Buscar en
Brazilian Journal of Microbiology
Toda la web
Inicio Brazilian Journal of Microbiology Modified Carba NP test for the detection of carbapenemase production in gram-neg...
Journal Information
Vol. 48. Issue 2.
Pages 242-245 (April - June 2017)
Share
Share
Download PDF
More article options
Visits
3504
Vol. 48. Issue 2.
Pages 242-245 (April - June 2017)
Medical Microbiology
Open Access
Modified Carba NP test for the detection of carbapenemase production in gram-negative rods: optimized handling of multiple samples
Visits
3504
Eloiza H. Campana1,
Corresponding author
elocampana@gmail.com

Corresponding author at: Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho, 373 – Centro de Ciências da Saúde, Bloco I, Rio de Janeiro, RJ 21941-902, Brazil.
, Stephanie G. Chuster1, Isadora R. da Silva, Raphael P. Paschoal, Raquel R. Bonelli, Beatriz M. Moreira, Renata C. Picão
Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Investigação em Microbiologia Médica, Rio de Janeiro, Brazil
This item has received

Under a Creative Commons license
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (1)
Tables (1)
Table 1. Isolates tested, modified Carba NP results and protein concentration.
Abstract

The modified Carba NP test presented here may be a valuable tool for laboratories interested in investigating a large number of carbapenemase-producing bacteria in a less-costly way. The test was evaluated against 48 carbapenemase-producing and carbapenemase-non-producing gram-negative bacteria. No false–positive results were obtained, but false-negative results were observed with OXA-23- and GES-carbapenemase-producing isolates. Aeromonas sp. are not testable by Modified Carba NP.

Keywords:
Carbapenemases
Diagnostics
Gram-negative bacteria
Full Text

The spread of carbapenemase-producing isolates in hospital settings is a major public health concern. Early detection of carbapenemase producers is essential to assure adequate therapy and favorable outcomes.1–5 Carba NP test emerged as a useful alternative to detect carbapenemase production in Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp.,2,6,7 as recommended by the Clinical and Laboratory Standards Institute (CLSI).8 The test is based on acidification of phenol red when imipenem is hydrolyzed, evidenced by the color change of the test solution from red to yellow. Carba NP test advantages over a number of other phenotypic tests include speed in providing results, simplicity of execution, objectiveness in interpretation and increased sensitivity and specificity.1,2,9,10 On the other hand, sample processing may become expensive and time consuming if a large number of isolates are tested. Here we propose modifications to make the test faster and less expensive. Modifications included the omission of the centrifugation step, cell disruption using bath sonication and the use of imipenem/cilastatin as the substrate.

We studied 48 isolates, including negative controls and Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumannii and Aeromonas spp. producing class A, B or D carbapenemases (Table 1). Bacterial strains were cultivated onto Trypticase soy agar (TSA) (Difco Laboratories) at 37°C for 18–24h. A 10μL calibrated loopfull of the test strain was inoculated into 500μL Tris–HCl (20mM–pH 7.5) (Invitrogen). The suspension was subjected to vortex homogenization and bath sonication for 30min (BRANSONIC ULTRASONIC CLEANER, 47kHz±6%, 60W) and preserved on ice. Then, 30μL of the cell extract was mixed with 100μL of phenol red (Isofar) containing 0.1mM ZnSO4 (Merck) (imipenem −) and 100μL phenol red containing 0.1mM ZnSO4 and 6mg/mL imipenem/cilastatin (Merck) (imipenem +). The mixtures were incubated at 37°C for 2h. Tests were performed in duplicate for all isolates. The color change of the imipenem-containing vial from red to yellow or orange indicated a positive result. Three independent observers recorded the results with no discordant readings.

Table 1.

Isolates tested, modified Carba NP results and protein concentration.

