and be successfully identified.9,10 This drug should not be diluted with saline solutions (saline, Ringer's solution), as this could lead to precipitation of the dye.4

Administration route

Different routes can be used to administer ICG, depending on the structures to be visualised.3,7,13–18 The intravenous route is used to identify the vascularisation of tissues intraoperatively, to perform anastomosis or to identify tissues with hypoperfusion or ischaemia, it is also used to identify tumours or different anatomical structures.3,7,13,14 For sentinel node detection or lymphatic mapping during lymphadenectomy in the case of malignant neoplasms,9,10 for example in the case of gastrointestinal tumours, ICG can be administered peritumourally in the submucosal or subserosal layer of the intestinal wall.15,16 ICG can be administered directly into the gallbladder, to identify the biliary tree, or into the ureters.17,18

Contraindications for indocyanine green injection and toxicity

Care should be taken in patients with hypersensitivity to sodium iodide, allergic to iodine, with clinical hyperthyroidism, autonomous thyroid adenomas and focal and diffuse autonomous disorders of the thyroid gland, in patients with liver disease and during pregnancy.3,4 The lethal toxic dose observed in rats for intravenous administration is 87 mg/kg body weight and for intraperitoneal administration in mice is 650 mg/kg body weight. 4 No adverse effects or cases of overdose of the drug or abnormal laboratory parameters because of overdose in humans have been reported to date.3,4

Detection systems

Visualisation of the fluorescence emitted by ICG requires a detection system comprising a spectrum-resolving light source, light-collection optics with special filters, and a camera prepared for it, as well as control software and hardware for computing, input, and display. To obtain fluorescence, ICG molecules must be illuminated by NIR or laser light with an infrared filter.19,20

The recent development of a new technology enables intraoperative detection of the fluorescence emitted by ICG in overlay mode.21,22 This display mode is composed of both the standard white light image and the superimposed NIR light.21,22 Compared to the former NIR visualisation technology, where only fluorescent structures were visualised, the overlay images allow surgery to be performed with support directly with fluorescence, without switching to white light by visualising fluorescent and non-fluorescent structures at the same time, like augmented reality.21,22

One of the limitations of this technology is the surgeon's subjective assessment of fluorescence uptake during surgery.23–31 Although several reviews and meta-analyses have been published in the literature, subjective assessment of fluorescence is still considered a bias because of the heterogeneity of fluorescence.25–27 Therefore, to quantify fluorescence, several types of software have recently been proposed for objective assessment of fluorescence and more reliable assessment of tissue perfusion.23–31 These software programmes process the fluorescent signal by generating a fluorescence-time-curve (FTC), yielding a number of different parameters that reflect tissue perfusion.25,28 However, several factors can influence the amount of fluorescence, such as plasma ICG concentration, systemic perfusion factors (including blood pressure, cardiac output and vasoconstriction) and different detection systems. Despite encouraging results in plastic surgery, ophthalmic surgery, and neurosurgery, published studies are very heterogeneous, and there is no current gold standard methodology.25,30,31 Pending technological developments in fluorescence quantification, it appears that fixed ICG dosing per kg of body weight for each patient, stable fixed NIR camera configuration and systemic perfusion factors are essential for homogeneous quantification.25

Identification of anatomical structuresBiliary tract

ICG fluorescence imaging allows intraoperative real-time virtual cholangiography during laparoscopic cholecystectomy and avoids situations of potential risk of bile duct injury.13,14,17,32–47

ICG, by concentrating at the hepatic level and being excreted into bile, allows the anatomy of the biliary tree to be drawn. The use of ICG to identify the bile duct has been evaluated in multiple studies that have demonstrated high detection rates of the cystic duct, up to 100%,13,32,33 although these detection rates are lower in cases of acute cholecystitis, due to the inflammatory process.13,14,17,32–47

The strong fluorescence of the liver may prevent or hinder identification of the biliary tree, suggesting it should be injected 12−24 h before surgery.13,14,17,32–47 It is true that with the new imaging systems, with advanced visualisation systems, it is possible to work with infrared light without changing to a black/white system, facilitating identification of the biliary tract without excessive disturbance from the strong fluorescence of the liver.13,14,17,32–47 However, intravesicular injection has also been proposed to avoid this problem,13,14,17,32–47 although the disadvantage with this system is that a stone in the cystic duct can block its diffusion and if the ICG is spilled, its intraoperative use can be difficult.13,14,17,32–47

The dose and administration of ICG for fluorescence identification of the bile duct is discussed in Table 1. Our method is to inject it intravenously at the time of anaesthetic induction (20−30 min prior to surgery) at a pre-set dose of 15 mg of ICG diluted in 3 cm3 of distilled water (Fig. 1).

Table 1.

Dose and administration route of indocyanine green (ICG) to assess anatomical structures.

Authors  N. of patients  Solution  Dose  Administration route  Time of administration 
Biliary tract
Boni et al.13  52  Saline solution  .4 mg/kg  Intravenous  14 ± 9 min before surgery 
Graves et al.17  11  Sterile water  .025 mg/ml (1 ml)  Intravesicular  During surgery 
Dip et al.33  45  n.s.  .05 mg/kg  Intravenous  60 min before surgery 
Schols et al.34  30  n.s.  2.5 mg in total  Intravenous  At anaesthetic induction 
Buchs et al.36  23  n.s.  2.5 mg in total  Intravenous  30−45 min before surgery 
Quaresima et al.37  44  Sterile water  .1 ± .1 mg/Kg  Intravenous  10.7 ± 8.2 h before surgery 
Lehrskov et al.39  60  n.s.  .05 mg/kg  Intravenous  At anaesthetic induction 
Hiwatashi et al.40  65  n.s.  2.5 mg in total  Intravenous  2 h before surgery 
Daskalaki et al.41  184  n.s.  2.5 mg in total  Intravenous  45 min before surgery 
Dip et al.42  321  n.s.  .05 mg/kg  Intravenous  45 min before surgery 
Broderick et al.43  400  Sterile water  7.5 mg in total  Intravenous  45 min before surgery 
Bleszynski et al.44  108  n.s.  4 mg in total  Intravenous  At anaesthetic induction 
Liu et al.46  46  n.s.  .125 mg/ml (10 ml)  Intravesicular  During surgery 
Gené Škrabec et al.47  20  Sterile water  .25 mg/ml (Sterile water 1 ml + 9 ml Bile  Intravesicular  During surgery 
Morales-Conde et al. in routine clinical practice  –  Sterile water  Dose of 15 mg in 3 cm3  Intravenous  At anaesthetic induction (20−30 min before surgery) 
Ureters
Siddighi et al.18  >10  Sterile water  25 mg in 10 ml per side  Ureteral catheter  Before surgery under general anaesthetic 
Mandovra et al.50  30  Sterile water  5 mg in 2 ml per side  Ureteral catheter  Before surgery under general anaesthetic 
Ryu et al.51  n.s.  n.s.  Ureteral catheter  Before surgery under general anaesthetic 
White et al.52  16  n.s.  2.5 mg/ml per 5 ml per side  Ureteral catheter  Before surgery under general anaesthetic 
Morales-Conde et al. in routine clinical practice53  –  Sterile water  Filling of catheter with a dilution of 25 mg/5 cm3  Ureteral catheter  Before surgery when under general anaesthetic 
Parathyroid glands
Van den Bos et al.55  30  Sterile water  2.5 mg/ml (3 ml)  Intravenous  1. Before removal of hemithyroid2. After removal of hemithyroid 
Razavi et al.56  43  n.s.  5 mg  Intravenous  At the end of the surgery 
Rudin et al.57  86  n.s.  3 ml  Intravenous  During surgery 
Papavramidis et al.61  60  n.s.  5 mg (1 ml)  Intravenous  1. After removal of the thyroid 
Alesina et al.62  n.s.  2.5 mg in total  Intravenous  1. After mobilisation of the thyroid gland under autofluorescence without ICG2. With administration of ICG 
Lerchenberger et al.63  50  Sterile water  5 mg (1 ml)  Intravenous  1. After mobilisation of the thyroid gland under autofluorescence without ICG2. With administration of ICG 
Thoracic duct
Vecchiato et al.64  20  Saline solution  .5 mg/kg  PercutaneouslyBilaterally in the superficial inguinal nodes  Before thoracoscopy in total oesophagectomy, and then laparoscopy in Ivor Lewis oesophagectomy 
Chakedis et al.65  Saline solution  2.5 mg/ml (1−2 ml)  Subcutaneously on the dorsum of the left foot  15 min before level IV neck dissection 

n.s., not specified.

Fig. 1.

Identification of the bile duct.

(0.18MB).
Ureters

Ureter damage has been described during colorectal surgery, with an incidence of .15% to .66%.48 Different methods have been used to identify the ureters, such as prophylactic ureteric stents.49 However, this type of device is not without risks, including ureteric damage, haematuria, urinary tract infections, and impossibility of passing a stenosis.49

To identify the ureters, ICG is injected by inserting of the tip of a catheter into the ureteral orifice by cystoscopy in the same surgical act under general anaesthesia before starting the procedure, which can reduce iatrogenic complications by not forcing entry, and enable them to be filled with ICG even if there is a partial stenosis, as the liquid can pass it, and thus they can be identified.18,50–53 This method is used because ICG is eliminated via the hepatic route, and therefore does not reach the ureter as it is administered intravenously (Table 1).2,3,18

Our method consists of a catheter placed by the urology department at the entry of the ureters to the bladder and filling them with a dose of 25 mg in 5 cm3 of distilled water, closing the catheter during surgery and the urine around the catheter can drain into the bladder (Table 1).53

Parathyroid glands

ICG fluorescence can be useful to identify the parathyroid glands during thyroid surgery.54–58 It has been observed recently that autofluorescence (AF) of the parathyroid glands, without the need to administer ICG, can be very useful for identification using near-infrared devices at approximately 2–3 cm.59,60 It has been reported that AF can be up to 96%–98% effective in identifying the parathyroid.59,60 However, most authors state it is most useful for verifying the identification and vascularisation of the glands once the surgeon has already located them, and therefore AF can be useful as an intraoperative anatomical confirmation tool and for assessing and predicting postoperative hypocalcaemia (Table 1).59,63

Thoracic duct

ICG fluorescence can be used to identify the thoracic duct (TD).64,65 Injury to the TD can occur during oesophagectomy, neck dissection or lung surgery and the development of chylothorax is feared as a surgical complication.64,65 Subcutaneous injection of ICG near lymph node stations may help detect the TD intraoperatively to avoid iatrogenic injury (Table 2).64,65

Table 2.

Dose and administration route of indocyanine green (ICG) for tissue perfusion assessment.

