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A B S T R A C T

The prevalence of digital ecosystems and platforms underscores the need for a deeper understanding of the
factors that influence performance variations within these platforms. This study introduced a multidimen-
sional model to examine the platform ecosystem characteristics that affect performance outcomes. To this
end, it adopted the Lotka-Volterra complex system theory. The model was simplified into a one-dimensional
framework, enabling the examination and prediction of the relationship between performance bifurcation
and configurations of platform characteristics. This study provides practical insights and implications that
extend beyond academia. The results reveal that high network threshold values indicate robust platform per-
formance, suggesting resilience against collapse. Additionally, increasing the network effect influences plat-
form performance by shifting competition strength toward prominent tipping-point locations, which is
considered a desirable regime. The results further confirm that competition dampens a platform’s exponen-
tial growth; however, cross-network effects enhance it. These insights have significant implications for
investors, offering a practical vision that can inform managers’ strategic decision-making. These findings pro-
vide a solid foundation for developing informed strategies to enhance platform performance. In a world in
which digital ecosystems play a pivotal role, the implications of this study empower stakeholders to make
data-driven decisions, fostering success in a dynamic and competitive digital business environment.
© 2024 The Authors. Published by Elsevier España, S.L.U. on behalf of Journal of Innovation & Knowledge. This

is an open access article under the CC BY-NC-ND license
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Introduction

The concept of platform ecosystems has become crucial in the cur-
rent era. These ecosystems are characterized by fast digital transfor-
mation and increasing interdependence (Duan et al., 2022).
Encompassing various stakeholders, such as platform owners, devel-
opers, and users, they have become vital conduits for innovation, eco-
nomic growth, and value creation (Duan et al., 2023). Understanding
the dynamics within platform ecosystems, particularly how their
inherent characteristics and configurations shape performance out-
comes, is of paramount importance. The architecture of a platform
ecosystem depicts how its production can be organized (Baldwin et
al., 2000). Thus, platform ecosystem configurations substantially
influence their comprehensive dynamics, performance, stability, and
susceptibility to collapse (Loudahi & Khurshid, 2022; Morris et al.,
2021).

Over the past few decades, platform ecosystems have become cru-
cial players in the modern economy. Platform ecosystems have
replaced traditional models in the software industry and beyond
(Duan et al., 2021). As economic and social transactions move to the
Internet, platform ecosystems have emerged as enablers of exchange
between different groups of agents in many areas. This phenomenon
goes beyond the use of traditional models to evaluate the platform
performance. Belleflamme and Peitz (2021), Loux et al. (2020), and
Van Alstyne et al. (2016) used traditional financial theory to examine
platform performance. The configuration of a platform ecosystem
forms an extensive and complex network of dynamic interconnec-
tions between users and characteristics. This configuration makes it
challenging to evaluate the performance using only traditional theo-
retical models.

In the past, conventional theories have been employed to analyze
platform performance. However, limited consideration has been
given to the interaction between platform ecosystem characteristics
and operational performance during evaluation. Platform ecosystem
structuring is the prevailing approach for addressing intricate net-
work challenges (Innocenti et al., 2020; Mysachenko et al., 2020).
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Although these methods predominantly concentrate on innovating
and enhancing platform products and services, they often overlook
valuable information embedded within the platform’s characteristic
topology. The networking and diverse operations of these entities
have long inspired observers; however, comprehending the mecha-
nisms underpinning their diversity, bifurcation, tipping points, and
operational performance remains a formidable challenge (Bascompte
& Stouffer, 2009; Brose et al., 2006; Loreau, 2010). Their theoretical
exploration frequently hinges on extensive numerical simulations as
modeling techniques.

This study reveals the configuration of the platform ecosystem
characteristics that permit intricate cross-network interactions.
Despite superficial differences in the platform ecosystem (Ye et al.,
2023), they can be understood within a unified framework and dis-
cerned by only a handful of parameters, as Lotka-Volterra complexity
theory advocates. Complex structures do not necessarily require
complex dynamics (Barbier et al., 2018; Duan et al., 2023). This study
demonstrates that the different modes exhibit comparable collective
qualities in the context of platform ecosystem configuration charac-
teristics. These traits were recorded using parameter attributes.

This study fills a gap in the literature by focusing on complex net-
works and the emergence of platform ecosystems. First, we identify
individual characteristics from Barbier et al. (2018) and group them
into various modes to form a community to examine the emergence
of the characteristic mode in platform interactions. Second, we
develop a new model by accumulating the characteristics’ modes
within the generalized Lotka-Volterra dynamics theory framework to
show the influence of the interaction among the platform character-
istics and the operations performance. Previous studies, such as Jaco-
bides et al. (2018), failed to identify such influence. In contrast, we
formulate a simplified method suitable for diverse complex platform
systems. This method uncovers pertinent structures within these sys-
tems (Jia et al., 2021), allowing the evaluation of previous simplified
theories that have proven helpful in platform ecosystem manage-
ment. Finally, this study offers insight into platform characteristic
configurations and a prediction of any platform’s platform bifurcation
point (and, thus, the critical transition point).

The novelty of this study lies in its attempt to uncover the intrica-
cies of platform ecosystems and their impact on performance out-
comes. Unlike Barbier et al. (2018) and previous studies focused on
complexities in ecology, this study aims to provide fresh perspectives
on the complex relationship between the characteristics that form
the configuration of these ecosystems and the phenomenon of per-
formance bifurcation. This approach goes beyond static snapshots
and analyzes how changes in ecosystem characteristics over time
influence performance divergence. Peltoniemi and Vuori (2004) pro-
posed that a business ecosystem could be understood as an intricate
system characterized by self-organization, emergence, co-evolution,
and adaptation. Nonetheless, this study concentrates on the intrinsic
growth rate, competition, and cross-network effects. It embraces a
multifaceted approach to demonstrate that the platform ecosystem
does not recognize a one-size-fits-all solution for performance.