IsolatesSpeciesa  Beta-lactamase (Amber class)b  Modified Carba NP test result  Protein concentration (μg/mL±standard deviation)c  Highest dilution yielding positive result 
Carbapenemase producersKlebsiella pneumoniae  KPC-2 (A)  Positive  <20±5.48  1:128 
Kluyvera sp.  KPC-2 (A)  Positive  <20±2.04  1:128 
Citrobacter sp.  KPC-2 (A)  Positive  <20±2.31  1:256 
Enterobacter cloacae  KPC-2 (A)  Positive  107.39±2.45  1:16 
Enterobacter cloacae  KPC-2 (A)  Positive  35.73±21.13  1:64 
Klebsiella pneumoniae  KPC-2 (A)  Positive  <20±12.14  1:64 
Aeromonas sp.  KPC-2 (A)  Inconclusived  –  – 
Aeromonas sp.  KPC-like (A)  Inconclusive  –  – 
Aeromonas sp.  KPC-like (A)  Inconclusive  –  – 
10  Aeromonas sp.  KPC-like (A)  Inconclusive  –  – 
11  Aeromonas sp.  KPC-like (A)  Inconclusive  –  – 
12  Aeromonas sp.  KPC-like (A)  Inconclusive  –  – 
13  Enterobacter aerogenes  KPC-2 (A)  Positive  24.42±3.8  1:8 
14  Pseudomonas aeruginosa  SPM-1 (B)  Positive  138.09±4.36  1:32 
15  Pseudomonas aeruginosa  SPM-1 (B)  Positive  78.81±4.81  1:64 
16  Pseudomonas aeruginosa  VIM-1 (B)  Positive  397.27±24.29  1:8 
17  Acinetobacter baumannii  SIM-1 (B)  Positive  <20±0.45  1:32 
18  Pseudomonas aeruginosa  GIM-1 (B)  Positive  63.3±2.61  1:128 
19  Klebsiella pneumoniae  NDM-1 (B)  Positive  <20±1.15  1:512 
20  Klebsiella pneumoniae  IMP-1 (B)  Positive  <20±7.92  1:512 
21  Pseudomonas aeruginosa  IMP-18 (B)  Positive  177.15±19.05  1:64 
22  Acinetobacter baumannii  OXA-24 (D)  Positive  570.85±20.56  Undiluted 
23  Klebsiella oxytoca  OXA-48 (D)  Positive  583.22±16.49  Undiluted 
24  Acinetobacter sp.  OXA-58 (D)  Positive  1045.91±76.27  Undiluted 
25  Acinetobacter baumannii  OXA-143 (D)  Positive  452.67±26.04  Undiluted 
26  Acinetobacter baumannii  OXA-23 (D)e  Negative  –  – 
27  Acinetobacter baumannii  OXA-23 (D)f  Negative  –  – 
28  Enterobacter cloacae  GES-5 (A)  Negative  –  – 
29  Enterobacter cloacae  GES-5 (A)  Negative  –  – 
30  Klebsiella peumoniae  GES-16 (A)  Negative  –  – 
31  Enterobacter cloacae  GES-16 (A)  Negative  –  – 
32  Enterobacter cloacae  GES-16 (A)  Negative  –  – 
Carbapenemase non-producersC1  Pseudomonas aeruginosa  GES-1 (A)  Negative  –  – 
C2  Klebsiella pneumoniae  CTX-M-2 (A)  Negative  –  – 
C3  Pseudomonas aeruginosa  OXA-18 (D)  Negative  –  – 
C4  Escherichia coli  DHA-1 (C)  Negative  –  – 
C5  Escherichia coli  CTX-M-15 (A)  Negative  –  – 
C6  Escherichia coli  CTX-M-8 (A)  Negative  –  – 
C7  Escherichia coli  FOX-5 (C)  Negative  –  – 
C8  Escherichia coli  MIR-1 (C)  Negative  –  – 
C9  Escherichia coli  TEM-1 (A)  Negative  –  – 
C10  Aeromonas sp.  GES-like (A)  Inconclusive  –  – 
C11  Aeromonas sp.  GES-like (A)  Inconclusive  –  – 
C12  Aeromonas sp.  None  Inconclusive  –  – 
C13  Aeromonas sp.  None  Inconclusive  –  – 
C14  Aeromonas sp.  None  Inconclusive  –  – 
C15  Pseudomonas aeruginosa ATCC  None  Negative  –  – 
C16  Escherichia coli J53  None  Negative  –  – 
a

Identification determined by MALDI-TOF MS (Bruker, Germany).

b

β-Lactamases production was assessed by PCR and sequencing assays.

c

At the least diluted sample showing positive result.

d

Inconclusive: red-to-yellow color change was observed in both imipenem − and + solutions.

e

This isolate show ISAba-1 positioned upstream and in the opposite transcriptional direction of blaOXA-23.

f

This isolate does not show ISAba-1 positioned upstream blaOXA-23.