Authors  N. of patients  Solution  ICG dose  Administration route  Time of administration 
Colorectal surgery
Boni et al.3  107  Soluble water  .2 mg/kg  Intravenous  After section of the mesentery, before anastomosis 
Gröne et al.71  18  n.s.  15 mg in total  Intravenous  Before proximal colon section 
Jafari et al.72  139  n.s.  From 3.75 to 7.5 mg  Intravenous  After mobilisation of the colon and anastomosis 
Kin et al.73  173  n.s.  3 ml  Intravenous  Before proximal colon section 
De Nardi et al.74  118  Sterile water  .3 mg/kg  Intravenous  Before proximal colon section and after anastomosis 
Kawada et al.75  68  n.s.  5 mg in total  Intravenous  Before proximal colon section 
Kim et al.76  123  n.s.  10 mg in total  Intravenous  After mobilisation of the colon 
Hasegawa et al.77  141  n.s.  5 mg in total  Intravenous  Before proximal colon section 
Ishii et al.78  223  n.s.  5 mg in total  Intravenous  Before proximal colon section 
Watanabe et al.79  211  n.s.  .25 mg/kg  Intravenous  Before proximal colon section 
Morales-Conde et al.80  192  Sterile water  15 mg in total  Intravenous  Before proximal colon section 
Wada et al.81  112  n.s.  5 mg in total  Intravenous  Before proximal colon section 
Chang et al.82  110  n.s.  5 mg in total  Intravenous  Before proximal colon section 
Tsang et al.83  62  n.s.  10 mg  Intravenous 
Impellizzeri et al.84  98  12.5 mg in 5 ml  Intravenous  After mobilisation of the colon and ligation of the vessels before colon section 
Alekseev et al.85  187  n.s.  .2 mg/kg  Intravenous  Before proximal colon section 
Morales-Conde et al. in routine clinical practice  –  Sterile water  Single dose of 15 mg in 3 cm3  Intravenous  Left/right colon: before proximal colon sectionRight colon/splenic angle: before section of the colon and ileum 
Oesophageal surgery
Kitagawa et al.86  46  n.s.  5 mg in total  Intravenous  Before construction of gastric tube and after transposition in the chest 
Sarkaria et al.87  42  Aqueous solution  10 in total  Intravenous  Before construction of gastric tube 
Karampinis et al.88  35  n.s.  7.5 mg in total  Intravenous  After creation of the gastric tube and before transposition in the chest 
Kumagai et al.89  70  n.s.  2.5 mg in total  Intravenous  After creation of the gastric tube and before transposition in the chest 
Rino et al.90  33  n.s.  2.5 mg in total  Intravenous  After creation of the gastric tube and before transposition in the chest 
Yukaya et al.91  27  n.s.  .1 mg/kg  Intravenous  After creation of the gastric tube and before transposition in the chest 
Zehetner et al.92  150  n.s.  2.5 in total  Intravenous  After creation of the gastric tube and before transposition in the chest 
Shimada et al.93  40  n.s.  2.5 mg in total  Intravenous  After creation of the gastric tube and before transposition in the chest 
Koyanagi et al.94  40  n.s.  From 1.25 to 2.5 mg in total  Intravenous  After creation of the gastric tube and before transposition in the chest 
Noma et al.95  71  n.s.  12.5 mg in total  Intravenous  After creation of the gastric tube and before transposition in the chest 
Luo et al.96  86  Sterile water  .5 mg/kg  Intravenous  After creation of the gastric tube and before transposition in the chest 
Morales-Conde et al. in routine clinical practice  –  Sterile water  Single dose of 15 mg in 3 cm3  Intravenous  After creation of the gastric tube before final endostapler firing 
Gastric surgery
Huh et al.98  30  n.s.  2.5 mg in total  Intravenous  After anastomosis 
Kim et al.99  20  n.s.  7.5 mg in total  Intravenous  Before anastomosis 
Morales-Conde et al. in routine clinical practice  –  Sterile water  Single dose of 15 mg in 3 cm3  Intravenous  Before anastomosis 
Bariatric surgery
Ortega et al.100  86  n.s.  3 ml  Intravenous  After vertical gastrectomy 
Di Furia et al.101  43  n.s.  5 ml  Intravenous  After vertical gastrectomy 
Morales-Conde et al. in routine clinical practice  –  Sterile water  Single dose of 25 mg in 5 cm3  Intravenous  Vertical gastrectomy: after performing gastric by-pass: after creating the anastomosis 
Assessment in strangulated hernia
Gianchandani Moorjani et al.102  n.s.  10 mg in 2 ml  Intravenous  n.s. 
Daskalopoulou et al.103  n.s.  3 ml  Intravenous  After hernia reduction in the abdomen 
Ryu et al.104,105  n.s.  10 mg in 2 ml  Intravenous  After hernia reduction in the abdomen 
Ryu et al.106  n.s.  10 mg in 2 ml  Intravenous  After hernia reduction in the abdomen 
Morales-Conde et al. in routine clinical practice  –  Sterile water  Single dose of 15 mg in 3 cm3  Intravenous  Once the strangulated contents have been reduced and the hernia has been repaired 
Assessment in intestinal ischaemia
Karampinis et al.107  52  n.s.  7.5 mg in total  Intravenous  During exploration of the abdominal cavity 
Alexander et al.108  n.s.  .25 mg in total  Intravenous  During exploration of the abdominal cavity 
Abdominal wall reconstruction
Cho et al.110  10  n.s.  n.s.  Intravenous  After creation of the flap 
Shao et al.111  88  n.s.  10 mg in total  Intravenous  After creation of the flap 
Colavita et al.112  15  n.s.  5 mg in total  Intravenous  Before the incision and before skin closure 
Wormer et al.113  46  n.s.  5 mg in total  Intravenous  Before the incision and before skin closure 
Morales-Conde et al. in routine clinical practice  –  Sterile water  Single dose of 15 mg in 3 cm3  Intravenous  Before skin closure 
Flap assessment for reconstruction in breast surgery
Hembd et al.115  506  Saline solution  7.5 mg in 3 cm3  Intravenous  10 to 15 min after vascular anastomosis of the flap 
Alstrup et al.116  77  Saline solution  7.5 mg in total  Intravenous  During the operation and after transposition of the flap to the recipient site 
Chirappapha et al.117  29  n.s.  .25 mg/kg  Intravenous  After completely obtaining the pedicled flap 
Anker et al.118  42  n.s.  .3 mg/kg  Intravenous  After completion of removal of the flap before section of the pedicle 
Assessment of the limits of anatomical liver resection
Kobayashi et al.120  13  n.s.  2.5 mg  Intravenous  After ligation of the portal vein 
  92  5 mg indigo carmine  .25 mg  Intraportal  After clamping the right or left hepatic artery 
Marino et al.121  25  n.s.  2.5 mg in total  Intravenous  After clamping the portal Branch of the liver area where the tumour to be removed is located 
    Saline solution  2.5 mg in total  Intraportal  After clamping the portal artery and vein 
Urade et al.122  n.s.  2.5 mg in total  Intravenous  After closure of the hepatic pedicle 
Nishino et al.123  10  n.s.  –  Intravenous  After closure of the hepatic pedicle 
Xu et al.124  27  Sterile water  1 ml de .025 mg/ml  Intravenous  After closure of the hepatic pedicle 
  Sterile water  5−10 ml de .025 mg/ml  Intraportal  After occlusion of the portal vein or Glisson’s pedicle of the area to be resected 
Aoki et al.125  14  n.s.  1 ml de .025 mg/ml  Intraportal  Percutaneously before the start of surgery 
Ito et al.126  Indigo carmine: 5 ml perflubutane bubbles: .3 ml  .25 mg  Intraportal  Percutaneously before the start of surgery 

n.s., not specified.

Assessment of tissue perfusion

Assessment of tissue vascularisation for anastomosis has been demonstrated in different areas of general surgery66 such as colorectal,3,67–85 oesophageal,86–97 gastric,98,99 and bariatric surgery.100,101 It use has also extended to establish the need for bowel resection in strangulated hernias102–106 or to assess the extent of resection in intestinal ischaemia processes in emergency surgery,107–109 to assess tissue viability in hernia surgery and abdominal wall reconstruction,110–113 to assess tissue perfusion in flaps in breast reconstruction,114–118 and for anatomical liver resection.119–126

The dose and form of administration for each of the uses listed below are shown in Table 2.

Tissue perfusion for creating anastomoses

The best time to assess vascularisation in order to create an anastomosis is when the dye first arrives when performing ICG fluorescence angiography (ICG-FA), since ICG is a small molecule, which can diffuse through the submucosal capillary flow over time outside the limits of the ischaemic zones initially delimited by it.127 This phenomenon can lead to a qualitative overestimation of the perfused area when this estimation is based solely on the presence of a fluorescent signal, which can result in confusion and the creation of an anastomosis in poorly perfused tissue.127

The most obvious advantage of the ICG-FA technique is the real-time visualisation of blood perfusion to the tissues.127 However, there are still problems to be solved, such as not allowing evaluation of venous return, which if impaired can also influence the viability of an anastomosis or the development of a subsequent stenosis, or wash-out of the tissues to re-evaluate an anastomotic site.90

Once the vessels and tissues have been dyed, marked enhancement lasts about 5 min, until the liver secretes ICG into intact bile, and it has been established that the wash-out time of the anastomotic site is about 15–20 min to be able to reinject and reassess.2,3

It should be noted that most of the papers mentioned on the use of ICG-FA do not include an objective quantitative assessment of fluorescence angiography.66,80,81 A standardised method to objectively and quantitatively assess anastomotic perfusion could result in further changes in strategy in these patients, but such a widely accepted instrument is not yet available.23,24,80,81,91 Furthermore, quantification would add further value to its re-injection to re-assess perfusion of a specific tissue.23–31

Table 2 shows the doses and administration routes to assess perfusion assessment by different authors. Our group uses a fixed dose of 3 cm3 of distilled water with 15 mg of intravenous ICG in all cases except in bariatric patients and patients with a body mass index greater than 40 kg/m2, where we use a dose of 5 cm3 with 15 mg of ICG. This infusion is performed before section of the colon or ileum in colorectal surgery, before creating the anastomosis in gastric surgery (to assess the duodenal stump and the area where the anastomosis is to be performed), before the last endostapler load while creating the gastric tube in oesophageal surgery (to avoid confusion in interpretation influenced by gastric submucosal vascularisation) and after performing the vertical gastrectomy and anastomosis in gastric by-pass in bariatric surgery to assess the final status of the procedure.

Tissue perfusion to assess viability in emergency surgerya) Strangulated hernia

Only a few cases have been described in the literature on the use of ICG-AF in inguinal and umbilical hernias.102–106 However, the results seem promising, mainly in avoiding unnecessary intestinal resections102–106 (Table 2).

b) Intestinal ischaemia

The clinical application of ICG-AF during emergency surgery for intestinal ischaemia is being studied.107–109 Karampinis et al. describe a change of surgical strategy in 11.5% of cases107; however, in an experimental study, Seeliger et al. report a discrepancy between mucosal and serosal assessment,109 and further studies are needed to investigate this application (Table 2).

However, it is important to note that in the above-mentioned emergency cases, ICG-AF only assesses arterial ischaemia and not venous ischaemia.90,102–109

Abdominal wall reconstruction

ICG fluorescence imaging also appears to be useful in reducing complication rates in hernia and abdominal wall reconstruction.110–113

The literature reports the use of ICG-AF in cases of complex abdominal wall reconstruction treated with anterior component separation, showing reduced rates of postoperative skin necrosis and surgical wound infection (Table 2).110–113

Assessment of the flap for reconstruction in breast surgery

Flap necrosis after breast reconstruction is one of the most feared postoperative complications for both the patient and the surgeon, and hypoperfusion is the main cause of flap failure.114–118 ICG-AF allows assessment of flap perfusion and the creation of a more accurate flap, which reduces postoperative complication rates, postoperative imaging studies, follow-up visits, biopsies, and revision reintervention.114–118

Assessing the limits of anatomical liver resection

ICG-AF is also useful in identifying hepatic margins for anatomical liver resection in liver tumour and shows promising results.119–126

Several intraoperative strategies have been described to define margins for correct liver resection.119–126 The negative staining technique, after intravenous administration of ICG, after temporary clamping of the portal branch draining the tumour or the parenchyma of the liver region to be removed, identifies the margins of the unstained segment for it to be resected along the demarcation line. The positive staining technique consists of injecting ICG directly into one (single-staining) or more (multiple-staining) portal branches, with the portal artery and veins clamped to avoid washing out the dye. Thus, the liver parenchyma to be removed is fluorescently stained.119–126 In the counterstaining technique, ICG is injected into the portal branch of the liver parenchyma to be preserved.119–126 Another strategy for anatomical liver resection is termed the paradoxical negative staining technique: when the draining hepatic vein is occluded by the tumour, portal flow regurgitation occurs.119–126 In this situation, the regurgitated portal territory shows up as a fluorescence defect even when the portal vein is punctured and ICG is injected (Table 2).119–126

Tumour identificationPrimary liver tumours and liver metastases

ICG fluorescence allows the identification of liver lesions.128–136 Healthy liver tissue eliminates ICG within 2h, while peritumoural tissue may retain it due to compression of the bile ducts by the tumour itself, marking a halo that allows identification of the lesion and marking of the resection limits, a circumstance observed in liver metastases.128,129,135 Hepatocellular carcinoma is identified because ICG is retained within the lesion allowing the lesion to be identified (Table 3).128,129

Table 3.

Identification of tumours.