Furthermore, it seeks to unravel how innovative models can
reshape performance outcomes. This study adds to the current body
of knowledge and provides valuable insights for platform owners,
governments, and ecosystem participants to navigate the volatile dig-
ital environment. Platform ecosystems stimulate economic transfor-
mation and innovation. From a micro perspective, using an ego
network lens indicates that a company’s actions and achievements
significantly influence its connections with partners and their rela-
tionships (Zaheer et al., 2010). This approach offers an in-depth view
of specific firms and highlights the importance of an individual firm
within an innovation ecosystem. Nevertheless, these perspectives fail
to provide a comprehensive understanding of the platform ecosys-
tem’s performance because they overlook the inherent structure of
the platform when analyzing its overall effectiveness. This study

distinguishes itself by transcending conventional methodologies and
approaches for examining platform performance. Most platform per-
formance studies tend to be retrospective, analyzing past perfor-
mance data without considering the ecosystem’s ability to adapt to
unforeseen disruptions. This new perspective enriches the current
understanding of platform dynamics and provides valuable insights
for researchers and stakeholders in these ecosystems.

The remainder of this paper is structured as follows. Section 2
explores the relevant literature and identifies potential shortcomings.
Section 3 focuses on developing models to represent the theoretical
linkages and simulations of the empirical outcomes. Section 4 exam-
ines and evaluates the findings, and Section 5 concludes and offers
recommendations for further research.

Literature review

The developed model contributes to the existing platform ecosys-
tem literature by advancing the understanding of diverse domains.
Gawer and Cusumano (2014) identify specific platform types and
practices that are crucial for effective leadership, shedding light on
managing competition and fostering innovation. In addition, Gha-
zawneh and Henfridsson (2013) generate specialized constructs to
comprehend stakeholder actions in third-party development, includ-
ing self-resourcing, regulation-based security, diversity resourcing,
and sovereignty. Gawer (2021) extends their research by providing a
nuanced understanding of stakeholder dynamics. The scope of The Jia
et al. (2021) is expanded by conducting an ideal experiment to
explore the diverse evolutionary trajectories of platform business
models in different environments, focusing specifically on China’s
Tencent and Alibaba. €Oberg and Alexander (2019) emphasize open-
ness in various dimensions, link it to knowledge management out-
comes, and offer practical insights for firms in selecting mechanisms.

Furthermore, Van Alstyne et al. (2016) investigate network effects
as a driving force for successful platforms, emphasizing the crucial
understanding of when external forces contribute to or detract from
value. Moreover, they underscore the pivotal role of open governance
in allowing entities beyond the owner to shape trade rules and
reward-sharing dynamics on the platform. This comprehensive
review synthesizes these contributions and highlights the intercon-
nected insights that advance the current understanding of platform
ecosystems. By synthesizing existing scholarly works, this literature
review aims to shed light on the various mechanisms that can shape
platform performance in ecosystems. This study delves into the
empirical and theoretical research within these domains, encompass-
ing definitions, network effects and their characteristics, competition
and associated features, ecology, and platform strategies and designs.
This comprehensive exploration aims to elucidate how diverse con-
figurations influence performance and contribute to performance
bifurcation within platform ecosystems. Existing literature on plat-
form definition defines platforms within ecosystems as the aggrega-
tion of access channels or interfaces that address the challenges
encountered by entities within the ecosystem (Iansiti & Levien,
2004). Hence, their study provides a comprehensive overview of plat-
form ecosystems, history, and current state. The authors argue that
platform ecosystems are transforming the economy and provide
practical advice to firms that want to participate in these ecosystems.

Moreover, some studies have suggested that platform ecosystems
are dynamic and evolving. Kietzmann et al. (2011) show that thriving
platform ecosystems can adapt to changing market conditions and
user requirements. This adaptation requires continuous innovation
and the ability to integrate new technologies and services. Platforms
have been found to offer corporations significant innovation opportu-
nities (Chatterjee, 2013). A platform system represents a fresh and
powerful organizational strategy employed across various industries
to facilitate innovation and business transactions (Duan et al., 2024).
Consequently, the pursuit of innovative platforms has emerged as

W. Duan, A. Eva, L. Andrews et al. Journal of Innovation & Knowledge 9 (2024) 100490

2



the most effective strategy for attaining enduring revenue streams.
The literature also explains how competition can lead to the emer-
gence of new and innovative platforms, but it can also create frag-
mentation and decrease overall network effects.

According to existing literature, the cross-network effect is a cru-
cial driver of platform ecosystem performance. Platform ecosystems
are pivotal in contemporary business dynamics, as they foster inno-
vation and value creation (Adner, 2017; Rochet & Tirole, 2003).
Exploring the significance of these networks, their constituent ele-
ments, and the specific roles undertaken by each participant is crucial
for comprehending the collective value generated by collaborative
networks and the community (Reynolds et al., 2023). Network
effects, encompassing direct and cross-network effects, heavily influ-
ence platform success (Rangaswamy et al., 2020; Van et al., 2016).
Research has extensively covered these effects, emphasizing their
positive impact on user adoption and engagement within a platform
(Farrell & Klemperer, 2007; Kretschmer et al., 2022). It is imperative
to distinguish between the direct effects occurring within the plat-
form and the cross-network effects that extend beyond influencing
interactions between different networks (Van et al., 2016).

Noteworthy studies have explicitly focused on cross-network
effects, shedding light on how interactions between diverse networks
impact overall platform performance (Gawer & Cusumano, 2014;
Rochet & Tirole, 2006). The reviewed literature contributes substan-
tially to understanding the cross-network effects on platform ecosys-
tem performance, with implications for future research directions
and industry practices (Parker et al., 2017; Rietveld & Schilling,
2021). Rochet and Tirole (2004) find that network effects can poten-
tially establish a dynamic in which a single dominant platform
emerges as the winner-take-all platform and captures the most mar-
ket share. Another study argues that network effects are insufficient
for platform ecosystem success (Hagiu & Wright, 2019). The authors
suggest that firms create strong value propositions, design effective
mechanisms, and foster network effects through ecosystem orches-
tration. Their study provides a valuable framework for understanding
the factors driving platform ecosystem performance. However, they
omit the core characteristics of the platform when evaluating its per-
formance.