To assess the inferior limit of carbapenemase detection by the modified Carba NP proposed, the test was also performed using diluted crude extracts. The last dilution yielding positive result was centrifuged and the supernatant was subjected to total protein quantification, which was performed in triplicate using the Pierce™ BCA Protein Assay Kit (Thermo Scientific) following the manufacturer's recommendations.

Sensibility, specificity, positive and negative predictive values (SN, SP, PPV and NPV, respectively) were calculated, excluding Aeromonas spp. PCR results for carbapenamases were considered the gold standard. SN, SP, PPV, and NPV were calculated with the formulas a/(a+c), d/(b+d), a/(a+b) and d/(c+d), respectively.

Most carbapenemase-producing isolates showed the expected positive result, indicating that the modification in the extraction protocol did not jeopardize the sensitivity of the test (Table 1). Protein concentrations at the most diluted extract showing carbapenemase activity varied from <20μg/mL to 1045.92μg/mL (Table 1).

All KPC producing isolates yielded positive results except for Aeromonas sp. (Table 1) which showed inconclusive results in repeated tests irrespective of the beta-lactamase produced, as the red-to-yellow color change was observed in solutions imipenem − and + (Fig. 1). This finding was related to the acidic nature of the crude extract assessed in repeated assays (pH=5.5). Although Aeromonas spp. producing acquired carbapenemases are not common causes of multidrug-resistant infections, microbiologists should be aware that Carba NP test might not be suitable to investigate carbapenemase production in these bacteria. All metalo-β-lactamase (MBL) producers showed positive results at the modified Carba NP test, as expected. Of notice, MBL-producing P. aeruginosa required increased protein levels in crude extracts to generate positive results, likely due to difficulty in disrupting the cell wall of such isolates. In agreement with previous work,2,11,12 all GES-like carbapenemase producing isolates showed negative results. Most class D carbapenemase producing isolates showed positive results in Modified Carba NP test, except those producing OXA-23 (Table 1). Diluted cell extracts, however, showed negative results, which is consistent with the decreased imipenem catalytic activity presented by oxacilinases compared to other carbapenemases. Isolates carrying blaOXA-23 showed negative results, regardless of the presence or absence of ISAba1 upstream this gene. The SN, SP, PPV, and NPV for Carba NP modified were 73.1, 100, 100 and 61.1%, respectively. Positive results were observed at different times for different carbapenemases (ranging from 5min for NDM and KPC to 2h for OXA type).

Fig. 1.

Representative results of the modified Carba NP test. Non-carbapenemase producers (A, B, H and K), carbapenemase producers (C, F, G, I, J, L, M, and O), and Aeromonas spp. isolates (D, E, K, N and P) with negative control solutions (−) and test solution (+). (A) E. coli J-53; (B) P. aeruginosa ATCC 25922; (C) KPC-2-producing E. cloacae; (D) KPC-like-producing Aeromonas sp. (E) KPC-like-producing Aeromonas sp. (F) NDM-1-producing K. pneumoniae; (G) OXA-48-producing K. oxytoca; (H) CTX-M_15-producing E. coli; (I) OXA-23-producing A. baumannii; (J) OXA-143-producing A. baumannii; (K) Aeromonas sp. (L) IMP-18-producing P. aeruginosa; (M) SPM-1-producing P. aeruginosa; (N) KPC-like-producing Aeromonas sp. (O) GES-16-producing E. cloacae; (P) GES-like-producing Aeromonas sp.

(0.21MB).