Authors  N. of patients  Solution  Dose  Administration route  Administration time 
Primary liver tumours and liver metastases
Peloso et al.128  25  n.s.  .5 mg/kg  Intravenous  24 h before surgery 
Abo et al.130  117  Distilled water  .5 mg/kg  Intravenous  24 h before surgery 
Terasawa et al.131  41  n.s.  .5 mg/kg  Intravenous  3 days before surgery 
Ishizawa et al.132  26  n.s.  .5 mg/kg  Intravenous  A median of 3 days before surgery 
Inoue et al.133  24  n.s.  2.5 mg/2.5 mg  Intravenous/intraportal  After hilum ligation/after ligation of hepatic artery 
Morita et al.134  58  n.s.  .5 mg/kg  Intravenous  A mean of 14.7 before surgery 
Lieto et al.135  n.s.  .5 mg/kg  Intravenous  24 h before surgery 
Yao et al.136  18  n.s.  2.5 mg/2.5 mg  Intravenous/intraportal  For right hepatectomy: after ligation of right vessels 
Pancreatic tumours
Rho et al.138  37  n.s.  5 mg in total  Intravenous  During dissection of the uncinate process 
Hutteman et al.139  n.s.  From 5 to 10 mg  Intravenous  After exposure of the neoplasm 
Newton et al.140  20  n.s.  From 2.5 to 5 mg  Intravenous  24 h before surgery 
Paiella et al.141  10  Saline solution  25 mg in total (5 boluses of 5 mg)  Intravenous  During surgery 
Shirata et al.142  23  n.s.  2.5 mg in total  Intravenous  During surgery 
Adrenal tumours
Colvin et al.143  40  n.s.  From 3.8 to 20mg  Intravenous  After exposure of the retroperitoneal space 
Arora et al.144  55  Distilled water  5 mg in total  Intravenous  During surgery 
Sound et al.145  10  Distilled water  From 7.5 to 18.8mg  Intravenous  After exposure of the retroperitoneal space 
Lerchenberger et al.146  n.s.  5 mg for each adrenal gland  Intravenous  After exposure of the retroperitoneal space 
Tuncel et al.147  Distilled water  5 mg in total  Intravenous  After exposure of the retroperitoneal space 
Peritoneal implants
Veys et al.150  20  n.s.  .25 mg/kg  Intravenous  After visualising the abdominal cavity 
Liberale et al.151  14  n.s.  .25 mg/kg  Intravenous  After visualising the abdominal cavity 
Barabino et al.152  10  Sterile 5% glucose solution  .25 mg/kg  Intravenous  After visualising the abdominal cavity 
Filippello et al.153  10  n.s.  .25 mg/kg  Intravenous  24 h before surgery 
Lieto et al.154  n.s.  .25 mg/kg  Intravenous  After visualising the abdominal cavity 
Morales-Conde et al. in routine clinical practice155  –  Distilled water  Single dose of 15 mg in 3 cm3  Intravenous  After visualising the abdominal cavity 
Retroperitoneal tumours
Morales-Conde et al. in routine clinical practice  –  Distilled water  Single dose of 15 mg in 3 cm3  Intravenous  At anaesthetic induction (20−30 min before surgery) 
Tissue perfusion for assessment of tissue infiltration – intestinal lymphoma
Morales-Conde et al. in routine clinical practice156  –  Sterile water  Single dose of 15 mg in 3 cm3  Intravenous  Once the potential area of lymphoma involvement has been identified 
Diagnosis of lymphoma and other diseases by biopsy of adenopathies
Morales-Conde et al. in routine clinical practice  –  Distilled water  Single dose of 15 mg in 3 cm3  Intravenous  At anaesthetic induction (20−30 min before surgery) 

n.s., not specified.

Pancreatic tumours

The use of ICG fluorescence imaging to identify pancreatic tumours, although not routinely used, appears to be promising.137–142 It has been used to verify complete removal of the mesopancreas in laparoscopic pancreaticoduodenectomies,137–139 and because complete removal of the retroperitoneal margin is an important prognostic factor, it may be of significant value (Table 3).137

Adrenal tumours

The adrenal glands (AG) and their anatomical boundaries can be difficult to identify.143–147 The adrenal glands, and the different types of tumours located in them, can be identified based on the difference in perfusion between the adrenal glands and the surrounding tissues.143–147 Adrenocortical tumours are easily recognised by increased fluorescence, however, phaeochromocytomas are hypofluorescent.143–147 This technology may be useful in assessing the blood supply to the remaining adrenal tissue (Table 3).146,147

Peritoneal carcinomatosis

Preoperative detection of peritoneal metastases is difficult with current imaging techniques.148–155 Appropriate diagnosis and staging are important in the choice of the best therapeutic option.148–154 It seems that the clinical application of ICG fluorescence in peritoneal carcinomatosis should be reserved for patients with a carcinomatosis index of less than 8, as the value of fluorescence is limited in patients with a preoperative diagnosis of extensive peritoneal metastatic spread.152,153

In patients with peritoneal carcinomatosis of colorectal cancer, staging and completeness of cytoreductive surgery are important prognostic factors.152 Fluorescence-guided imaging may be a tool to facilitate intraoperative assessment of undetected tumour margins and implants beyond the current methods of palpation and visual inspection.148–155

Most reported studies, after clinical exploration of the abdominal cavity, administered 0.25 mg/kg ICG intravenously to detect fluorescent lesions, thus guiding their excision.148–152,154,155 Only Filippello et al. evaluated peritoneal lesions ex vivo after excision (Table 3).153

Retroperitoneal tumours

Our group has recently started using this technology to identify tumours at this level. We recently used it to remove a schwannoma located at the retroperitoneal level, and to assess its resection limits during dissection (Fig. 2). For this we gave an injection 30 min before surgery (in anaesthetic induction) as the tumour, being hypervascularised, would retain the ICG so it could be identified and correctly excised (Table 3).

Fig. 2.

Identification of Schwannoma.

(0.28MB).
Tissue perfusion to assess tissue infiltration - intestinal lymphoma

Fernández Veiga et al. presented their experience in a case of intestinal lymphoma.156 After administration of 15 mg of ICG intravenously before surgery, fluorescence allowed visualisation of a segment of small intestine and its lymph nodes, which were biopsied, revealing follicular lymphoma (Table 3).156

Diagnosis of lymphoma and other diseases by biopsy of difficult-to-access lymphadenopathies

Lymphomas often need to be diagnosed by biopsy of lymphadenopathies located in places that are difficult to access, such as the retroperitoneum, neck, or mediastinum. These adenopathies present significant hypervascularisation, which has helped us to locate them due to the uptake of ICG when they have been injected beforehand during anaesthetic induction. Our group has had success in cases with adenopathies in the neck, thigh, and retroperitoneum.

We have used this same approach to detect suspected pathological lymphadenopathies in the retroperitoneum due to recurrence of germinal tumours, also with very satisfactory results (Table 3).

Use of indocyanine green in lymphadenectomy – sentinel lymph node and lymphatic mappingSentinel lymph node

Using ICG to identify the sentinel lymph node in oncological surgery is undergoing significant development with the idea of performing conservative surgery and avoiding extensive unnecessary lymphadenectomies, and is well developed in gastric,157–159 and breast cancer surgery.160–163

a) Stomach surgery

The published studies on sentinel node identification by ICG fluorescence in gastric cancer, report identification rates of between 90% and 100% (Fig. 3).157–159 The SEntinel Node ORIented Tailored Approach (SENORITA) trial compares standard laparoscopic gastrectomy with laparoscopic sentinel node navigation surgery and endoscopic or segmental resection in T1N0M0.159 Using this technique, stomach-preserving surgery was performed in 81.4% of patients (Table 4).159

Fig. 3.

Lymphadenopathy over the hepatic artery in gastric surgery. Puncture 24 h beforehand.

(0.24MB).
Table 4.

Sentinel lymph node and lymphatic mapping.

Authors  N. of patients  Solution  Dose  Administration route  Administration time 
Stomach surgery – sentinel lymph node
Bok et al.158  13  n.s.  .5 ml (2.5 mg)  In the submucosa in the 4 peritumoral quadrants during endoscopy  At the start of the intervention 
An et al.159  245  Technetium-99m-radiolabelled human serum albumin  2.5 mg/ml  In the submucosa in the 4 peritumoral quadrants during endoscopy  At the start of the intervention 
Breast surgery – sentinel lymph node
Wishart et al.160  100  n.s.  2 ml (.5%)  1 ml intradermally1 ml subcutaneously at the edge of the areola  At the start of the intervention 
Mieog et al.161  24  Sterile water and human serum albumin  1.6 ml(from 50 to 1000 μM)  A peritumoural or periareolar puncture  At the start of the intervention 
Jung et al.162  24  Distilled water and human serum albumin  .3 ml (.6 mg)  A peritumoural or periareolar puncture  At the start of the intervention 
Takemoto et al.163  24  Distilled water  2 ml (10 mg)  A subareolar puncture  At the start of the intervention 
Colorectal surgery – lymphatic mapping
Currie et al.166  30  n.s.  5 mg/ml  In the submucosa at the 4 peritumoral quadrants during colonoscopy  At the start of the intervention 
Handgraaf et al.167  Nanocolloid  .4ml  In the submucosa at the 4 peritumoral quadrants during colonoscopy  At the start of the intervention 
Nishigori et al.168  21  n.s.  .2−.3 ml (2.5 mg/ml)  In the submucosa in 2 or 3 peritumoural punctures during colonoscopy  From 1 to 3 days before the intervention 
Kazanowski et al.169  Sterile water  2−5 ml  In the submucosa around the tumour during colonoscopy  During surgery 
Noura et al.170  25  n.s.  5 mg/ml  In the submucosa to the 4 peritumoural quadrants  At the start of the intervention 
Zhou et al.16  12  n.s.  .1 mg/ml  In the submucosa to the 4 peritumoural quadrants  At the start of the intervention 
Watanabe et al.171  31  Sterile water  2.5 mg/ml  Punctures in the subserosa to the 4 peritumoural quadrants  At the start of the intervention 
Chand et al.172  10  n.s.  1 ml (from .5 to 1.6 mg/ml)  Punctures in the subserosa to the 4 peritumoural quadrants  After vascular ligation and mobilisation of the colon 
Morales-Conde et al. in routine clinical practice. Colon:  –  Sterile water  Two wheals at a concentration of 3 cm3 with 15 mg ICG  Punctures in the subserosa to the 2 peritumoural quadrants  At the start of the intervention 
Morales-Conde et al. in routine clinical practice. Recto medio/alto:  –  Sterile water  Two wheals at a concentration of 3 cm3 with 15 mg ICG  Punctures in the subserosa to the 2 peritumoural quadrants  12−24 h before the intervention 
Morales-Conde et al. in routine clinical practice. Recto bajo:  –  Sterile water  Two wheals at a concentration of 3 cm3 with 15 mg ICG  Punctures in the subserosa to the 2 peritumoural quadrants  At the start of the intervention 
Oesophageal surgery – lymphatic mapping
Schlottmann et al.11  Sterile water  .5cm3 (1.25 mg/ml)  In the submucosa in the 4 peritumoural quadrants during endoscopy  Before the laparoscopic part 
Hachey et al.174  10  Sterile water or serum albumin  2.5 mg/ml  In the submucosa in the 4 peritumoural quadrants during endoscopy  At the start of the intervention 
Yuasa et al.175  20  n.s.  .5 ml  Two peritumoural punctures in the submucosa  After thoracotomy 
Morales-Conde et al. in routine clinical practice  –  Sterile water  1.25 mg/ml  In the submucosa in the 4 quadrants, 5 cm3 peritumoural during endoscopy  12−24 h before the intervention 
Stomach surgery – lymphatic mapping
Ohdaira et al.176  n.s.  1 ml (33 μg/ml)  In the submucosa in the 4 peritumoural quadrants during endoscopy  The day before the intervention 
Miyashiro et al.177  10  n.s.  .25−1.25 mg/.5 ml  4−8 peritumoural punctures during endoscopy  At the start of the intervention 
Lee et al.178  20  n.s.  1 ml  In the submucosa in the 4 peritumoural quadrants during endoscopy  At the start of the intervention 
Shoji et al.179  20  n.s.  .5 ml  To the submucosa in the 4 peritumoural quadrants during endoscopy  After section of the large omentum 
Tajima et al.180  3125  n.s.  .5 ml  - In the submucosa in the 4 peritumoural quadrants during endoscopy- Punctures in the subserosa to the 4 peritumoural quadrants  - From 1 to 3 days before the intervention- At the start of the intervention 
Kusano et al.181  22  n.s.  .5 ml  Punctures in the subserosa to the 4 peritumoural quadrants  At the start of the intervention 
Tummers et al.182  26  Nanocolloid and saline solution  1.6 ml (.05 mg)  Punctures in the subserosa to the 4 peritumoural quadrants  At the start of the intervention 
Liu et al.183  61  n.s.  .3125 mg/.5 mlper quadrant  In the submucosa in the 4 peritumoural quadrants during endoscopy  The day before the intervention 
Chen et al.184  129  Sterile water  .3125 mg/.5 mlper quadrant  In the submucosa in the 4 peritumoural quadrants during endoscopy  20−30 h before the intervention 
Baiocchi et al.185  13  n.s.  2.5 mg/ml by endoscopy (1−3 ml).25 mg/ml through the surgery (1−3 ml)  In the submucosa in the 4 peritumoural quadrants during endoscopy or subserosa during surgery  The day before the intervention or at the start of the intervention 
Morales-Conde et al. in routine clinical practice  –  Sterile water  1.25 mg/ml  In the submucosa in all 4 quadrants, .5 cm3 peritumoural by endoscopy  12−24 h before the intervention 
Melanoma surgery – lymphatic mapping
Göppner et al.186  24  Sterile water  .25 mg/ml  Subcutaneous punctures around the tumour  At the start of the intervention 

n.s., not specified.