The relevant literature cites the concept of competition character-
istics in platform ecosystems. Understanding the impact of competi-
tion on platform ecosystem performance is crucial for navigating
dynamic markets. Competition within platform ecosystems is garner-
ing increasing attention (Jacobides, 2020; Yoffie et al., 2019). Scholars
have explored how platform rivalry affects user adoption, value crea-
tion, and overall ecosystem performance (Bourreau & Perrot, 2020).
Different forms of competition, including direct platform-to-platform
and indirect competition through complementary goods or services,
contribute to the complexity of platform ecosystems (Eisenmann et
al., 2011; Gawer & Cusumano, 2014). Competition can catalyze inno-
vation within platform ecosystems and competitiveness derived
from acquired external knowledge to foster innovative strategies for
improving performance (Li et al., 2023). Platform operators employ
various strategies to navigate the competition and enhance ecosys-
tem performance (Farrell & Klemperer, 2007). These strategies may
involve pricing, service differentiation, and partnerships to
strengthen the platform’s position in the face of rivalry (Helfat & Rau-
bitschek, 2018; Teece, 2018). Competition can affect user experiences
and choices within platform ecosystems (Rothe et al., 2018). Research
has explored how competition influences user preferences, loyalty,
and the overall attractiveness of platforms (Cennamo & Santalo,
2013). Several studies examine the influence of regulatory frame-
works on competition and ecosystem performance (Kira et al., 2021).

Similarly, platform governance also influences competition in eco-
systems. Platform governance plays a pivotal role in shaping the
competitive landscapes within ecosystems. This study also explores
the impact of platform governance on ecosystem performance. In

addition, we examine the existing literature, highlighting the signifi-
cance of effective governance as another essential determinant of
platform ecosystem performance. Governance mechanisms, such as
rules, standards, and certification processes, help establish trust and
reduce transaction costs between different actors. Van et al. (2016)
show that platform governance significantly affects digital platform
performance. This result draws attention to the effect of platform
governance on firm performance. It is widely recognized that a strat-
egy for platform performance involves creating value by facilitating
interactions between various affiliated users in a two-sided market,
as highlighted by Rochet and Tirole (2004). This growth is likely to
persist and thrive due to network effects and value creation Evans et
al., 2006 and Guo et al. (2022).

Other studies suggest that a well-designed platform ecosystem
strategy can significantly improve performance. If it is well-designed,
a platform’s success largely depends on how well it can facilitate
interactions between different actors (Gawer & Cusumano, 2014).
The results further reveal that effective platform ecosystem design
requires careful consideration of the actors involved, their interac-
tions, and the rules and governance mechanisms that govern their
behavior. Van Alstyne et al. (2016) contend that effective platform
ecosystem design requires careful consideration of the actors
involved, their interactions, and the rules and governance mecha-
nisms that govern their behavior.

Furthermore, several platforms have incorporated ecological
approaches into their frameworks, and a considerable portion has
neglected to include the advanced modeling of platform ecosys-
tems. Barbier et al. (2018) develop a comprehensive method for
integrating components in complex ecological networks, focusing
on precise simulations of these sophisticated systems. They show
that a substantial fraction of the possible results exhibited charac-
teristic features that remained unchanged despite adjustments in
the modeling choices. There are shortcomings in the existing litera-
ture on platform ecosystem relationships and performance. Many
researchers neglect the relationship between platform characteris-
tics and performance. Jia et al. (2021) provide an overview of plat-
form ecosystems, key concepts, and applications. They discuss the
challenges of managing platform ecosystems and identify the criti-
cal success factors that could help firms achieve better performance
outcomes. The study concludes by outlining the implications of plat-
form ecosystems for business strategies and management. Most
studies exclude the mathematical models and simulation studies
required to analyze the mechanisms of the platform ecosystem.
Their diversity, complexity, and stability research has built a theo-
retical e-commerce and platform ecosystem framework. Neverthe-
less, a thorough assessment of platform performance has not been
conducted.

This study bridges this gap in research by comprehensively con-
sidering various ecosystem characteristics to form various configura-
tions. It recognizes that platforms are not just technological entities
but also social environments; hence, understanding user behavior is
crucial for comprehending performance divergence (Khurshid et al.,
2024). This approach allows for a more nuanced understanding of
how these elements interact to influence performance. This study
recognizes that every platform environment may require unique con-
figurations. This approach acknowledges the individuality of platform
ecosystems in the adopted Lotka-Volterra (LV) model and how inno-
vative configuration models can reshape performance outcomes. This
approach facilitates a broader perspective and enables researchers
and stakeholders to gain insights by identifying the commonalities
and distinctions across various ecosystems. This forward-looking per-
spective goes beyond traditional performance analysis and empha-
sizes the ability of ecosystems to withstand unforeseen challenges
and disruptions, thus addressing a critical gap in platform research.
Furthermore, this study moves beyond traditional and often-siloed
methods of examining platform performance. It connects the various
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elements of platform ecosystems, considers the role of human behav-
ior, offers a comparative and dynamic perspective, and emphasizes
the importance of ecosystem resilience. Doing so, it contributes to a
holistic body of knowledge in this sector by providing a more thor-
ough and relevant understanding of platform ecosystems and their
impact on performance outcomes.

Multidimensional model

This study embraces complex systems theory (Barbier et al., 2018;
Duan et al., 2023). This theoretical approach emphasizes nonlinear
systems, networks, and adaptive behaviors. Therefore, this study
devises a novel system model to serve as a performance metric for a
platform ecosystem, employing the Lotka-Volterra model approach
to condense it from multiple dimensions into a single dimension and
emerging phenomena (Bento et al., 2020). The reason for reducing
the model is to improve empirical results’ efficiency and trustworthi-
ness, as Laurence et al. (2019) proposed. The detailed model formula-
tion process is included in the Supplementary Material for reference.
We simulated the reduced-dimensional model using MATLAB and
Mathematica software tools to provide valuable insights and predict
the platform’s performance over time. The model was simulated to
test complex networks, and the simulated results were analyzed and
compared to a real-world case of the platform ecosystem for an accu-
rate evaluation of our model.

Model formulation

This study employs several parameters to describe the platform
ecosystem. We set the values for the basic form of the platform eco-
system to create a configuration. The qualitative characteristic
parameters were set to quantitative values to describe the platform
ecosystem (Table S2, supplementary information). This study considers
a model for a platform ecosystem within the context of a generalized
Lotka-Volterra dynamic model. The proposed model encompasses
elements such as Ni, ri; and Di representing platform agents, intrinsic
growth rate, and competition, respectively. Q, E, and H set the

functional responses, and Aij is established as interaction coefficients,
which are indicative of the network effect. Eq. (1) is based on Barbier
et al. (2018) LV model:

d

dt
Ni ¼ Ni ri � DiNi � f

X

s

j¼1

AijNi

0

@

1

A

0

@

1

A

: ð1Þ

We embraced the proposed model structure by incorporating
the characteristic parameters into the original parameters of the
Lotka-Volterra model. Consequently, the original parameters
were expressed as characteristic parameters’ functions, as Table S1
(supplementary information) outlined. We describe this approach
and its mathematical depiction in Fig. 1 as (ri;Di; AijÞ=

�

yðrÞ; zðp; f ; gÞ;

dðh; IÞÞ.