Noteworthy, the Modified Carba NP test gave indistinguishable results when performed using cell extracts obtained by probe sonication (data not shown). Despite the fact that the equipment for bath sonication is cheaper than the probe-based, it also enables processing a large number of isolates concomitantly and avoids excessive manipulation of potential carbapenemase producers in high inoculums, protecting against environment contamination.

Although other studies have made different changes in Carba NP,13–15 the Modified Carba NP test presented here may be a valuable tool for laboratories interested in investigating several carbapenemase-producing bacteria with decreased cost. Although these modifications involve the acquisition of a sonication apparatus, its initial cost is counterbalanced by the ability to process several isolates concomitantly and by the elimination of the lysis buffer, which is especially attractive for laboratories that must import this expensive reagent. We also reinforce that imipenem/cilastatin available in hospital pharmacies may serve as the substrate for the Modified Carba NP test, representing an off-label use of this medication in institutions where this practice is allowed.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

We are grateful to Ana Cristina Gales, Laurent Poirel and Marise Dutra Asensi for providing positive controls employed in this study. This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

References
[1]
L. Dortet, L. Poirel, P. Nordmann.
Rapid detection of carbapenemase-producing Pseudomonas spp..
J Clin Microbiol, 50 (2012), pp. 3773-3776
[2]
L. Dortet, L. Poirel, P. Nordmann.
Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test.
Antimicrob Agents Chemother, 56 (2012), pp. 6437-6440
[3]
C.G. Giske, L. Gezelius, Ø. Samuelsen, M. Warner, A. Sundsfjord, N. Woodford.
A sensitive and specific phenotypic assay for detection of metallo-β-lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin.
Clin Microbiol Infect, 7 (2011), pp. 552-556
[4]
L.S. Munoz-Price, L. Poirel, R.A. Bonomo, et al.
Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases.
Lancet Infect Dis, 13 (2013), pp. 785-796
[5]
R.C. Picão, S.S. Andrade, A.G. Nicoletti, et al.
Metallo-β-lactamse detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates.
J Clin Microbiol, 46 (2008), pp. 2028-2037
[6]
L. Dortet, L. Poirel, C. Errera, P. Nordmann.
CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp..
J Clin Microbiol, 52 (2014), pp. 1364-2359
[7]
L. Dortet, L. Poirel, P. Nordmann.
Further proofs of concept for the Carba NP test.
Antimicrob Agents Chemother, 58 (2014), pp. 1269
[8]
Performance Standards for Antimicrobial Susceptibility Testing: Twenty-fifth Informational Supplement M100-S25.
Clinical and Laboratory Standards Institute, (2015),
[9]
L. Dortet, L. Bréchard, L. Poirel, P. Nordmann.
Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test.
J Med Microbiol, 63 (2014), pp. 772-776
[10]
S. Vasoo, S. Cunningham, P.C. Kohner, et al.
Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing gram-negative bacilli.
J Clin Microbiol, 51 (2013), pp. 3097-3101
[11]
M. Osterblad, A.J. Hakanen, J. Jalava.
Evaluation of the Carba NP test for carbapenemase detection.
Antimicrob Agents Chemother, 58 (2014), pp. 7553-7556
[12]
N. Tijet, D. Boyd, S.N. Patel, M.R. Mulvey, R.G. Melano.
Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa.
Antimicrob Agents Chemother, 57 (2013), pp. 4578-4580
[13]
S. Bakour, V. Garcia, L. Loucif, et al.
Rapid identification of carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii using a modified Carba NP test.
New Microbes New Infect, 7 (2015), pp. 89-93
[14]
F. Pasteran, N. Tijet, R.G. Melano, A. Corso.
A simplified protocol of the Carba NP test for enhanced detection of carbapenemase producers direct from bacterial cultures.
J Clin Microbiol, 53 (2015), pp. 3908-3911
[15]
J. Pires, Â. Novais, L. Peixe.
Blue-Carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures.
J Clin Microbiol, 51 (2013), pp. 4281-4283

These authors contributed equally to this work.

Copyright © 2016. Sociedade Brasileira de Microbiologia
Article options
Tools