b) Breast surgery

ICG fluorescence imaging has demonstrated high sensitivity for sentinel node detection in breast cancer.160–163 A study in 100 clinically node-negative patients compared different techniques for sentinel lymph node detection.160 Sensitivity was 100% with ICG, the combination of ICG and methylene blue had a sensitivity of 95%, and was 72.2% with the combination of ICG and radioisotope.160 In this study, the dose administered just before surgery was 2 ml at .5% ICG (1 ml intradermally and 1 ml subcutaneously), and its effect was observed at 5−10 min.160 Combination therapy including ICG could be a feasible and safe method for sentinel node identification in these patients (Table 4).162,163

Lymphatic mappinga) Colorectal surgery

ICG in the intraoperative detection of lymph nodes in colorectal cancer can be used for lymphatic mapping during lymphadenectomy (Table 4).16,164–172 This aspect is especially important if these nodes are not present in the usual dissection area, this information would change the surgical strategy.159,168

In colon surgery, peritumoural injection is performed intraoperatively by laparoscopy at subserosal level, but the objective is not achieved in all cases, either because the contents are spilled or because there is not enough time for it to diffuse adequately, and more reliable injection methods need to be established.16,166–172 Our group, in order to encourage lymphatic drainage once the ICG injection has been given (Fig. 4), begins dissection in the right colon via the cranial route, to preserve lymphatic drainage and allow time for ICG diffusion, observing its usefulness in complete excision of the mesocolon. In the splenic angle, the use of ICG can show the drainage of the tumour towards the territory of the inferior mesenteric artery or the middle colic artery.

Fig. 4.

Intraoperative injection of ICG in cecum tumour.

(0.12MB).

Likewise, in rectal surgery, it can be injected just before starting the procedure by means of a rigid rectoscope or flexible rectoscopy 12−24 h before surgery, the best way of doing so needs to be defined. In rectal surgery, it could be of added value in assessing the need to remove the lateral lymph node chains.

b) Oesophageal surgery

Oesophageal cancer spreads multidirectionally via submucosal lymphatics to regional lymphatic stations, lymphatic metastases are a major prognostic factor,11,173–175 and extensive lymphadenectomy is required to improve prognosis.11,173–175 ICG fluorescence imaging is being studied for lymphatic mapping for guided lymphadenectomy.11,173–175 Early studies have shown an increase in the number of lymphadenopathies when ICG is performed for lymphatic mapping.11,173–175 However, more studies are needed before introducing this procedure into daily conventional clinical practice, although it appears to be useful considering the current limitations (Table 4).11,173–175

c) Stomach surgery

Most studies only discuss ICG fluorescence-guided imaging for lymphatic mapping descriptively, as it does not really change the initially planned surgical strategy.176–185 However, all studies conclude that ICG fluorescence imaging provides high sensitivity and guided imaging for sentinel node identification and lymphatic mapping (Table 4).176–185

Baiocchi et al. showed that all lymph nodes that were metastatic had ICG uptake, with no metastatic lymph nodes without ICG uptake.185 Furthermore, this study showed that in some patients it was necessary to extend the lymphadenectomy outside the standard territory due to nodes with ICG uptake, noting that there was a positive lymph node in one case.185

These findings should of course be confirmed with further studies and in cases of neoadjuvant or advanced tumours.

d) Melanoma surgery

The dose of ICG routinely used for lymphatic mapping for melanoma is 2 ml, at a concentration of 0.25 mg/ml.186 A few minutes after injection, the dose is increased until a maximum of 2 ml is reinjected, with a maximum total injected dose of 3.5 mg of ICG (or 5 ml) per patient.186 A node detection rate of 80% was achieved with pre-operative administration of 2 ml of ICG (2.5 mg/ml) (Table 4).186

Conclusions

ICG fluorescence imaging is a very useful technology in general surgery. There is sufficient evidence to show that ICG is a safe, simple, and easy to manage resource, very useful in identifying anatomical structures, tissue vascularisation, tumours, and lymph nodes. The dosage and method of use varies from one group to another, and there remains little consensus in this regard, which is essentially based on whether fixed doses should be used or whether they should go by the patient's weight, which leads to dose adjustment without really influencing the results. Dilution with albumin seems to be indicated only for use in the sentinel node, whereas the conventional approach is to dilute with distilled water.

More prospective and randomised studies with large patient samples are needed to draw definitive conclusions on the use and method of use of fluorescence in general surgery, although the evidence gathered thus far is very encouraging.

Authors’ contributions

Salvador Morales-Conde: study designs, data acquisition, analysis, and interpretation of results, drafting the manuscript, critical revision, and approval of the definitive version of the manuscript.

Eugenio Licardie: study designs, data acquisition, analysis, and interpretation of results, drafting the manuscript, critical revision, and approval of the definitive version of the manuscript.

Isaias Alarcón: study designs, data acquisition, analysis, and interpretation of results, drafting the manuscript, critical revision, and approval of the definitive version of the manuscript.

Andrea Balla: study designs, data acquisition, analysis, and interpretation of results, drafting the manuscript, critical revision, and approval of the definitive version of the manuscript.

Conflict of interests

Salvador Morales-Conde, Eugenio Licardie, Isaias Alarcón and Andrea Balla have no conflicts of interest or funding to declare.

