#66

EFFECTIVE RE-ENGAGEMENT OF HEPATITIS C PATIENTS: A MULTICENTER STUDY BASED ON LABORATORY RECORDS IN ARGENTINA

Fernando Cairo¹, Manuel Barbero¹, Nicolas Dominguez¹, Stefania Burgos¹, Lucia Navarro¹, Ignacio Roca¹, Adrian Bologna², Daniel Calfunao³, Rodrigo Belloni², Andrea Curia⁴, Ayelen Trillo², Susana Melina⁴, Omar Galdame¹, Esteban Gonzalez Ballerga⁴

- ¹ Hospital El Cruce, Argentina.
- ² Hospital San Martin, Argentina.
- ³ Hospital Castro Rendon, Argentina.
- ⁴ Hospital de Clinicas, Argentina.

Introduction and Objectives: Hepatitis C virus (HCV) remains a significant cause of global morbidity despite the availability of highly effective direct-acting antivirals (DAAs). In Argentina, fragmented healthcare access and a high prevalence of advanced liver disease underscore the need for re-engagement strategies to achieve HCV elimination. This study aimed to assess the effectiveness of a multicenter re-engagement program for HCV patients lost to follow-up in high-complexity healthcare settings.

Materials and Methods: A multicenter prospective study (March –November 2024) analyzed blood samples from five hospitals to identify HCV antibody-positive patients. Positive cases were contacted to confirm viremia, undergo clinical evaluation, and initiate treatment. Data collected included re-engagement rates, fibrosis staging (FibroScan), genotype distribution, treatment regimens, and sustained virologic response (SVR) rates. Chi-square tests were used to compare positivity rates, genotype distribution, and treatment regimens.

Results: Among 206,053 samples, 3,334 (1.62%) tested positive for HCV antibodies, and 2,149 (64.5%) were potentially eligible for reengagement. Non-re-engagement causes included deaths (419), previous cure (741), and liver transplants (25). Positive cases were 54.16% male (p = 0.03). A total of 422 patients (19.6%) were successfully re-engaged, of whom 311 (73.8%) exhibited advanced fibrosis (\geq F2). Genotype 3 prevalence was similar to others (p = 0.3). Among re-engaged patients, 167 initiated treatment with Sofosbuvir/Velpatasvir (70.08%), Glecaprevir/Pibrentasvir (29.92%) (p = 0.12). Overall SVR12 rate was 97.98% among treated patients. SVR4 was assessed in 112 patients, showing a 100% correlation with SVR12.

Conclusions: This program successfully re-engaged HCV patients lost to follow-up, achieving high SVR12 rates and demonstrating the utility of SVR4 as an early predictor. A significant proportion of patients were unaware of their diagnosis, available treatments, or disease progression. The majority of treated patients had advanced fibrosis, highlighting the need for proactive strategies targeting high-risk populations. These findings underscore the necessity of establishing elimination programs in countries with complex healthcare systems like Argentina.

Conflict of interest: Yes, GILEAD SCIENCES

https://doi.org/10.1016/j.aohep.2025.101958

#74

LATIN AMERICAN SURVEILLANCE REGISTRY REVEALS HIGHER ANTIMICROBIAL RESISTANCE IN INVASIVE ISOLATES FROM PATIENTS WITH CIRRHOSIS COMPARED TO EUROPEAN BENCHMARKS

Gonzalo Gomez Perdiguero¹, Maria Dolores Murga², Ana Palazzo², Esteban Gonzalez Ballerga³, Ilse Pardo Ivirico³, Maria Daniela Perez², Lorena Notari⁴, Josefina Pages⁵, Manuel Mendizabal⁵, Camila Maria Briz⁶, Agustin Di Santo⁶, Julia Brutti⁷, Brenda Osso Sanchez⁴, Margarita Anders⁷, Pablo Calzetta⁸. Alina Raquel Zerega⁹. Angelo Z. Mattos¹⁰, Astrid Smud¹, Laura R. Maboni¹⁰, Maximiliano Castro¹¹, Fernando Cairo¹², Lucia Navarro¹², Martin Elizondo¹³, Gisela Gualano¹⁴, Maria Laura Garrido¹⁵, Diego Giunta¹⁶, Diego Arufe¹⁷, Marcelo Valverde¹³, Agostina Romero¹⁸, Natalie Vilcinskas¹⁹. Jorge Garavito Renteria²⁰, Javier Diaz Ferrer²¹, Rommel Zambrano Huailla²⁰, Laura Tenorio castillo²¹, Esther Veramendi Shult²², Karla Aquino Vargas²², Melisa Dirchwolf²³, Jesica Tomatis²⁴, Adrian Gadano¹, Sebastian Marciano¹