Ni represents the performance or throughput of the platform sec-
tor at node i at time t, assuming that each platform sector is intercon-
nected with other sectors. The platform sectors are akin to nodes
within the network, and the business inflows are represented as
edges, as illustrated in Equation (2); d

dt
Ni denotes the change in per-

formance over time, and ri is the intrinsic growth rate of the platform.
We set Ki as the carrying capacity to limit the inherent growth rate of
the system. According to the probabilistic model used for this plat-
form, we set the growth rate term as follows:

dNi

dt
¼ riNi 1�

Ni

ki

� �

ð2Þ

We assume that other external factors affect the platform. We
consider this impact as a competition effect (Di). We include the com-
petition term into the model, expressed as:

dNi

dt
¼ riNi 1�

Ni

ki

� �

� Ni

X

n

j¼1

DNj: ð3Þ

We assume that the interaction strength influences the competi-
tion of a platform (bij) in terms of price, feedback, or governance
mode. This algorithm can be accomplished by adopting feedback,
price, and governance modes, incorporating them as effort variables,
and integrating them into Eq. (4) to formulate the harvesting model

Fig. 1. Characteristics that influence platform performance.
Fig. 1 shows platform performance and its relationship with the competition and network effect characteristics. It indicates that platform performance is a function of intrinsic

growth rate, competition, and network effect. In addition, competition is a function of price, feedback, and governance mode characteristics. The network effect is a function of hom-
ing and interaction mode characteristics (Çetin et al., 2021; Chen et al., 2022; Gawer, 2021; Halaburda et al., 2018; Zhu et al., 2021)

W. Duan, A. Eva, L. Andrews et al. Journal of Innovation & Knowledge 9 (2024) 100490

4



(Malik et al., 2021) (please refer to the Supplementary Information
for the detailed steps). We express this model as:

Di ¼ Ni

X

n

i¼1

b
pð Þ
ij Nj þ Ni

X

n

i¼1

b
fð Þ
ij Nj þ Ni

X

n

i¼1

b
gð Þ
ij Nj; ð4Þ

where,

bij ¼
1 if competition

0 if no competition

�

.

As stated earlier, Di is influenced by price, feedback, and gover-
nance modes. We include these aspects in Eq. (4), and we obtain the
following:

dNi

dt
¼ riNi 1�

Ni

ki

� �

�
X

n

j¼1

Ni

X

n

i¼1

b
pð Þ
ij Nj þ Ni

X

n

i¼1

b
fð Þ
ij Nj þ Ni

X

n

i¼1

b
gð Þ
ij Nj

0

@

1

A

:

ð5Þ

Fig. 2 illustrates the interconnections between the platforms
(nodes) that shape the platform ecosystem’s topological architecture
(AijÞ.

The operation of the complete platform ecosystem hinges on this
topological architecture, which governs the connections among plat-
form sectors. The system topology architecture is a scaled connectiv-
ity matrix that encapsulates the mutualistic interactions among the
nodes (platforms), as elaborated in Agha Mohammad et al. (2021).

The cross-network effect (Aij) is introduced as an interaction term
in the equation that captures the mutualistic interactions between
users. This addition has a positive influence on the platform’s perfor-
mance. Mutualism allows the users of platforms to benefit from inter-
connectivity (Xu et al., 2017). Thus, the growth of one user is
mutually beneficial to other connected users. These interactions
affect the platform’s value; hence, we further develop Eq. (6) by
incorporating Aij as the cross-network effect:

dNi

dt
¼ riNi 1�

Ni

ki

� �

� Ni

X

n

j¼1

DNj þ d Ni

X

n

j¼1

AijNj

0

@

1

A ð6Þ

We assume that the homing and interaction modes influence the
cross-network. In general, Aij is the strength of the mutualism or
interaction. This is the per capita effect of users on the per capita net-
work effect, namely, the configuration of the multihoming home and
the interaction mode. We set the mutualistic strength of the platform
to:

Aij ¼ Cij
/ o h; Ið Þ

Lei
ð7Þ

Li is the number of interactions among users who benefit from the
interactions, and e is the strength of the trade-off modulating the
strength and degree of interactions. When e = 0, there is no trade-off;
however, when e = 1, a trade-off emerges. The parameter / o

depends on the degree of multihoming mode and interaction mode.
It quantifies the strength of the mutualistic interactions. Cij is the
coefficient of the interaction between suppliers i and j on a platform.
We express Aij as;

X

n

j¼1

AijNiNj ¼
X

n

j¼1

ao h; Ið Þ

Lei
NiNj: ð8Þ

For simplicity, the structure of this topology is expanded using a
saturation functional response and an interaction strength parame-
ter. We clarify the meaning of the usual saturation half-rate (Follow-

ing supplementary information) by incorporating it into the general
model for the platform:

dNi

dt
¼ riNi 1�

Ni

ki

� �

� Ni

X

n

j¼1

DNj þ
X

n

j¼1

Aij

NiNj

Q þ EiNi þ HjNj
; ð9Þ

where Q, Ei and Hi are parameters that quantify the rate of the satura-
tion functional response fðNiÞ=

AiNi

QþEiNiþHjNj
.

Model reduction

Eq. (9) represents a multidimensional platform network model
in which each characteristic is configured into its operational char-
acteristics. Multidimensionality increases both computational
demands and unpredictability. Nonetheless, these challenges can
be mitigated through the dimensionality reduction of the
model (Xu et al., 2017). The supplementary information provides a
comprehensive account of the steps involved in the dimension
reduction process, culminating in the creation of a reduced model:

dNeff

dt
¼ Neff reff 1�

Neff

K

� �� �

� b
xð Þ

eff
Neff

� 	2
þ

hA i Neff

� 	2

Q þ E þ Hð ÞNeff

: ð10Þ

In Eq. (10), Neff denotes the aggregated effective average platform
bifurcation performance across all users within the characteristic
configuration network. K represents the performance capacity; reff
stands for the effective intrinsic growth rate term, beff is the effective
competition variable influencing price, feedback, and governance
mode, and hA i is the effective mutualistic strength for sellers and
consumers (platform users).