References
[1]
S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi.
A review of NIR dyes in cancer targeting and imaging.
Biomaterials., 32 (2011), pp. 7127-7138
[2]
A. Raabe, P. Nakaji, J. Beck, L.J. Kim, F.P. Hsu, J.D. Kamerman, et al.
Prospective evaluation of surgical microscope–integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery.
J Neurosurg, 103 (2005), pp. 982-989
[3]
L. Boni, G. David, G. Dionigi, S. Rausei, E. Cassinotti, A. Fingerhut.
Indocyanine green-enhanced fluorescence to assess bowel perfusion during laparoscopic colorectal resection.
Surg Endosc, 30 (2016), pp. 2736-2742
[4]
Vademecum Internacional. Disponible en https://www.vademecum.es/principios-activos-verde+de+indocianina-v04cx+m7. Consultado en: noviembre 2018.
[5]
S. Sharma, R. Huang, S. Hui, M.C. Smith, P.J. Chung, A. Schwartzman, et al.
The utilization of fluorescent cholangiography during robotic cholecystectomy at an inner-city academic medical center.
J Robot Surg., 12 (2018), pp. 481-485
[6]
Y. Ushimaru, T. Omori, Y. Fujiwara, Y. Yanagimoto, K. Sugimura, K. Yamamoto, et al.
The feasibility and safety of preoperative fluorescence marking with indocyanine green (ICG) in laparoscopic gastrectomy for gastric cancer.
J Gastrointest Surg., 23 (2019), pp. 468-476
[7]
E. Kose, B. Kahramangil, H. Aydin, M. Donmez, H. Takahashi, L.A. Acevedo-Moreno, et al.
A comparison of indocyanine green fluorescence and laparoscopic ultrasound for detection of liver tumors.
HPB (Oxford)., 22 (2020), pp. 764-769
[8]
J. Vidal Fortuny, S.M. Sadowski, V. Belfontali, S. Guigard, A. Poncet, F. Ris, et al.
Randomized clinical trial of intraoperative parathyroid gland angiography with indocyanine green fluorescence predicting parathyroid function after thyroid surgery.
Br J Surg., 105 (2018), pp. 350-357
[9]
M.H. van der Pas, G.A. van Dongen, F. Cailler, A. Pèlegrin, W.J. Meijerink.
Sentinel node procedure of the sigmoid using indocyanine green: feasibility study in a goat model.
Surg Endosc., 24 (2010), pp. 2182-2187
[10]
M. Ankersmit, H.J. Bonjer, G. Hannink, L.J. Schoonmade, M.H.G.M. van der Pas, W.J.H.J. Meijerink.
Near-infrared fluorescence imaging for sentinel lymph node identification in colon cancer: a prospective single-center study and systematic review with meta-analysis.
Tech Coloproctol., 23 (2019), pp. 1113-1126
[11]
F. Schlottmann, A. Barbetta, B. Mungo, A.O. Lidor, D. Molena.
Identification of the lymphatic drainage pattern of esophageal cancer with near-infrared fluorescent imaging.
J Laparoendosc Adv Surg Tech A., 27 (2017), pp. 268-271
[12]
T.H. Kim, S.H. Kong, J.H. Park, Y.G. Son, Y.J. Huh, Y.S. Suh, et al.
Assessment of the completeness of lymph node dissection using near-infrared imaging with indocyanine green in laparoscopic gastrectomy for gastric cancer.
J Gastric Cancer., 18 (2018), pp. 161-171
[13]
L. Boni, G. David, A. Mangano, G. Dionigi, S. Rausei, S. Spampatti, et al.
Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery.
Surg Endosc., 29 (2015), pp. 2046-2055
[14]
V. Agnus, A. Pesce, L. Boni, J. Van Den Bos, S. Morales-Conde, A.M. Paganini, et al.
Fluorescence-based cholangiography: preliminary results from the IHU-IRCAD-EAES EURO-FIGS registry.
[15]
N. Takahashi, H. Nimura, T. Fujita, S. Yamashita, N. Mitsumori, K. Yanaga.
Quantitative assessment of visual estimation of the infrared indocyanine green imaging of lymph nodes retrieved at sentinel node navigation surgery for gastric cancer.
[16]
S.C. Zhou, Y.T. Tian, X.W. Wang, C.D. Zhao, S. Ma, J. Jiang, et al.
Application of indocyanine green-enhanced near-infrared fluorescence-guided imaging in laparoscopic lateral pelvic lymph node dissection for middle-low rectal cancer.
World J Gastroenterol., 25 (2019), pp. 4502-4511
[17]
C. Graves, S. Ely, O. Idowu, C. Newton, S. Kim.
Direct gallbladder indocyanine green injection fluorescence cholangiography during laparoscopic cholecystectomy.
J Laparoendosc Adv Surg Tech A., 27 (2017), pp. 1069-1073
[18]
S. Siddighi, J.J. Yune, J. Hardesty.
Indocyanine green for intraoperative localization of ureter.
Am J Obstet Gynecol., 211 (2014), pp. 436
[19]
A.V. DSouza, H. Lin, E.R. Henderson, K.S. Samkoe, B.W. Pogue.
Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging.
J Biomed Opt., 21 (2016), pp. 80901
[20]
S. Kudszus, C. Roesel, A. Schachtrupp, J.J. Höer.
Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage.
Langenbecks Arch Surg., 395 (2010), pp. 1025-1030
[21]
C. Esposito, D. Alberti, A. Settimi, S. Pecorelli, G. Boroni, B. Montanaro, et al.
Indocyanine green (ICG) fluorescent cholangiography during laparoscopic cholecystectomy using RUBINA™ technology: preliminary experience in two pediatric surgery centers.
[22]
H. Nishino, H.M. Hollandsworth, S. Amirfakhri, Y. Tashiro, J. Yamamoto, M.A. Turner, et al.
A novel color-coded liver metastasis mouse model to distinguish tumor and adjacent liver segment.
J Surg Res., 264 (2021), pp. 327-333
[23]
K. Gosvig, S.S. Jensen, N. Qvist, N. Nerup, V. Agnus, M. Diana, et al.
Quantification of ICG fluorescence for the evaluation of intestinal perfusion: comparison between two software-based algorithms for quantification.
[24]
C.D. Lütken, M.P. Achiam, M.B. Svendsen, L. Boni, N. Nerup.
Optimizing quantitative fluorescence angiography for visceral perfusion assessment.
Surg Endosc., 34 (2020), pp. 5223-5233
[25]
C.D. Lütken, M.P. Achiam, J. Osterkamp, M.B. Svendsen, N. Nerup.
Quantification of fluorescence angiography: toward a reliable intraoperative assessment of tissue perfusion - A narrative review.
Langenbecks Arch Surg., 406 (2021), pp. 251-259
[26]
M.D. Slooter, W.J. Eshuis, M.A. Cuesta, S.S. Gisbertz, M.I. van Berge Henegouwen.
Fluorescent imaging using indocyanine green during esophagectomy to prevent surgical morbidity: a systematic review and meta-analysis.
J Thorac Dis., 11 (2019), pp. S755-S765
[27]
J.T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V.V. Tuchin, et al.
A review of indocyanine green fluorescent imaging in surgery.
Int J Biomed Imaging., 2012 (2012),
[28]
N. Nerup, H.S. Andersen, R. Ambrus, R.B. Strandby, M.B.S. Svendsen, M.H. Madsen, et al.
Quantification of fluorescence angiography in a porcine model.
Langenbecks Arch Surg., 402 (2017), pp. 655-662
[29]
T. Desmettre, J.M. Devoisselle, S. Mordon.
Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography.
Surv Ophthalmol., 45 (2000), pp. 15-27
[30]
K. Li, Z. Zhang, F. Nicoli, C. D’Ambrosia, W. Xi, D. Lazzeri, et al.
Application of indocyanine green in flap surgery: a systematic review.
J Reconstr Microsurg., 34 (2018), pp. 77-86
[31]
C.P. Herbort Jr, I. Tugal-Tutkun, P. Neri, C. Pavésio, S. Onal, P. LeHoang.
Failure to integrate quantitative measurement methods of ocular inflammation hampers clinical practice and trials on new therapies for posterior uveitis.
J Ocul Pharmacol Ther., 33 (2017), pp. 263-277
[32]
L. van Manen, H.J.M. Handgraaf, M. Diana, J. Dijkstra, T. Ishizawa, A.L. Vahrmeijer, et al.
A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery.
J Surg Oncol., 118 (2018), pp. 283-300
[33]
F. Dip, M. Roy, E. Lo Menzo, C. Simpfendorfer, S. Szomstein, R.J. Rosenthal.
Routine use of fluorescent incisionless cholangiography as a new imaging modality during laparoscopic cholecystectomy.
Surg Endosc., 29 (2015), pp. 1621-1626
[34]
R.M. Schols, N.D. Bouvy, R.M. van Dam, A.A. Masclee, C.H. Dejong, L.P. Stassen.
Combined vascular and biliary fluorescence imaging in laparoscopic cholecystectomy.
Surg Endosc., 27 (2013), pp. 4511-4517
[35]
R.M. Schols, N.D. Bouvy, A.A. Masclee, R.M. van Dam, C.H. Dejong, L.P. Stassen.
Fluorescence cholangiography during laparoscopic cholecystectomy: a feasibility study on early biliary tract delineation.
Surg Endosc., 27 (2013), pp. 1530-1536
[36]
N.C. Buchs, F. Pugin, D.E. Azagury, M. Jung, F. Volonte, M.E. Hagen, et al.
Real-time near-infrared fluorescent cholangiography could shorten operative time during robotic single-site cholecystectomy.
Surg Endosc., 27 (2013), pp. 3897-3901
[37]
S. Quaresima, A. Balla, L. Palmieri, A. Seitaj, A. Fingerhut, P. Ursi, et al.
Routine near infra-red indocyanine green fluorescent cholangiography versus intraoperative cholangiography during laparoscopic cholecystectomy: a case-matched comparison.
[38]
S.L. Vlek, D.A. van Dam, S.M. Rubinstein, E.S.M. de Lange-de Klerk, L.J. Schoonmade, J.B. Tuynman, et al.
Biliary tract visualization using near-infrared imaging with indocyanine green during laparoscopic cholecystectomy: results of a systematic review.
Surg Endosc., 31 (2017), pp. 2731-2742
[39]
L.L. Lehrskov, M. Westen, S.S. Larsen, A.B. Jensen, B.B. Kristensen, T. Bisgaard.
Fluorescence or X-ray cholangiography in elective laparoscopic cholecystectomy: a randomized clinical trial.
Br J Surg., 107 (2020), pp. 655-661
[40]
K. Hiwatashi, H. Okumura, T. Setoyama, K. Ando, Y. Ogura, K. Aridome, et al.
Evaluation of laparoscopic cholecystectomy using indocyanine green cholangiography including cholecystitis: a retrospective study.
Medicine (Baltimore)., 97 (2018),
[41]
D. Daskalaki, E. Fernandes, X. Wang, F.M. Bianco, E.F. Elli, S. Ayloo, et al.
Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution.
Surg Innov., 21 (2014), pp. 615-621
[42]
F. Dip, E. LoMenzo, L. Sarotto, E. Phillips, H. Todeschini, M. Nahmod, et al.
Randomized trial of near-infrared incisionless fluorescent cholangiography.
Ann Surg., 270 (2019), pp. 992-999
[43]
R.C. Broderick, A.M. Lee, J.N. Cheverie, B. Zhao, R.R. Blitzer, R.J. Patel, et al.
Fluorescent cholangiography significantly improves patient outcomes for laparoscopic cholecystectomy.
[44]
M.S. Bleszynski, K.M. DeGirolamo, A.T. Meneghetti, C.J. Chiu, O.N. Panton.
Fluorescent cholangiography in laparoscopic cholecystectomy: an updated canadian experience.
Surg Innov., 27 (2020), pp. 38-43
[45]
F.W. van de Graaf, I. Zaïmi, L.P.S. Stassen, J.F. Lange.
Safe laparoscopic cholecystectomy: a systematic review of bile duct injury prevention.
Int J Surg., 60 (2018), pp. 164-172
[46]
Y.Y. Liu, C.H. Liao, M. Diana, S.Y. Wang, S.H. Kong, C.N. Yeh, et al.
Near-infrared cholecystocholangiography with direct intragallbladder indocyanine green injection: preliminary clinical results.
Surg Endosc., 32 (2018), pp. 1506-1514
[47]
C. Gené Škrabec, F. Pardo Aranda, F. Espín, M. Cremades, J. Navinés, A. Zárate, et al.
Fluorescent cholangiography with direct injection of indocyanine green (ICG) into the gallbladder: a safety method to outline biliary anatomy.
Langenbecks Arch Surg., 405 (2020), pp. 827-832
[48]
N.C. Palaniappa, D.A. Telem, N.E. Ranasinghe, C.M. Divino.
Incidence of iatrogenic ureteral injury after laparoscopic colectomy.
Arch Surg., 147 (2012), pp. 267-271
[49]
G. da Silva, M. Boutros, S.D. Wexner.
Role of prophylactic ureteric stents in colorectal surgery.
Asian J Endosc Surg., 5 (2012), pp. 105-110
[50]
P. Mandovra, V. Kalikar, R.V. Patankar.
Real-time visualization of ureters using indocyanine green during laparoscopic surgeries: can we make surgery safer?.