- ¹ Hospital Italiano de Buenos Aires, Argentina.
- ² Hospital Ángel C. Padilla, Argentina.
- ³ Hospital de Clinicas Jose de San Martin, Argentina.
- ⁴ Hospital Medico Policial Churruca Visca, Argentina.
- ⁵ Hospital Universitario Austral, Argentina.
- ⁶ Sanatorio Guemes de Buenos Aires, Argentina.
- ⁷ Hospital Alemán, Argentina.
- ⁸ Hospital Juan A. Fernandez, Argentina.
- ⁹ Sanatorio Allende, Argentina.
- ¹⁰ Universidade Federal de Ciências da Saúde de Porto Alegre - Irmandade Santa Casa de Misericórdia de Porto Alegre, Brasil.
- ¹¹ Hospital José Bernardo Iturraspe, Argentina.
- ¹² Hospital de Alta Complejidad El Cruce, Argentina.
- ¹³ Unidad Bi Institucional (Hospital Central de la Fuerzas Armadas Hospital de Clínicas Dr. Manuel Ouintela). Uruguay.
- ¹⁴ Hospital Regional Dr. Ramon Carrillo, Argentina.
- ¹⁵ Hospital Central Dr Ramon Carrillo, Argentina.
- ¹⁶ Univesidad de Hospital Italiano de Buenos Aires, Argentina.
- ¹⁷ Sanatorio Sagrado Corazón, Argentina.
- ¹⁸ Sanatorio Diagnostico, Argentina.
- ¹⁹ Hospital Central de Mendoza, Argentina.
- ²⁰ Hospital Nacional Arzobispo Loayza, Perú.
- ²¹ Hospital Nacional Edgardo Rebagliati-Martins, Perú.
- ²² Hospital Nacional Hipólito Unanue, Perú.
- ²³ Hospital Privado de Rosario, Argentina.
- ²⁴ Instituto Medico Rio Cuarto, Argentina.

Introduction and Objectives: Given the growing burden of antimicrobial resistance (AMR), we aimed to report the prevalence of key AMR patterns in Latin American patients with cirrhosis and compare them with the European Antimicrobial Resistance Surveillance Network (EARS-Net) data

Materials and Methods: Cross-sectional study of invasive isolates (blood, ascitic or pleural fluid) from adults with cirrhosis enrolled in the Latin American surveillance registry (ClinicalTrials.gov: NCT0634940). AMR patterns were reported for key pathogens: E. coli, K. pneumoniae, S. aureus, Acinetobacter spp., E. faecium, and P. aeruginosa.

Results: Between December 2020 and May 2025, 908 bacterial isolates were collected from Argentina, Uruguay, Brazil, and Peru. Of these, 226 (25%) were obtained from invasive sites and correspond to predefined bacteria of epidemiological interest included in the analysis. Isolates were 39% nosocomial, 38% community-acquired, and 23% healthcare-associated. The main infections were spontaneous bacteremia (38%) and SBP (32%). Quinolone resistance was higher in Latin American vs. Europe for K. pneumoniae (56% vs. 34%) and E. coli (46% vs. 24%). Carbapenem resistance in K. pneumoniae was 46% (vs. 13%),

and in E. coli, 5.3% (vs. 0.3%). Methicillin resistance among S. aureus was higher in Latin American (32%) than in Europe (16%). Other pathogens also showed higher resistance (Table).

Conclusions: The elevated resistance rates observed in Latin American patients with cirrhosis demand attention. In a region where regulatory gaps at multiple levels may contribute to antibiotic misuse, these findings call for urgent action to strengthen rational antibiotic use and implement effective stewardship strategies.