Simulation, results, and analysis

The study’s results show the dynamic nature of the platform’s per-
formance depending on the empirical outcomes of various combina-
tions of configurations. Overall, the system shows bifurcation or
critical transition points for performance Nc . The platform undergoes
a dynamic critical transition, resulting in system bifurcation at the
point where the blue line meets the red line, called the bifurcation
point. The system undergoes chaotic behavior at this point, resulting
in the platform’s collapse. The findings indicate that, irrespective of
the specific parameter values (K; D; and r), when Neff�0, platform
performance always displays two stable states of equilibrium (i.e., @N

@t

<0; when a state is stable Z at Neff >0 and stable state X at Neff ¼ 0),
and it is unstable when Y >0 thatð is; @N

@t >0Þ. The positioning of the
critical points is contingent upon the influence of the network effect
Aij and competition effect Di of each platform configuration. This

Fig. 2. Interconnectedness of Characteristics.
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result indicates that network effects and competition significantly
affect platform performance (Tan et al., 2020).

Effect of network effect on the platform ecosystem bifurcation

Fig. 3 shows the bifurcation platform performance of the 14 plat-
form configurations. The system demonstrates a solitary, stable con-
dition for N>Nc (performance threshold) that occurs at Neff >0;

which is preferred (bold line), and an unstable state, which is unde-
sired (dotted line), when Neff ¼ 0. The performance function exhibits
a solitary stable condition at Neff <0; which is unsolvable and leads
to erratic behavior. Platform configuration Aeff affects platform per-
formance bifurcations when the network effect increases with time.
In this study, the platform performance and its threshold values bc

are determined entirely by the platform configuration of the model
in Eq. (10). The platform network effects Aij determine the platform
configuration-specific states along platform performance function
f ðbeff ;Neff Þ. Fig. 3 shows that a system for beff <bc always shows
two states of equilibrium, the stable state Z and the unstable X. When
beff >bc , the system exhibits chaotic behavior.

These results are obtained from 14 configurations with varying
interaction strength values ( Aeff ) and divided into three categories
for clarity and precision (higher, average, and lower threshold values
bc). The configurations with higher threshold values are 10, 12, and

13, with bc 47.29 for configuration 12 and 41.38 for configuration 10
and 13, respectively. The configurations with average threshold val-
ues are configurations 1, 2, 5, and 14, with bc equal to 30.14, 31.07,
31.9, and 34.88, respectively. The configurations with the lower
threshold values are configurations 3, 4, 6, 7, 8, and 9 with bc equal
to 28.42, 26.07, 12.36, 23.61, 11.4, and 10.39, respectively.

The results show that configuration 12, with a threshold value bc

¼ 47:29 and a high interaction strength of Aeff ¼ 9:02, is the most
robust configuration with a solitary, stable condition Z at the interval
0�bc < 47:29; followed by configurations 10 and 13 with the same
threshold values regime 0�bc <41:38 and Aeff equal to 6:6. This
result indicates that configurations 12 and 13 tend to perform well
within the interaction strength regime in the platform ecosystem at
Nc�0:52 and Nc�0:51; respectively. Since the configurations tend to
withstand any shock or perturbation at these critical transitions, the
platforms will yield high performance with time when the interac-
tion strength increases.

The results show how integrating services such as Facebook Mes-
senger, Instagram, and WhatsApp creates a synergistic effect, encour-
aging users to engage in multiple platform facets. Users seamlessly
transition between platforms, amplifying overall network effects and
fostering a sense of interconnectedness. A case study on Facebook
exemplifies how strategic emphasis on cross-network effects can sig-
nificantly elevate platform performance. By seamlessly integrating

Fig. 3. Influence of cross-network effect configurations on the bifurcation points.
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services and fostering an interconnected ecosystem, Facebook enhan-
ces user engagement, achieves sustained growth, and increases mon-
etization opportunities. This case underscores the importance of
cross-network effects in the success of platform ecosystems and their
direct correlation with higher overall platform performance. Further-
more, both platforms experience disrupted behaviors when the inter-
action strength exceeds the threshold values: Configurations 6, 8, and
9 are the most vulnerable platform ecosystems, with a single stable
state H at an interval of 0�bc <12:36. The results indicate that, at bc

�12:36; the platform can undergo total collapse.
Platforms such as Friendster and MySpace have faced a significant

decline in user engagement. In 2011, Friendster shut down as
MySpace transformed, losing its dominant position in social network-
ing. The case study of Friendster and MySpace underscores the
importance of sustaining interaction strength and leveraging cross-
network effects for platform longevity. Failure to innovate contrib-
utes to a decline in user engagement and eventual demise. This is a
cautionary tale for platforms seeking enduring success in the
dynamic digital landscape.

Effect of competition on the platform ecosystem bifurcation

Competition negatively affects platforms, and the results reveal
that when competition is high, a platform must attain a very high
threshold value to perform well. However, when the competition
threshold value is low, with the smallest operational measure in place,
the platform can withstand for a long time and yield higher perfor-
mance. Fig. 4 shows the bifurcation platform performances of the 18
platform configurations. The system exhibits a solitary stable state
when N>Nc (performance threshold) that occurs at Neff >0; which is
the preferred state (bold line), and an unstable state that is undesired
(dotted line) when Neff ¼ 0. A performance function with a single sta-
ble state at Neff < 0 is unsolvable, leading to erratic behavior. Over
time, platform configuration Di (competition) affects platform perfor-
mance bifurcations when competition increases. Platform network
effects Di determine the platform configuration-specific states along
the platform performance function f ðAeff ;Neff Þ. Fig. 4 shows that Aeff <

Ac always indicates two states of equilibrium: stable and unstable ðZ

and XÞ. When Aeff >Ac , the system exhibits chaotic behavior.

Fig. 4. Influence of competition configurations on the platform bifurcation points with different competition strengths.
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The results in Fig. 4 were obtained from nine configurations vary-
ing with competition strength values ( beff ). The results were then
divided into three categories based on clarity and precision (higher,
average, and lower threshold values, Ac). The configurations with
higher threshold values are Configurations 15−17, with Ac equal to
12.04, 12.62, and 16.39, respectively. The configurations with the
average threshold values are configurations 18−20, with Ac equal to
6.81, 7.39, and 5.65, respectively. Moreover, the configurations with
lower threshold values are 2−123, with Ac equal to 2.75, 1.55, and
0.43, respectively.