Surg Innov, 26 (2019), pp. 464-468
[51]
S. Ryu, K. Ishida, A. Okamoto, K. Nakashima, K. Hara, R. Ito, et al.
Laparoscopic fluorescence navigation for left-sided colon and rectal cancer: Blood flow evaluation, vessel and ureteral navigation, clip marking and trans-anal tube insertion.
Surg Oncol., 35 (2020), pp. 434-440
[52]
L.A. White, J.P. Joseph, D.Y. Yang, S.R. Kelley, K.L. Mathis, K. Behm, et al.
Intraureteral indocyanine green augments ureteral identification and avoidance during complex robotic-assisted colorectal surgery.
Colorectal Dis., 23 (2021), pp. 718-723
[53]
S. Morales-Conde, E. Licardie, I. Alarcón, A. Balla.
Indocyanine-green-guided, ureteric preserving, laparoscopic Hartmann’s procedure for obstructing colonic adenocarcinoma with endometriosis - a video vignette.
Colorectal Dis., 22 (2020), pp. 1764-1765
[54]
E. Spartalis, G. Ntokos, K. Georgiou, G. Zografos, G. Tsourouflis, D. Dimitroulis, et al.
Intraoperative indocyanine green (ICG) angiography for the identification of the parathyroid glands: current evidence and future perspectives.
In Vivo., 34 (2020), pp. 23-32
[55]
J. van den Bos, L. van Kooten, S.M.E. Engelen, T. Lubbers, L.P.S. Stassen, N.D. Bouvy.
Feasibility of indocyanine green fluorescence imaging for intraoperative identification of parathyroid glands during thyroid surgery.
Head Neck., 41 (2019), pp. 340-348
[56]
A.C. Razavi, K. Ibraheem, A. Haddad, L. Saparova, H. Shalaby, M. Abdelgawad, et al.
Efficacy of indocyanine green fluorescence in predicting parathyroid vascularization during thyroid surgery.
Head Neck., 41 (2019), pp. 3276-3281
[57]
A.V. Rudin, T.J. McKenzie, G.B. Thompson, D.R. Farley, M.L. Lyden.
Evaluation of parathyroid glands with indocyanine green fluorescence angiography after thyroidectomy.
World J Surg., 43 (2019), pp. 1538-1543
[58]
H.W. Wolf, B. Grumbeck, N. Runkel.
Intraoperative verification of parathyroid glands in primary and secondary hyperparathyroidism using near-infrared autofluorescence (IOPA).
Updates Surg., 71 (2019), pp. 579-585
[59]
E. Kose, A.V. Rudin, B. Kahramangil, E. Moore, H. Aydin, M. Donmez, et al.
Autofluorescence imaging of parathyroid glands: anassessment of potential indications.
Surgery., 167 (2020), pp. 173-179
[60]
R. Ladurner, S. Sommerey, N.A. Arabi, K.K.J. Hallfeldt, H. Stepp, J.K.S. Gallwas.
Intraoperative near-infrared autofluorescence imaging of parathyroid glands.
Surg Endosc., 31 (2017), pp. 3140-3145
[61]
T.S. Papavramidis, P. Anagnostis, A. Chorti, I. Pliakos, S. Panidis, D. Koutsoumparis, et al.
Do near-infrared intra-operative findings obtained using indocyanine green correlate with post-thyroidectomy parathyroid function? The icgpredict study.
Endocr Pract., 26 (2020), pp. 967-973
[62]
P.F. Alesina, B. Meier, J. Hinrichs, W. Mohmand, M.K. Walz.
Enhanced visualization of parathyroid glands during video-assisted neck surgery.
Langenbecks Arch Surg., 403 (2018), pp. 395-401
[63]
M. Lerchenberger, N. Al Arabi, J.K.S. Gallwas, H. Stepp, K.K.J. Hallfeldt, R. Ladurner.
Intraoperative near-infrared autofluorescence and indocyanine green imaging to identify parathyroid glands: a comparison.
Int J Endocrinol., 2019 (2019),
[64]
M. Vecchiato, A. Martino, M. Sponza, A. Uzzau, A. Ziccarelli, F. Marchesi, et al.
Thoracic duct identification with indocyanine green fluorescence during minimally invasive esophagectomy with patient in prone position.
Dis Esophagus, 33 (2020),
[65]
J. Chakedis, L.A. Shirley, A.M. Terando, R. Skoracki, J.E. Phay.
Identification of the thoracic duct using indocyanine green during cervical lymphadenectomy.
Ann Surg Oncol., 25 (2018), pp. 3711-3717
[66]
A. Spota, M. Al-Taher, E. Felli, S. Morales Conde, I. Dal Dosso, G. Moretto, et al.
Fluorescence-based bowel anastomosis perfusion evaluation: results from the IHU-IRCAD-EAES EURO-FIGS registry.
Surg Endosc., 35 (2021), pp. 7142-7153
[67]
S. Morales-Conde, A. Balla, I. Alarcón, E. Licardie.
Management of postoperative complications after laparoscopic left hemicolectomy: an approach in modern times after incorporation of indocyanine green and full mobilization of the splenic flexure.
Minerva Surg., 76 (2021), pp. 303-309
[68]
S. Morales-Conde, I. Alarcón, T. Yang, E. Licardie, A. Balla.
A decalogue to avoid routine ileostomy in selected patients with border line risk to develop anastomotic leakage after minimally invasive low-anterior resection: a pilot study.
Surg Innov., 27 (2020), pp. 44-53
[69]
A. Balla, V. Sosa, E. Licardie, I. Alarcón, S. Morales-Conde.
Laparoscopic left hemicolectomy with indocyanine green fluorescence angiography for diverticular disease in a patient with intestinal malrotation - a video vignette.
Colorectal Dis., 21 (2019), pp. 978-979
[70]
F. Ris, R. Hompes, C. Cunningham, I. Lindsey, R. Guy, O. Jones, et al.
Near-infrared (NIR) perfusion angiography in minimally invasive colorectal surgery.
Surg Endosc., 28 (2014), pp. 2221-2226
[71]
J. Gröne, D. Koch, M.E. Kreis.
Impact of intraoperative microperfusion assessment with Pinpoint Perfusion Imaging on surgical management of laparoscopic low rectal and anorectal anastomoses.
Colorectal Dis., 17 (2015), pp. 22-28
[72]
M.D. Jafari, S.D. Wexner, J.E. Martz, E.C. McLemore, D.A. Margolin, D.A. Sherwinter, et al.
Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study.
J Am Coll Surg., 220 (2015), pp. 82-92
[73]
C. Kin, H. Vo, L. Welton, M. Welton.
Equivocal effect of intraoperative fluorescence angiography on colorectal anastomotic leaks.
Dis Colon Rectum., 58 (2015), pp. 582-587
[74]
P. De Nardi, U. Elmore, G. Maggi, R. Maggiore, L. Boni, E. Cassinotti, et al.
Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial.
Surg Endosc., 34 (2020), pp. 53-60
[75]
K. Kawada, S. Hasegawa, T. Wada, R. Takahashi, S. Hisamori, K. Hida, et al.
Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis.
Surg Endosc., 31 (2017), pp. 1061-1069
[76]
J.C. Kim, J.L. Lee, Y.S. Yoon, A.M. Alotaibi, J. Kim.
Utility of indocyanine-green fluorescent imaging during robot-assisted sphincter-saving surgery on rectal cancer patients.
Int J Med Robot., 12 (2016), pp. 710-717
[77]
H. Hasegawa, Y. Tsukada, M. Wakabayashi, S. Nomura, T. Sasaki, Y. Nishizawa, et al.
Impact of intraoperative indocyanine green fluorescence angiography on anastomotic leakage after laparoscopic sphincter-sparing surgery for malignant rectal tumors.
Int J Colorectal Dis., 35 (2020), pp. 471-480
[78]
M. Ishii, A. Hamabe, K. Okita, T. Nishidate, K. Okuya, A. Usui, et al.
Efficacy of indocyanine green fluorescence angiography in preventing anastomotic leakage after laparoscopic colorectal cancer surgery.
Int J Colorectal Dis., 35 (2020), pp. 269-275
[79]
J. Watanabe, A. Ishibe, Y. Suwa, H. Suwa, M. Ota, C. Kunisaki, et al.
Indocyanine green fluorescence imaging to reduce the risk of anastomotic leakage in laparoscopic low anterior resection for rectal cancer: a propensity score-matched cohort study.
Surg Endosc., 34 (2020), pp. 202-208
[80]
S. Morales-Conde, I. Alarcón, T. Yang, E. Licardie, V. Camacho, F. Aguilar Del Castillo, et al.
Fluorescence angiography with indocyanine green (ICG) to evaluate anastomosis in colorectal surgery: where does it have more value?.
[81]
T. Wada, K. Kawada, R. Takahashi, M. Yoshitomi, K. Hida, S. Hasegawa, et al.
ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery.
Surg Endosc., 31 (2017), pp. 4184-4193
[82]
Y.K. Chang, C.C. Foo, J. Yip, R. Wei, K.K. Ng, O. Lo, et al.
The impact of indocyanine-green fluorescence angiogram on colorectal resection.
Surgeon., 17 (2019), pp. 270-276
[83]
Y.P. Tsang, L.A. Leung, C.W. Lau, C.N. Tang.
Indocyanine green fluorescence angiography to evaluate anastomotic perfusion in colorectal surgery.
Int J Colorectal Dis., 35 (2020), pp. 1133-1139
[84]
H.G. Impellizzeri, A. Pulvirenti, M. Inama, M. Bacchion, E. Marrano, M. Creciun, et al.
Near-infrared fluorescence angiography for colorectal surgery is associated with a reduction of anastomotic leak rate.
Updates Surg., 72 (2020), pp. 991-998
[85]
M. Alekseev, E. Rybakov, Y. Shelygin, S. Chernyshov, I. Zarodnyuk.
A study investigating the perfusion of colorectal anastomoses using fluorescence angiography: results of the FLAG randomized trial.
Colorectal Dis., 22 (2020), pp. 1147-1153
[86]
H. Kitagawa, T. Namikawa, J. Iwabu, K. Fujisawa, S. Uemura, S. Tsuda, et al.
Assessment of the blood supply using the indocyanine green fluorescence method and postoperative endoscopic evaluation of anastomosis of the gastric tube during esophagectomy.
Surg Endosc., 32 (2018), pp. 1749-1754
[87]
I.S. Sarkaria, M.S. Bains, D.J. Finley, P.S. Adusumilli, J. Huang, V.W. Rusch, et al.
Intraoperative near-infrared fluorescence imaging as an adjunct to robotic-assisted minimally invasive esophagectomy.
Innovations (Phila)., 9 (2014), pp. 391-393
[88]
I. Karampinis, U. Ronellenfitsch, C. Mertens, A. Gerken, S. Hetjens, S. Post, et al.
Indocyanine green tissue angiography affects anastomotic leakage after esophagectomy. A retrospective, case-control study.
Int J Surg., 48 (2017), pp. 210-214
[89]
Y. Kumagai, S. Hatano, J. Sobajima, T. Ishiguro, M. Fukuchi, K.I. Ishibashi, et al.
Indocyanine green fluorescence angiography of the reconstructed gastric tube during esophagectomy: efficacy of the 90-second rule.
Dis Esophagus., 31 (2018),
[90]
Y. Rino, N. Yukawa, T. Sato, N. Yamamoto, H. Tamagawa, S. Hasegawa, et al.
Visualization of blood supply route to the reconstructed stomach by indocyanine green fluorescence imaging during esophagectomy.
BMC Med Imaging., 14 (2014), pp. 18
[91]
T. Yukaya, H. Saeki, Y. Kasagi, Y. Nakashima, K. Ando, Y. Imamura, et al.
Indocyanine green fluorescence angiography for quantitative evaluation of gastric tube perfusion in patients undergoing esophagectomy.
J Am Coll Surg., 221 (2015), pp. e37-42
[92]
J. Zehetner, S.R. DeMeester, E.T. Alicuben, D.S. Oh, J.C. Lipham, J.A. Hagen, et al.
Intraoperative Assessment of Perfusion of the Gastric Graft and Correlation With Anastomotic Leaks After Esophagectomy.
Ann Surg., 262 (2015), pp. 74-78
[93]
Y. Shimada, T. Okumura, T. Nagata, S. Sawada, K. Matsui, R. Hori, et al.
Usefulness of blood supply visualization by indocyanine green fluorescence for reconstruction during esophagectomy.
Esophagus., 8 (2011), pp. 259-266
[94]
K. Koyanagi, S. Ozawa, J. Oguma, A. Kazuno, Y. Yamazaki, Y. Ninomiya, et al.
Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence: new predictive evaluation of anastomotic leakage after esophagectomy.
Medicine (Baltimore)., 95 (2016),
[95]
K. Noma, Y. Shirakawa, N. Kanaya, T. Okada, N. Maeda, T. Ninomiya, et al.
Visualized evaluation of blood flow to the gastric conduit and complications in esophageal reconstruction.
J Am Coll Surg., 226 (2018), pp. 241-251
[96]
R.J. Luo, Z.Y. Zhu, Z.F. He, Y. Xu, Y.Z. Wang, P. Chen.
Efficacy of indocyanine green fluorescence angiography in preventing anastomotic leakage after McKeown minimally invasive esophagectomy.
[97]
F. Ladak, J.T. Dang, N. Switzer, V. Mocanu, C. Tian, D. Birch, et al.