Conflict of interest: None

Antibiotics	Percentage of total with resistance phenotype Latin American	Percentage of total with resistance phenotype EARS-net
Escherichia coli	(n=94)	(n=147,939)
Aminopenicillins	49%	55%
Fluoroquinolones	46.2%	24%
3rd gen cephalosporins	28.7%	16%
Aminoglycosides	6.4%	11%
Carbapenems	5.3%	0.3%
3rd gen cephalosporins + FQ + AG	3.2%	6%
Klebsiella pneumoniae	(n=59)	(n=48,741)
Fluoroquinolones	56%	34%
3rd gen cephalosporins	54.2%	35%
Carbapenems	45.8%	13%
Aminoglycosides	28%	24%
3rd gen cephalosporins + FQ + AG	28%	21%
Pseudomonas aeruginosa	(n=12)	(n=22,045)
Ceftazidime	30%	16%
Fluoroquinolones	25%	18%
Piperacillin-tazobactam	25%	19%
Aminoglycosides	16.7%	9.5%
Carbapenems	16.7%	19%
Combined resistance*	16.7%	13%
Acinetobacter species	(n=10)	(n=8,843)
Fluoroquinolones	70%	42%
Carbapenems	70%	40%
Aminoglycosides	50%	37%
Combined resistance**	62.5%	35%
Staphylococcus aureus	(n=38)	(n=75,205)
Meticillin	31.60%	16%
Enterococcus faecium	(n=13)	(n=21,436)
Vancomycin	54%	20%

https://doi.org/10.1016/j.aohep.2025.101959

#83

BRIDGING THE GAP IN HCC CARE: FIRST REAL-WORLD ANALYSIS OF BCLC ADHERENCE AND SURVIVAL IN A CENTRAL AMERICAN POPULATION

Wagner Ramirez Quesada¹, María Fernanda Lynch Mejía¹, Francisco Vargas Navarro¹, María José Soto Echeverri¹, Fiorella Ajún¹, Alejandra Ochoa Palominos¹, Pablo Coste¹

Introduction and Objectives: Hepatocellular carcinoma (HCC) is a major global health burden. The Barcelona Clinic Liver Cancer (BCLC) staging system provides evidence-based treatment guidance,

but real-world adherence remains limited, particularly in Latin America.

Assess adherence to the 2022 BCLC first-line treatment recommendations and their impact on survival in a prospective cohort from a liver transplant (LT) center.

Materials and Methods: Prospective cohort study included 260 adults diagnosed with HCC between 2018 and 2024. Adherence was defined as receipt of first-line therapy consistent with BCLC stage. Multivariate logistic regression identified predictors of adherence, and Kaplan-Meier analysis evaluated survival outcomes.

Results: Overall adherence to BCLC was 47.8%, with substantial variability by stage: 44.9% in BCLC 0/A, 53.7% in B, 23.1% in C, and 93.5% in D (p < 0.001). Only 26.3% of patients received potentially curative therapy. Among 53 LT-eligible patients, 45% underwent transplantation, while 30.2% progressed or died before listing. Logistic regression identified Child-Pugh class B/C (aOR: 3.82; p < 0.001) and ECOG > 0 (aOR: 5.04; p = 0.022) as independent predictors of adherence, while BCLC stages B, C, and D exhibited a strong inverse association. Adherence proved significantly prolonged median overall survival (722 vs. 535 days; p = 0.001), with marked benefit in stages 0/A (1,404 vs. 807 days; p = 0.005) and C (492 vs. 168 days; p = 0.029).

Conclusions: Adherence to BCLC treatment significantly improves survival, yet remains suboptimal—particularly in intermediate stages. This highlights the need for tailored strategies to improve implementation and equity in HCC care in resource-limited settings.

Conflict of interest: None

Kaplan-Meier survival curves comparing adherent and nonadherent patients stratified by BCLC stage.

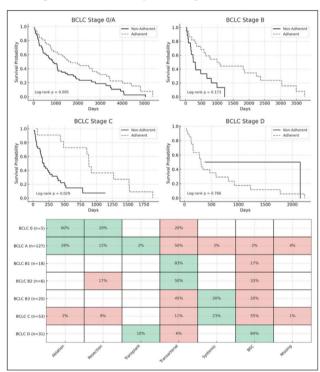


Figure 1. Kaplan-Meier Au rol curves comparing adherent and non-adherent patients stratified by BCLC stage, Significant survival differences were beserved in stage of the properties of first-line treatments by BCLC stage (Significant survival conditions BCLC) stage is an observed in stage of first-line treatments by BCLC stage (Significant survival conditions BCLC) stage is adherent treatment and adherent treatment and adherent treatment sup action and adherent treatment survival stage (Significant survival survival stage). Because of the stage of the stage

https://doi.org/10.1016/j.aohep.2025.101960

¹ Liver Unit. Hospital R.A. Calderón Guardia, Costa Rica.