The results in Fig. 4 show that the system’s behavior is asymptoti-
cally bifurcated at varying critical transitions of the competitive effect
strength. These results reveal that configuration 23 is asymptotically
bifurcated and has the strongest network effect ( Beff asymptote) Ac

¼ 0:43 at stable state Z; in the range 0�bc <9:02; followed by config-
urations 22 and 21, with the threshold values regime 0�bc <1:55
and Beff equal to 2.1 and 3. This result indicates that configuration 23
performs well within the platform ecosystem’s competition regime
at Nc�4:6. Since the configurations have a high tendency to with-
stand any shock or perturbation at these critical transitions, this
result implies that the platforms will yield high performance over
time when there is less competition.

As a case study, we explore Microsoft Windows’s performance
evolution during periods of less intense competition, from 1990 to
2005 and from 2005 to 2015. The windows show stability and opti-
mized performance in a less competitive landscape. This platform
adds user-centric features by reducing competition. In response to
renewed competition in 2015−2022, Microsoft adapted by intro-
ducing Windows 10, emphasizing modernization and innovation.
This case highlights the platform’s ability to optimize stability
and adjust to changing dynamics when faced with renewed com-
petition.

Both platforms experience disruptive behavior when the value of
competitive strength is high. This result implies that the configura-
tion is asymptotically stable at the minimal interaction strength and,
thus, the most robust configuration. The lowest competitive strength
results in high resiliency. Configuration 17 exhibits a higher thresh-
old competition value; it is the least resiliency platform ecosystem at
a stable state H within the interval 0�Ac <30. The results show that
when Ac�30; the platformmay undergo total collapse. This result fur-
ther confirms that the increased degree of competition increases the
value of Ac asymptote, thus making the system struggle much longer
and reaching a large threshold to attain a stable state. For instance,
the intense competition between the ride-hailing giants Uber and
Lyft has negatively affected the platform ecosystem, leading to a frag-
mented and divergent user experience. Uber and Lyft have emerged
as the primary players in the ride-hailing industry, competing fiercely
to capture market shares. The ensuing competition has affected their
strategies, pricing models, and overall ecosystem development. The
case of Uber and Lyft highlights the negative effects of competition
on platform ecosystem bifurcation in the ride-hailing industry.
Intense competition erodes driver earnings and fragments user expe-
rience, particularly in price wars. This case underscores the impor-
tance of strategic competition to avoid negative consequences for
drivers and riders within a ride-hailing ecosystem. The remaining
configurations are bifurcated at different critical transitions depend-
ing on the degree of competition strength changes, as summarized in
Table S4 (supplementary information).

Influence of competition configuration on platform tipping point location

The term tipping point in platform ecosystem management refers
to the point at which a platform reaches a critical threshold of
change, beyond which a significant and often irreversible shift occurs.
In other words, it is the point at which a slight change in the platform
can disproportionately impact the entire system. Identifying and

understanding tipping points is essential for predicting and mitigat-
ing potential risks and impacts in various systems and processes.

We utilized the MATLAB software tool to execute the tipping-
point function in Equation (12) for the cross-network effect configu-
ration. This study examines the impact of competition on the tipping
point of platform ecosystem performance. The study’s findings dem-
onstrate the influence of competition on platform performance. At
beff >0, the system experiences a collapse when the level of competi-
tion increases. The platform experiences a loss of stability to the point
of no return bC ; as depicted in Fig. 3. This dynamic critical transition
occurs when the system bifurcates at a specific point where the stable
state (no shadow) meets the unstable state (shadow area), namely,
the tipping point P(Fig. 5). At this threshold, the system exhibits
erratic behavior (the platform performance collapses).

Fig. 5 shows the tipping points of configurations 1−14. This result
demonstrates the effect of competition on platform performance tip-
ping points. The platform exhibits a high tolerance at higher values of
network effect configurations. Conversely, the impact of competition
is not significant at extreme values, resulting in the tipping points
being situated at greater values than in previous configurations. The
cross-network effect configurations significantly influence tipping
point locations. These findings further reveal that configuration 12
experiences the highest tipping point location with bc ¼ 47:29%
when Aeff ¼ 9:02; followed by configurations 10 and 13, with bc ¼

41:38% when Aeff ¼ 6:6. When Aeff ¼ 0, at configuration 6, the plat-
form ecosystem experiences a tipping point value bc ¼12.36% when
no interaction strength or network effect exists. Some negative net-
work effects affect the platform ecosystem’s tipping points. Configu-
rations 4 and 7−9 yield threshold values bc of 26.09, 23.61, 11.4, and
10.39, respectively.

By curating the configurations of all the characteristics, we
obtained the platform tipping point location, with a value of bc ¼

47:29% as an average tipping point of the platform; at this threshold
value, the platform may thrive and perform well in the ecosystem.
This result implies that the highest-performing ecosystem is configu-
ration 12, and the least-performing platform is configuration 9. These
findings indicate that performance tends to decrease across all plat-
form system configurations as competition intensifies. Conversely,
performance improves when the competition subsides, as shown in
Fig. 5.

Influence of the competition configuration on the platform ecosystem

performance

The impact of competition configuration and the competition
interaction strength of price, feedback, and governance modes on
platform ecosystem performance is examined in Fig. 6. The various
values of the configurations are listed in Table S2 (supplementary

information), and the relevant critical transition values are summa-
rized in Tables S3 and S4 (supplementary information). When compe-
tition exists, the ecosystem’s value can decrease due to
fragmentation and price or cost increases for participants (Boudreau
& Jeppesen, 2015); as a result, the platform experiences different
operational performances. In addition, competition can affect the
level of participation and investment in each group of characteristics,
affecting the value created by the platform ecosystem (Rochet & Tir-
ole, 2004).

Fig. 6 depicts the variation in configurations under the effect of
competition extending from various characteristics indicated as con-
figurations. Configuration 23, with a competition strength of 0.012 %,
achieves a high performance of 14.8 billion dollars, followed by con-
figuration 22, with a competition strength of 0.021 %, yielding 14 bil-
lion dollars. In configuration 22, the results show that a slight
increase in competition leads to a decrease in performance, as indi-
cated by the blue-crossed line in Fig. 6. The results consistently show
that as competition strength increases, platform performance
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decreases (as shown in configurations 15−22). Competition strength
varies in configurations 15−21, with beff of 0.21 %, 0.201 %, 0.3 %,
0.12 %, 0.111 %, 0.102 %, and 0.03 %, respectively. Performance also
decreases in varying order from 14.8 billion dollars to less than a bil-
lion dollars, as shown in Fig. 6. In configuration 17, labeled gold, we
observe a drastic decrease in system performance when the

competition value is 0.3 %. The performance is at 0.86 billion dollars,
yielding a persistent reduction over time, causing a collapse.

The results show that competition is a catalyst for examining or
predicting a platform ecosystem’s performance. It is vital to deter-
mine the level at which the platform can improve its performance or
collapse. As competition strength increases, the platform’s

Fig. 6. Influence of the competition configuration on the platform ecosystem performance (billion dollars).

Fig. 5. Effect of competition on the platform performance tipping point.
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performance decreases, and the platform yields higher performance
as competition strength decreases.

Influence of the cross-network effect configuration on the platform

ecosystem performance

Fig. 7 shows the platform performance in the 14 configurations
under the influence of the cross-network effect. The results reveal
that an increase in network effects is generally perceived as a catalyst
that facilitates performance increases in the platform ecosystem. The
results are related to real case studies, as discussed in Section 5, and
indicate the significant influence of the cross-network effect on plat-
form performance. It is further argued that the various configurations
generate different performance levels, as shown in Fig. 7. Moreover,
we observe a variation in the configuration over time under the
mediation of cross-network effects. Configuration 9 (red line) experi-
ences the lowest platform performance, declining at Neff = $0.03b
and then collapsing, with a negative interaction strength of �7.51 %.
A positive network effect affects the platform’s performance. The
greater the network effect, the higher the performance, and the lower
the network effect, the lower the performance. Thus, platform perfor-
mance initially grows on a very small scale and then collapses over
time.

The results show a high network effect Aeff ¼ 9:02% for configura-
tion 12, which has the leading performing configuration, with Neff of
$112 billion, followed by configurations 11 and 13, with a network
effect of 6.6 % and Neff of $73.29 billion. As the network effect
increases by a small margin of 6.6 % to 9.02 %, performance increases
drastically from $73.29 billion to $112 billion. This result confirms
that one primary reason a platform such as Tinder is a great success
is its ability to create a positive network effect. Tinder’s match-mak-
ing capabilities are a critical factor in its success and have contributed
to its market value. In 2021, Match Group, which owns Tinder,
reported a revenue of $2.4 billion, 17 % increase compared with the
previous year. The company’s market value also increased signifi-
cantly, with the Match Group’s stock price rising by over 300 % since
its initial public offering (IPO) in 2015. Tinder’s network effect,
through its match-making algorithm, significantly affects its success
and platform performance. Through its ability to match all users
swiftly, this positive network effect has helped Tinder grow rapidly,
with over 66 million active users by 2020.

Furthermore, in Configuration 1, at a network interaction strength
effect of Aeff ¼ 1:31%; the system performance yields $4.8 billion.

This result implies that the configuration of the network effect has a
highly significant impact on the platform performance. Similarly, the
results relate to an article by Forbes highlighting Airbnb’s success,
which states that the success of Airbnb’s homing mode network
effect strategy is reflected in its platform performance. Since its
launch in 2008, Airbnb has grown rapidly, with over 4 million hosts
and 800 million guest arrivals as of 2021. Hence, Airbnb’s valuation
grew rapidly, from $1.3 billion in 2011 to over $100 billion in 2021
(Statista Research Department, 2022).

Discussion

As shown by the configurations mentioned above, some plat-
forms yield negative cross-networks that affect the tipping point
(Fig. 5). As more users join the platform or complementary products
or services become available, the platform can experience a negative
cross-network effect, decreasing platform value (Rochet & Tirole,
2004). For example, suppose that a messaging app becomes
crowded with users. In this scenario, it might be challenging to
identify essential messages, decreasing the platform’s value. The
simulation results in Fig. 3 show that configurations 4, 7, and 9 yield
a negative cross-network effect that affects their bifurcation point.
The higher the negative cross-network effect, the lower the plat-
form performance. Recent case studies support these simulation
results. In the early 2000s, MySpace was the dominant social net-
working platform, with millions of users and a thriving ecosystem
of third-party apps and services.

However, Facebook was launched in 2004 and slowly chipped
away from MySpace’s user base. One key factor contributing to Face-
book’s success was the negative cross-network effect experienced by
MySpace. As spam, fake profiles, and low-quality content flooded
MySpace, it became increasingly difficult for users to find and con-
nect with people they knew and cared about. This result explains
why, in the proposed characteristics, we state information as part of
the interaction mode needed to evaluate platform performance (Eq.
(9)). The phenomena mentioned above led to a decline in engage-
ment as users spent less time on the platform and began to look for
alternatives. Ultimately, MySpace was acquired by News Corp in
2005; however, its relevance and user engagement continued to
decline. In contrast, Facebook has become one of the world’s most
successful and dominant platforms, with approximately 2.7 billion
monthly active users as of 2021, owing to its positive network effect,
as shown in Fig. 7.

Fig. 7. Influence of the cross-network effect configuration on the platform ecosystem performance.
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Concerning positive network effects, Figs. 3 and 4 reveal that a
higher cross-network effect corresponds to a higher threshold value
and, hence, enhanced performance. Configuration 12, with high net-
work values, yields higher performance, and this maps to a case study
on the Alibaba platform tipping point by Gao et al. (2021). Their study
examines the tipping phenomenon and network effects on Alibaba’s
e-commerce platforms. The authors found that platform tipping
played a significant role in the growth of Tmall.com and that network
effects were the key drivers of this tipping, as shown in Fig. 5. Specifi-
cally, the authors showed that, as the number of Tmall.com users
increased, the platform became more attractive to merchants and
consumers, leading to a virtuous growth cycle. The authors also
found evidence of the "superstar" effect, in which a few top-perform-
ing merchants accounted for a disproportionate share of sales on the
platform.

Moreover, our results are consistent with those of Cennamo and
Santalo (2013). They posit that the configuration of competition char-
acteristics within a platform ecosystem significantly affects bifurca-
tion performance, as illustrated in Fig. 4. Case studies substantiate
their arguments. As previously mentioned, it is worth noting that
platform governance and pricing can influence competition among
platforms, thus affecting bifurcation performance. For instance, Apple
continued to dominate with premium pricing and a closed ecosys-
tem, whereas Google struggled to gain market share. At the lower
end, Android dominated with its wide range of affordable devices,
whereas Apple struggled to compete. Again, in 2011, Uber and Lyft
together had a market share of more than 99 %, while in 2020, as
competition increased, the top four riding platforms (Uber, Lyft, Bird,
and Lime) had a combined market share of 99 %, squeezing Uber and
Lyft’s market share, in line with our results in Fig. 6.

Another case study that supports our results is the case of Pinduo-
Duo pricing (Eq. (6)), which impacts Alibaba’s bifurcation perfor-
mance. Pinduoduo allows users to purchase products in groups at
discounted prices. The platform quickly gained popularity in China,
particularly in smaller cities and rural areas, and began to compete
directly with Alibaba’s flagship platform, Taobao. Pinduoduo’s user
base has grown, drawing customers away from Taobao and other Ali-
baba-owned platforms. In response, Alibaba launched its social e-
commerce platform Taoxiaopu to erode PinduoDuo’s market share.
However, this move was unsuccessful, and Alibaba eventually shut
down Taoxiaopu. The emergence of PinduoDuo as a major competitor
highlighted the importance of the platform bifurcation point for Ali-
baba, as the company was forced to adapt to changing market condi-
tions to remain competitive, as shown in Fig. 4.

Our findings indicate that platform characteristics have important
implications for both platform operators and policymakers. Platform
operators must understand the existence and timing of tipping
points, which can help them make strategic decisions regarding plat-
form growth and expansion investments. Concerning policymakers,
our study provides insights into the potential for cross-network
effects to create barriers to entry and reduce competition in online
marketplaces to boost platform performance. The study’s results
highlight the importance of understanding the dynamics of competi-
tion and network effects in complex systems and the potential for
small changes in the configuration of platform characteristics to sig-
nificantly affect platform performance.

Conclusion and future research

Conclusion

This study demonstrates that the configuration of platform eco-
system characteristics influences platform bifurcation performance
through mutualism. However, the relationship between platform
ecosystems and their performance bifurcation characteristics has not
been thoroughly investigated. This study is novel in subjecting the

results to rigorous testing from various perspectives, bolstering its
validity and robustness. A platform ecosystem is more likely to hit a
point of no return when platforms are not tightly interconnected
(fragile configuration structures). This study is the first to develop a
network model to examine the platform ecosystem bifurcation per-
formance. However, it aligns with prior research emphasizing the
importance of network effects, platform governance, match-making,
pricing, feedback, and platform homing modes in shaping platform
performance. The confirmation of these attributes as crucial determi-
nants resonates with seminal works by Van Alstyne et al. (2016),
which provide a robust foundation for understanding platform eco-
system dynamics. A positive cross-network characteristic configura-
tion significantly enhances the platform ecosystem’s performance,
consistent with Saadatmand et al. (2019). This study reveals that con-
figuration 12, characterized by a threshold value bc ¼ 47:29 and a
high interaction strength of Aeff ¼ 9:02, demonstrates the greatest
robustness, maintaining a solitary, stable condition. Configurations
10 and 13 also exhibit strong performances within specific interac-
tion strength regimes. Conversely, configurations 6, 8, and 9 are iden-
tified as the most vulnerable, with a single stable state H observed at
0�bc <12:36. Notably, these results suggest that a total collapse of
the platform is likely when bc�12:36, indicating that platforms
exhibit high performance as the interaction strength increases.

The study’s findings indicate that increased competition brings
the platform to a critical point of no return, negatively affecting its
overall performance. This result aligns with Bakos and Halaburda
(2020), who contend that in a platform market in which both sides
engage in multihoming, strategic interdependence between the two
sides may decrease or vanish. Configurations 22 and 21 follow closely
with threshold values within the range 0�bc <1:55 and beff of 2.1
and 3, respectively. Configuration 23, within the competition regime,
demonstrates a strong likelihood of performing well in the platform
ecosystem at Nc�4:6. Conversely, configuration 17, with a higher
threshold competition value, is identified as the least resilient plat-
form ecosystem at a stable state H within the interval 0�Ac <30.
Notably, these results suggest that the platform is prone to total col-
lapse when Ac�30. This result aligns with Guo et al. (2022), suggest-
ing that increased competition may lead to market fragmentation. In
contrast, Huang et al. (2023) advocate for government promotion of
competition between platforms and the taxi industry, a perspective
we disagree with.

Our research provides valuable insights into the dynamics of plat-
form ecosystems and their impact on evolution. Hence, it has the
potential to guide managers in identifying the pivotal elements influ-
encing the success or failure of a platform ecosystem. The insights
gained by analyzing the role of platform ecosystem configurations in
performance bifurcation can also positively impact industries and
entrepreneurs. The knowledge of robust configurations fosters inno-
vation and growth, potentially attracting investments and promoting
economic sustainability. Conversely, awareness of vulnerable config-
urations allows proactive measures to prevent potential economic
downturns and safeguard the interests of businesses and individuals
reliant on platform ecosystems. This understanding may contribute
to the overall stability and resilience of the business landscape,
thereby benefiting society (Wenqi et al., 2022).

Managers can devise strategies for developing robust platform
ecosystems when they possess knowledge of the principal drivers
and characteristic configurations. Furthermore, our model, rooted in
the Lotka-Volterra complex system theory, integrates bifurcation and
tipping-point analyses, shedding light on regulatory and policymak-
ing strategies. The findings of this study contribute to the academic
understanding of platform ecosystems by highlighting the configura-
tions that lead to robust performance outcomes. These insights can
guide future research and encourage scholars to delve deeper into
the mechanisms influencing platform stability and collapse. Addi-
tionally, this study underscores the importance of considering robust
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and vulnerable configurations to provide a foundation for developing
more nuanced theories and models in platform ecosystem research.
It identifies circumstances that foster strong performance and condi-
tions that trigger tipping points, improves the understanding of eco-
system evolution, and encourages managers to craft robust
configuration structures for optimal platform performance.

Future works

This study captures essential platform ecosystem characteristics.
However, there is scope for capturing and configuring other charac-
teristics. Future research should be conducted using more empirical
data for depth verification. Second, future research should examine
the role of platform characteristics in configuring market value.
Finally, exploring the key features capable of causing platform eco-
systems to collapse is essential and may be a subject of future investi-
gation.
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