Indocyanine green for the prevention of anastomotic leaks following esophagectomy: a meta-analysis.
Surg Endosc., 33 (2019), pp. 384-394
[98]
Y.J. Huh, H.J. Lee, T.H. Kim, Y.S. Choi, J.H. Park, Y.G. Son, et al.
Efficacy of assessing intraoperative bowel perfusion with near-infrared camera in laparoscopic gastric cancer surgery.
J Laparoendosc Adv Surg Tech A., 29 (2019), pp. 476-483
[99]
M. Kim, S.Y. Son, L.H. Cui, H.J. Shin, H. Hur, S.U. Han.
Real-time vessel navigation using indocyanine green fluorescence during robotic or laparoscopic gastrectomy for gastric cancer.
J Gastric Cancer., 17 (2017), pp. 145-153
[100]
C.B. Ortega, A.D. Guerron, J.S. Yoo.
The use of fluorescence angiography during laparoscopic sleeve gastrectomy.
[101]
M. Di Furia, L. Romano, A. Salvatorelli, D. Brandolin, D. Lomanto, G. Cianca, et al.
Indocyanine green fluorescent angiography during laparoscopic sleeve gastrectomy: preliminary results.
Obes Surg., 29 (2019), pp. 3786-3790
[102]
R. Gianchandani Moorjani, A. Díaz García, A. Rosat Rodrigo, M. Barrera Gómez.
Use of ICG to evaluate the viability of intestine during laparoscopic transabdominal hernioplasty in emergency surgery of incarcerated hernia.
Cir Esp., 99 (2021), pp. 313-314
[103]
D. Daskalopoulou, J. Kankam, J. Plambeck, P.C. Ambe, K. Zarras.
Intraoperative real-time fluorescence angiography with indocyanine green for evaluation of intestinal viability during surgery for an incarcerated obturator hernia: a case report.
Patient Saf Surg., 12 (2018), pp. 24
[104]
S. Ryu, M. Yoshida, H. Ohdaira, N. Tsutsui, N. Suzuki, E. Ito, et al.
A case of incarcerated femoral hernia with intestinal blood flow assessment by brightfield full-color near-infrared fluorescence camera: report of a case.
Int J Surg Case Rep., 29 (2016), pp. 234-236
[105]
S. Ryu, M. Yoshida, H. Ohdaira, N. Tsutsui, N. Suzuki, E. Ito, et al.
Blood flow evaluation using PINPOINT® in a case of incarcerated inguinal hernia: a case report.
Asian J Endosc Surg., 10 (2017), pp. 75-78
[106]
S. Ryu, M. Yoshida, H. Ohdaira, N. Tsutsui, N. Suzuki, E. Ito, et al.
Intestinal blood flow assessment by indocyanine green fluorescence imaging in a patient with the incarcerated umbilical hernia: report of a case.
Ann Med Surg (Lond), 8 (2016), pp. 40-42
[107]
I. Karampinis, M. Keese, J. Jakob, V. Stasiunaitis, A. Gerken, U. Attenberger, et al.
Indocyanine green tissue angiography can reduce extended bowel resections in acute mesenteric ischemia.
J Gastrointest Surg., 22 (2018), pp. 2117-2124
[108]
K. Аlexander, M. Ismail, M. Alexander, T. Ivan, V. Olga, S. Dmitry, et al.
Use of ICG imaging to confirm bowel viability after upper mesenteric stenting in patient with acute mesenteric ischemia: case report.
Int J Surg Case Rep., 61 (2019), pp. 322-326
[109]
B. Seeliger, V. Agnus, P. Mascagni, M. Barberio, F. Longo, A. Lapergola, et al.
Simultaneous computer-assisted assessment of mucosal and serosal perfusion in a model of segmental colonic ischemia.
Surg Endosc., 34 (2020), pp. 4818-4827
[110]
J. Cho, A. May, H. Ryan, S. Tsuda.
Intraoperative use of fluorescent imaging with indocyanine green changes management of abdominal wall flaps during open ventral hernia repair.
Surg Endosc., 29 (2015), pp. 1709-1713
[111]
J.M. Shao, Y. Alimi, D. Conroy, P. Bhanot.
Outcomes using indocyanine green angiography with perforator-sparing component separation technique for abdominal wall reconstruction.
Surg Endosc., 4 (2019), pp. 2227-2236
[112]
P.D. Colavita, B.A. Wormer, I. Belyansky, A. Lincourt, S.B. Getz, B.T. Heniford, et al.
Intraoperative indocyanine green fluorescence angiography to predict wound complications in complex ventral hernia repair.
Hernia., 20 (2016), pp. 139-149
[113]
B.A. Wormer, C.R. Huntington, S.W. Ross, P.D. Colavita, A.E. Lincourt, T. Prasad, et al.
A prospective randomized double-blinded controlled trial evaluating indocyanine green fluorescence angiography on reducing wound complications in complex abdominal wall reconstruction.
J Surg Res., 202 (2016), pp. 461-472
[114]
P. Burnier, J. Niddam, R. Bosc, B. Hersant, J.P. Meningaud.
Indocyanine green applications in plastic surgery: A review of the literature.
J Plast Reconstr Aesthet Surg., 70 (2017), pp. 814-827
[115]
A.S. Hembd, J. Yan, H. Zhu, N.T. Haddock, S.S. Teotia.
Intraoperative assessment of DIEP flap breast reconstruction using indocyanine green angiography: reduction of fat necrosis, resection volumes, and postoperative surveillance.
Plast Reconstr Surg., 146 (2020), pp. 1e-10e
[116]
T. Alstrup, B.O. Christensen, T.E. Damsgaard.
ICG angiography in immediate and delayed autologous breast reconstructions: peroperative evaluation and postoperative outcomes.
J Plast Surg Hand Surg., 52 (2018), pp. 307-311
[117]
P. Chirappapha, T. Chansoon, S. Bureewong, S. Phosuwan, P. Lertsithichai, T. Sukarayothin, et al.
Is it reasonable to use indocyanine green fluorescence imaging to determine the border of pedicled TRAM flap zone IV?.
Plast Reconstr Surg Glob Open., 8 (2020),
[118]
A.M. Anker, L. Prantl, C. Strauss, V. Brébant, M. Baringer, M. Ruewe, et al.
Clinical impact of DIEP flap perforator characteristics - A prospective indocyanine green fluorescence imaging study.
J Plast Reconstr Aesthet Surg., 73 (2020), pp. 1526-1533
[119]
E. Felli, T. Ishizawa, Z. Cherkaoui, M. Diana, S. Tripon, T.F. Baumert, et al.
Laparoscopic anatomical liver resection for malignancies using positive or negative staining technique with intraoperative indocyanine green-fluorescence imaging.
[120]
Y. Kobayashi, Y. Kawaguchi, K. Kobayashi, K. Mori, J. Arita, Y. Sakamoto, et al.
Portal vein territory identification using indocyanine green fluorescence imaging: Technical details and short-term outcomes.
J Surg Oncol., 116 (2017), pp. 921-931
[121]
M.V. Marino, S. Di Saverio, M. Podda, M. Gomez Ruiz, M. Gomez Fleitas.
The application of indocyanine green fluorescence imaging during robotic liver resection: a case-matched study.
World J Surg., 43 (2019), pp. 2595-2606
[122]
T. Urade, H. Sawa, Y. Iwatani, T. Abe, R. Fujinaka, K. Murata, et al.
Laparoscopic anatomical liver resection using indocyanine green fluorescence imaging.
Asian J Surg., 43 (2020), pp. 362-368
[123]
H. Nishino, S. Seo, E. Hatano, T. Nitta, K. Morino, R. Toda, et al.
What is a precise anatomic resection of the liver? Proposal of a new evaluation method in the era of fluorescence navigation surgery.
J Hepatobiliary Pancreat Sci., 28 (2020), pp. 479-488
[124]
Y. Xu, M. Chen, X. Meng, P. Lu, X. Wang, W. Zhang, et al.
Laparoscopic anatomical liver resection guided by real-time indocyanine green fluorescence imaging: experience and lessons learned from the initial series in a single center.
Surg Endosc., 34 (2020), pp. 4683-4691
[125]
T. Aoki, T. Koizumi, D.A. Mansour, A. Fujimori, T. Kusano, K. Matsuda, et al.
Ultrasound-guided preoperative positive percutaneous indocyanine green fluorescence staining for laparoscopic anatomical liver resection.
J Am Coll Surg., 230 (2020), pp. e7-e12
[126]
D. Ito, T. Ishizawa, K. Hasegawa.
Laparoscopic positive staining of hepatic segments using indocyanine green-fluorescence imaging.
J Hepatobiliary Pancreat Sci., 27 (2020), pp. 441-443
[127]
M. Diana, V. Agnus, P. Halvax, Y.-Y. Liu, B. Dallemagne, A.-I. Schlagowski, et al.
Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model.
Br J Surg., 102 (2015), pp. e169-e176
[128]
A. Peloso, E. Franchi, M.C. Canepa, L. Barbieri, L. Briani, J. Ferrario, et al.
Combined use of intraoperative ultrasound and indocyanine green fluorescence imaging to detect liver metastases from colorectal cancer.
HPB (Oxford)., 15 (2013), pp. 928-934
[129]
K. Uchiyama, M. Ueno, S. Ozawa, S. Kiriyama, Y. Shigekawa, H. Yamaue.
Combined use of contrast-enhanced intraoperative ultrasonography and a fluorescence navigation system for identifying hepatic metastases.
World J Surg., 34 (2010), pp. 2953-2959
[130]
T. Abo, A. Nanashima, S. Tobinaga, S. Hidaka, N. Taura, K. Takagi, et al.
Usefulness of intraoperative diagnosis of hepatic tumors located at the liver surface and hepatic segmental visualization using indocyanine green-photodynamic eye imaging.
Eur J Surg Oncol., 41 (2015), pp. 257-264
[131]
M. Terasawa, T. Ishizawa, Y. Mise, Y. Inoue, H. Ito, Y. Takahashi, et al.
Applications of fusion-fluorescence imaging using indocyanine green in laparoscopic hepatectomy.
Surg Endosc., 31 (2017), pp. 5111-5118
[132]
T. Ishizawa, N. Fukushima, J. Shibahara, K. Masuda, S. Tamura, T. Aoki, et al.
Real-time identification of liver cancers by using indocyanine green fluorescent imaging.
Cancer., 115 (2009), pp. 2491-2504
[133]
Y. Inoue, J. Arita, T. Sakamoto, Y. Ono, M. Takahashi, Y. Takahashi, et al.
Anatomical liver resections guided by 3-dimensional parenchymal staining using fusion indocyanine green fluorescence imaging.
Ann Surg., 262 (2015), pp. 105-111
[134]
Y. Morita, T. Sakaguchi, N. Unno, Y. Shibasaki, A. Suzuki, K. Fukumoto, et al.
Detection of hepatocellular carcinomas with near-infrared fluorescence imaging using indocyanine green: its usefulness and limitation.
Int J Clin Oncol., 18 (2013), pp. 232-241
[135]
E. Lieto, G. Galizia, F. Cardella, A. Mabilia, N. Basile, P. Castellano, et al.
Indocyanine green fluorescence imaging-guided surgery in primary and metastatic liver tumors.
Surg Innov., 25 (2018), pp. 62-68
[136]
S. Yao, L. Zhang, J. Ma, W. Jia, H. Chen.
Precise right hemihepatectomy for the treatment of hepatocellular carcinoma guided by fusion ICG fluorescence imaging.
J Cancer., 11 (2020), pp. 2465-2475
[137]
A. Westgaard, S. Tafjord, I.N. Farstad, M. Cvancarova, T.J. Eide, O. Mathisen, et al.
Resectable adenocarcinomas in the pancreatic head: the retroperitoneal resection margin is an independent prognostic factor.
BMC Cancer., 8 (2008), pp. 5
[138]
S.Y. Rho, J.S. Kim, J.U. Chong, H.K. Hwang, D.S. Yoon, W.J. Lee, et al.
Indocyanine green perfusion imaging-guided laparoscopic pancreaticoduodenectomy: potential application in retroperitoneal margin dissection.
J Gastrointest Surg, 22 (2018), pp. 1470-1474
[139]
M. Hutteman, J.R. van der Vorst, J.S. Mieog, B.A. Bonsing, H.H. Hartgrink, P.J. Kuppen, et al.
Near-infrared fluorescence imaging in patients undergoing pancreaticoduodenectomy.
Eur Surg Res., 47 (2011), pp. 90-97
[140]
A.D. Newton, J.D. Predina, M.H. Shin, L.G. Frenzel-Sulyok, C.M. Vollmer, J.A. Drebin, et al.
Intraoperative near-infrared imaging can identify neoplasms and aid in real-time margin assessment during pancreatic resection.
Ann Surg., 270 (2019), pp. 12-20
[141]
S. Paiella, M. De Pastena, L. Landoni, A. Esposito, L. Casetti, M. Miotto, et al.
Is there a role for near-infrared technology in laparoscopic resection of pancreatic neuroendocrine tumors? Results of the COLPAN "colour-and-resect the pancreas" study.
Surg Endosc., 31 (2017), pp. 4478-4484
[142]
C. Shirata, Y. Kawaguchi, K. Kobayashi, Y. Kobayashi, J. Arita, N. Akamatsu, et al.
Usefulness of indocyanine green-fluorescence imaging for real-time visualization of pancreas neuroendocrine tumor and cystic neoplasm.
J Surg Oncol., 118 (2018), pp. 1012-1020
[143]
J. Colvin, N. Zaidi, E. Berber.
The utility of indocyanine green fluorescence imaging during robotic adrenalectomy.
J Surg Oncol., 114 (2016), pp. 153-156
[144]
E. Arora, A. Bhandarwar, A. Wagh, S. Gandhi, C. Patel, S. Gupta, et al.
Role of indo-cyanine green (ICG) fluorescence in laparoscopic adrenalectomy: a retrospective review of 55 Cases.
Surg Endosc., 32 (2018), pp. 4649-4657
[145]
S. Sound, A.K. Okoh, E. Bucak, H. Yigitbas, C. Dural, E. Berber.
Intraoperative tumor localization and tissue distinction during robotic adrenalectomy using indocyanine green fluorescence imaging: a feasibility study.
Surg Endosc., 30 (2016), pp. 657-662
[146]
M. Lerchenberger, U. Gündogar, N. Al Arabi, J.K.S. Gallwas, H. Stepp, K.K.J. Hallfeldt, et al.
Indocyanine green fluorescence imaging during partial adrenalectomy.
Surg Endosc., 34 (2020), pp. 2050-2055
[147]
A. Tuncel, M. Balci, C. Aykanat, Y. Aslan, D. Berker, O. Guzel.
Laparoscopic partial adrenalectomy using near-infrared imaging: the initial experience.
Minim Invasive Ther Allied Technol., (2019), pp. 1-7
[148]
G.L. Baiocchi, F. Gheza, S. Molfino, L. Arru, M. Vaira, S. Giacopuzzi.
Indocyanine green fluorescence-guided intraoperative detection of peritoneal carcinomatosis: systematic review.
[149]
F.N. Gilly, E. Cotte, C. Brigand, O. Monneuse, A.C. Beaujard, G. Freyer, et al.
Quantitative prognostic indices in peritoneal carcinomatosis.
Eur J Surg Oncol., 32 (2006), pp. 597-601
[150]
I. Veys, F.C. Pop, S. Vankerckhove, R. Barbieux, M. Chintinne, M. Moreau, et al.
ICG-fluorescence imaging for detection of peritoneal metastases and residual tumoral scars in locally advanced ovarian cancer: a pilot study.
J Surg Oncol, 117 (2018), pp. 228-235
[151]
G. Liberale, S. Vankerckhove, M.G. Caldon, B. Ahmed, M. Moreau, I.E. Nakadi, Group R&D for the Clinical Application of Fluorescence Imaging of the Jules Bordetʼs Institute, et al.
Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer: a pilot study.
Ann Surg., 264 (2016), pp. 1110-1115
[152]
G. Barabino, J.P. Klein, J. Porcheron, A. Grichine, J.L. Coll, M. Cottier.
Intraoperative near-infrared fluorescence imaging using indocyanine green in colorectal carcinomatosis surgery: proof of concept.
Eur J Surg Oncol., 42 (2016), pp. 1931-1937
[153]
A. Filippello, J. Porcheron, J.P. Klein, M. Cottier, G. Barabino.
Affinity of indocyanine green in the detection of colorectal peritoneal carcinomatosis.
Surg Innov., 24 (2017), pp. 103-108
[154]
E. Lieto, A. Auricchio, F. Cardella, A. Mabilia, N. Basile, P. Castellano, et al.
Fluorescence-guided surgery in the combined treatment of peritoneal carcinomatosis from colorectal cancer: preliminary results and considerations.
World J Surg., 42 (2018), pp. 1154-1160
[155]
T. Rubio Sánchez, A. Fluixá Pelegri, S. Morales-Conde.
The value of indocyanine green (ICG) fluorescence for the identification of peritoneal carcinomatosis.
[156]
P. Fernández Veiga, E. Licardie, I. Alarcón, S. Morales-Conde.
Use of flourescent imaging with indocyanine green (ICG) for the identification of intestinal lymphoma.
[157]
Y. Hiramatsu, H. Takeuchi, O. Goto, H. Kikuchi, Y. Kitagawa.
Minimally invasive function-preserving gastrectomy with sentinel node biopsy for early gastric cancer.
Digestion., 99 (2019), pp. 14-20
[158]
G.H. Bok, Y.J. Kim, S.Y. Jin, C.G. Chun, T.H. Lee, H.G. Kim, et al.
Endoscopic submucosal dissection with sentinel node navigation surgery for early gastric cancer.
Endoscopy., 44 (2012), pp. 953-956
[159]
J.Y. An, J.S. Min, H. Hur, Y.J. Lee, G.S. Cho, Y.K. Park, SEntinel Node ORIented Tailored Approach (SENORITA) Study Group, et al.
Laparoscopic sentinel node navigation surgery versus laparoscopic gastrectomy with lymph node dissection for early gastric cancer: short-term outcomes of a multicentre randomized controlled trial (SENORITA).
Br J Surg., 107 (2020), pp. 1429-1439
[160]
G.C. Wishart, S.W. Loh, L. Jones, J.R. Benson.
A feasibility study (ICG-10) of indocyanine green (ICG) fluorescence mapping for sentinel lymph node detection in early breast cancer.
Eur J Surg Oncol., 38 (2012), pp. 651-656
[161]
J.S. Mieog, S.L. Troyan, M. Hutteman, K.J. Donohoe, J.R. van der Vorst, A. Stockdale, et al.
Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer.
Ann Surg Oncol., 18 (2011), pp. 2483-2491
[162]
S.Y. Jung, J.H. Han, S.J. Park, E.G. Lee, J. Kwak, S.H. Kim, et al.
The sentinel lymph node biopsy using indocyanine green fluorescence plus radioisotope method compared with the radioisotope-only method for breast cancer patients after neoadjuvant chemotherapy: a prospective, randomized, open-label, single-center phase 2 trial.
Ann Surg Oncol., 26 (2019), pp. 2409-2416
[163]
N. Takemoto, A. Koyanagi, M. Yasuda, H. Yamamoto.
Comparison of the indocyanine green dye method versus the combined method of indigo carmine blue dye with indocyanine green fluorescence imaging for sentinel lymph node biopsy in breast conservative therapy for stage ≤IIA breast cancer.
BMC Womens Health., 18 (2018), pp. 151
[164]
G. D’Ambrosio, A.M. Paganini, A. Balla, S. Quaresima, P. Ursi, P. Bruzzone, et al.
Quality of life in non-early rectal cancer treated by neoadjuvant radio-chemotherapy and endoluminal loco-regional resection (ELRR) by transanal endoscopic microsurgery (TEM) versus laparoscopic total mesorectal excision.
Surg Endosc., 30 (2016), pp. 504-511
[165]
S. Quaresima, A. Balla, L. Franceschilli, M. La Torre, C. Iafrate, M. Shalaby, et al.
Transanal minimally invasive surgery for rectal lesions.
[166]
A.C. Currie, A. Brigic, S. Thomas-Gibson, N. Suzuki, M. Moorghen, J.T. Jenkins, et al.
A pilot study to assess near infrared laparoscopy with indocyanine green (ICG) for intraoperative sentinel lymph node mapping in early colon cancer.
Eur J Surg Oncol., 43 (2017), pp. 2044-2051
[167]
H.J. Handgraaf, L.S. Boogerd, F.P. Verbeek, Q.R. Tummers, J.C. Hardwick, C.I. Baeten, et al.
Intraoperative fluorescence imaging to localize tumors and sentinel lymph nodes in rectal cancer.
Minim Invasive Ther Allied Technol., 25 (2016), pp. 48-53
[168]
N. Nishigori, F. Koyama, T. Nakagawa, S. Nakamura, T. Ueda, T. Inoue, et al.
Visualization of lymph/blood flow in laparoscopic colorectal cancer surgery by icg fluorescence imaging (Lap-IGFI).
Ann Surg Oncol., 23 (2016), pp. S266-74
[169]
M. Kazanowski, H. Al Furajii, R.A. Cahill.
Near-infrared laparoscopic fluorescence for pelvic side wall delta mapping in patients with rectal cancer—‘PINPOINT’ nodal assessment.
Colorectal Dis., 17 (2015), pp. 32-35
[170]
S. Noura, M. Ohue, Y. Seki, K. Tanaka, M. Motoori, K. Kishi, et al.
Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system.
Ann Surg Oncol., 17 (2010), pp. 144-151
[171]
J. Watanabe, M. Ota, Y. Suwa, A. Ishibe, H. Masui, K. Nagahori.
Evaluation of lymph flow patterns in splenic flexural colon cancers using laparoscopic real-time indocyanine green fluorescence imaging.
Int J Colorectal Dis., 32 (2017), pp. 201-207
[172]
M. Chand, D.S. Keller, H.M. Joshi, L. Devoto, M. Rodriguez-Justo, R. Cohen.
Feasibility of fluorescence lymph node imaging in colon cancer: FLICC.
Tech Coloproctol., 22 (2018), pp. 271-277
[173]
J. Jimenez-Lillo, E. Villegas-Tovar, D. Momblan-Garcia, V. Turrado-Rodriguez, A. Ibarzabal-Olano, B. De Lacy, et al.
Performance of indocyanine-green imaging for sentinel lymph node mapping and lymph node metastasis in esophageal cancer: systematic review and meta-analysis.
Ann Surg Oncol., 2 (2021), pp. 271-277
[174]
K.J. Hachey, D.M. Gilmore, K.W. Armstrong, S.E. Harris, J.L. Hornick, Y.L. Colson, et al.
Safety and feasibility of near-infrared image-guided lymphatic mapping of regional lymph nodes in esophageal cancer.
J Thorac Cardiovasc Surg., 152 (2016), pp. 546-554
[175]
Y. Yuasa, J. Seike, T. Yoshida, H. Takechi, H. Yamai, Y. Yamamoto, et al.
Sentinel lymph node biopsy using intraoperative indocyanine green fluorescence imaging navigated with preoperative CT lymphography for superficial esophageal cancer.
Ann Surg Oncol., 19 (2012), pp. 486-493
[176]
H. Ohdaira, M. Yoshida, S. Okada, N. Tsutsui, M. Kitajima, Y. Suzuki.
New method of indocyanine green fluorescence sentinel node mapping for early gastric cancer.
Ann Med Surg (Lond)., 20 (2017), pp. 61-65
[177]
I. Miyashiro, K. Kishi, M. Yano, K. Tanaka, M. Motoori, M. Ohue, et al.
Laparoscopic detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging.
Surg Endosc., 25 (2011), pp. 1672-1676
[178]
C.M. Lee, S. Park, S.H. Park, S.W. Jung, J.W. Choe, J.Y. Sul, et al.
Sentinel node mapping using a fluorescent dye and visible light during laparoscopic gastrectomy for early gastric cancer: result of a prospective study from a single institute.
Ann Surg., 265 (2017), pp. 766-773
[179]
Y. Shoji, K. Kumagai, S. Kamiya, S. Ida, S. Nunobe, M. Ohashi, et al.
Prospective feasibility study for single-tracer sentinel node mapping by ICG (indocyanine green) fluorescence and OSNA (one-step nucleic acid amplification) assay in laparoscopic gastric cancer surgery.
Gastric Cancer., 22 (2019), pp. 873-880
[180]
Y. Tajima, K. Yamazaki, Y. Masuda, M. Kato, D. Yasuda, T. Aoki, et al.
Sentinel node mapping guided by indocyanine green fluorescence imaging in gastric cancer.
Ann Surg., 249 (2009), pp. 58-62
[181]
M. Kusano, Y. Tajima, K. Yamazaki, M. Kato, M. Watanabe, M. Miwa.
Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer.
Dig Surg., 25 (2008), pp. 103-108
[182]
Q.R. Tummers, L.S. Boogerd, W.O. de Steur, F.P. Verbeek, M.C. Boonstra, H.J. Handgraaf, et al.
Near-infrared fluorescence sentinel lymph node detection in gastric cancer: a pilot study.
World J Gastroenterol., 22 (2016), pp. 3644-3651
[183]
M. Liu, J. Xing, K. Xu, P. Yuan, M. Cui, C. Zhang, et al.
Application of near-infrared fluorescence imaging with indocyanine green in totally laparoscopic distal gastrectomy.
J Gastric Cancer., 20 (2020), pp. 290-299
[184]
Q.Y. Chen, J.W. Xie, Q. Zhong, J.B. Wang, J.X. Lin, J. Lu, et al.
Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial.
JAMA Surg., 155 (2020), pp. 300-311
[185]
G.L. Baiocchi, S. Molfino, B. Molteni, L. Quarti, G. Arcangeli, S. Manenti, et al.
Fluorescence-guided lymphadenectomy in gastric cancer: a prospective western series.
Updates Surg., 72 (2020), pp. 761-772
[186]
D. Göppner, S. Nekwasil, A. Jellestad, A. Sachse, K.H. Schönborn, H. Gollnick.
Indocyanine green-assisted sentinel lymph node biopsy in melanoma using the "FOVIS" system.
J Dtsch Dermatol Ges., 15 (2017), pp. 169-178

Please cite this article as: Morales-Conde S, Licardie E, Alarcón I, Balla A. Guía de uso e indicaciones de la fluorescencia con verde de indocianina (ICG) en cirugía general: recomendaciones basadas en la revisión descriptiva de la literatura y el análisis de la experiencia. Cir Esp. 2022;100:534–554.

Copyright © 2021. AEC
Article options
Tools
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos