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Abstract Developing a novel drug is a complex, risky, expensive and time-consuming venture.
It is estimated that the conventional drug discovery process ending with a new medicine ready
for the market can take up to 15 years and more than a billion USD. Fortunately, this sce-
nario has recently changed with the arrival of new approaches. Many novel technologies and
methodologies have been developed to increase the efficiency of the drug discovery process,
and computational methodologies have become a crucial component of many drug discovery
programs. From hit identification to lead optimization, techniques such as ligand- or structure-
based virtual screening are widely used in many discovery efforts. It is the case for designing
potential anticancer drugs and drug candidates, where these computational approaches have
had a major impact over the years and have provided fruitful insights into the field of cancer. In
this paper, we review the concept of rational design presenting some of the most representa-
tive examples of molecules identified by means of it. Key principles are illustrated through case
studies including specifically successful achievements in the field of anticancer drug design to
demonstrate that research advances, with the aid of in silico drug design, have the potential
to create novel anticancer drugs.
© 2016 Hospital Infantil de México Federico Gómez. Published by Masson Doyma México S.A.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Aplicación de métodos computacionales para el descubrimiento, diseño

y optimización de fármacos contra el cáncer

Resumen El desarrollo de un nuevo fármaco es un proceso complejo y arriesgado que requiere
una enorme cantidad de tiempo y dinero. Se estima que el proceso estándar para producir un
nuevo fármaco, desde su descubrimiento hasta que acaba en el mercado, puede tardar hasta

∗ Corresponding author.
E-mail address: lmoreno@himfg.edu.mx (L.M. Moreno-Vargas).

http://dx.doi.org/10.1016/j.bmhimx.2016.10.006
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15  años  y  tener  un  costo  de  mil  millones  de dólares  (USD).  Por  fortuna,  este  escenario  ha
cambiado recientemente  con  la  llegada  de nuevas  tecnologías  y  metodologías.  Entre  ellas,  los
métodos computacionales  se  han  convertido  en  un componente  determinante  en  muchos  pro-
gramas de  descubrimiento  de fármacos.  En  un  esfuerzo  por  incrementar  las  posibilidades  de
encontrar nuevas  moléculas  con  potencial  farmacológico,  se  utilizan  técnicas  como  el  cribado
virtual  de  quimiotecas  construidas  con  base  en  ligandos  o  estructuras  para  la  identificación
de hits  y  hasta  para  la  optimización  de  compuestos  líder.  En  lo que  respecta  al  diseño  y
descubrimiento  de  nuevos  candidatos  a  fármacos  contra  el cáncer,  estos  enfoques  tienen,  a
la fecha,  un  impacto  importante  y  aportan  nuevas  posibilidades  terapéuticas.  En  este  artículo
se revisa  el  concepto  del  diseño  racional  de moléculas  con  potencial  farmacológico,  ilustrando
los principios  clave  con  algunos  de  los  ejemplos  más representativos  y  exitosos  de moléculas
identificadas mediante  estas  aproximaciones.  Se  incluyen  casos  desarrollados  en  el campo  del
diseño de  fármacos  contra  el cáncer  con  la  finalidad  de  mostrar  cómo,  con  la  ayuda  del diseño
asistido por  computadora,  se  pueden  generar  nuevos  fármacos  que  den  esperanza  a  millones
de pacientes.
©  2016  Hospital  Infantil  de México  Federico  Gómez.  Publicado  por  Masson  Doyma  México  S.A.
Este es un art́ıculo  Open  Access  bajo  la  licencia  CC  BY-NC-ND  (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

The  Nobel  Prize  in  Physiology  or  Medicine  1945  was  awarded
jointly  to  Ernst  Boris  Chain,  Sir Howard  Walter  Florey  and
Sir  Alexander  Fleming  for the mass  production  of  penicillin
discovered  by  the  latter  almost  two  decades  before.  At  that
time,  the  average  life  expectancy  at birth in Mexico  was
about  45  years.1 Currently,  life  expectancy  for newborns  is
around  75  years.  This  increase  can  be  explained  by many
factors,  including  the significant  amount  of  medication  that
physicians  prescribe  today  to  extend  the life  of  a patient.

Most  of the  effects  of  medicines  are  based  on  the  inter-
action  between  therapeutic  chemical  compounds  (drugs)
and  proteins  (targets),  such  as  G-protein-coupled  receptors,
ion  channels,  proteases,  kinases  or  nuclear  hormone  recep-
tors,  among  others.  Therefore,  we  might wonder  how  many
new  drugs  are  still  to  be  discovered  by  researchers.  The
answer  would  be  almost  an  ‘unlimited’  quantity.  The  num-
ber of  potential  targets  remains  unclear.  However,  recent
estimates  claim  that  the  number  of  current  targets  is  over
an  order  of  magnitude  lower  than  it could  be.2,3 On the
other  hand,  the  number  of  organic  molecules  that  can  act
as  drugs  is also  a  matter  of debate.  More  than  100  million
small  chemical  compounds  have  been  already  synthesized
for their  screening  on  specific  targets  in public and  private
laboratories.4 In addition,  it  is  not  only  a matter  of  quantity
but  also  of  quality.  Until  recently,  medicines  have  been  dis-
covered  either  as  a result  of  unexpected  investigations----by
inspection  of  natural  substances  traditionally  considered  as
therapeutic----or  in  extensive  experimental  blind  screening
studies.5 These  drugs,  although  proven  to  be  useful  in the
treatment  of  several  pathologies,  have significant  down-
sides,  like  important  side  effects  or  low efficiency.  As  they
were  discovered,  not  designed,  new  drug  generations  have
to overcome  these  difficulties.

The  process  of discovery  and  development  of  novel  drugs
is  known  to be  time-consuming  and  expensive.  On aver-
age,  the  standard  process  of discovery  and  development
of  drugs  to  marketing  takes  from  10  to  15  years.  Further-
more,  the  average  cost  for research  and  development  of

each effective  drug is  estimated  at $1.8  billion  USD.6 In  this
context,  it is  not surprising  that the  development  of  new
strategies  over  the  last  decades  has  emerged  to  make  the
processes  much  more  rational  and  efficient  using  new  super-
computers  combined  with  the  knowledge  and  experience
of  researchers.  To this  day,  physicians,  biologists,  chemists,
physicists,  and computer  scientists  work,  hand in  hand,  with
the  goal  of offering  to  patients  better  and more  selective
drugs  to  improve  their  quality  of  life.  Nevertheless,  there  is
still  a long  way  to go  in the  field  of  drug  discovery,  or  should
we  say,  drug  design?

In  this article, we  first  introduce  the  concept  of
computer-aided  drug discovery  and  design  with  a  summary
of  the leading  computational  techniques  that  include  drug-
repositioning  approaches  and  lead  optimization  techniques.
In  the second  section,  we  describe  how  these approaches
have been  successfully  applied.  In  addition,  we  review  the
concept  of  rational  design  and present  some  of  the most rep-
resentative  examples  of molecules  identified  by  its  means.
Key  principles  are  illustrated  through  case  studies  explor-
ing  the  field  of  anticancer  drug  design  to  demonstrate  that
research  advances,  with  the  aid  of in  silico  drug  design,  have
the  potential  to  create  novel  anticancer  drugs.

2.  Computer-aided  drug  discovery and design

Since  the  advent  of the X-ray  diffraction  to  unveil the  chem-
ical  composition  and  three-dimensional  (3D)  geometry  of  a
small  organic  molecule  in  1932,7 a  large  number  of  proteins
have  been  solved  either  by  X-ray  or  by  nuclear  magnetic
resonance  (NMR)  spectroscopy  and are  available  at open
access  protein  databases  (http://www.rcsb.org).  This  infor-
mation  allows  researchers  to understand  and  characterize
many  physiological  processes  based  on  interactions  between
proteins  or  between  proteins  and  small  molecules  (ligands),
as  the case  of  the drug-target  binding.

In  1962,  Max  Perutz  and  John Kendrew  were  awarded  the
Nobel  Prize  in Chemistry  for  the  first  solved  high-resolution
structure  of  protein  (myoglobin).  Since then,  several  other
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studies  in  crystallography  determination  of  protein  struc-
ture  have  been  awarded  the  Nobel  Prize8 until  the recent
Nobel  Prize  in  Chemistry  2012,  which  was  awarded  jointly
to  Brian  Kobilka  and  Robert  Lefkowitz  for  the structural  and
functional  studies  on  G-protein-coupled  receptors  (GPCRs).

With  the  chemical  composition  and  3D  relative  position
of  each  atom  in a  target,  the quest  to  find  hit  molecules
that  could  potentially  act as  drugs  has evolved  consider-
ably:  from  a  blind  screening  process  that  hopes  for  finding
molecular  hits  essentially  by  serendipity  to an approach
often  called  ‘rational’  drug discovery  and design5. In  the
80’s,  this  was  the case  of  the  first  angiotensin-converting
enzyme  (ACE)  inhibitor  Capoten  (captopril),  the  first  drug
optimized  using  structural  information.  In 1997,  nelfinavir
mesylate  (Viracept)----an HIV  protease  inhibitor----was  the  first
drug  with  a  design  completely  driven  by  the structure  of
the  target  approved  for  the  US  market.9 These  discover-
ies  were  only  the  beginning  of  a  frantic  career  in  search
of  novel,  faster,  and  cheaper  methodologies,  and  computa-
tional  algorithms  and  techniques  to  develop  and  design  new
drugs.  Moreover,  to  sample  more  compounds  over  the  target
(screening  process)  in  less  time  and  to  acquire  a priori  key
knowledge  and  expertise  to  design  the  library  of  chemical
compounds  for  further  screening  in a more  precise  manner.

After  solving  protein  structures  at high  resolution,  the
relevant  revolution  came  when computational  models  based
on  simple  physical  laws  were  able  to  mimic  the  interactions
between  the  organic  molecules,  atom  by  atom.  Apart  from
the  3D  structure  of  a  molecule,  the electrostatic  charges
and  dipoles,  the  atoms’  van der  Waals  radii,  the parame-
ters  of  covalent  bonds,  torsions,  and  dihedral  angles  were
considered.  Researchers  today  can  approach  real  systems
by  using  virtual  or  in silico  experiments  with  the  support  of
computational  facilities,  such as  powerful  workstations  or
supercomputers.  This  advancement  has  been  the keystone,
which  has  paved  the way  for a more  rational  approach  to  the
query  of  efficient,  selective  and  fewer  side  effects drugs,
and  at  the  same time  making  the  process  cheaper  and less
time-consuming.

At  present,  with  these  technologies,  screening  more  com-
pounds  in  less  time  at a  lower  cost  is possible  (virtual
screening).  The  Computer-Aided  Drug  Discovery  and  Design
(CADDD)  era,  where  computer  simulations  of  chemical  sys-
tems  have  triggered  the possibilities  in this  field,  has  allowed
researchers  to make  in  silico  improvements.  Among  these
advances,  there  are  the resolution  of  3D  structures  using
computer  models,  the optimization  and design  of  new  com-
pounds,  and  the understanding  and  characterization  of the
atomic  mechanisms  of previous  drugs  or  natural  substances.
Furthermore,  breaking  the paradigm  of orthosteric  drugs
(drugs  binding  to the  target  at the  specific  active  site)  to
expand  the  search  of  therapeutic  molecules  to  allosteric
modulators  and bitopic  drugs.

The  impact  of  these methodologies,  as  well  as  the  science
development  in understanding  and  modeling  the all-atom
chemical  and  biochemical  processes  and  reactions  from  a
computational  and  physical  perspective,  has  recently  been
recognized  with  the Nobel  Prize  in Chemistry  (2013)  to  the
physicists  Martin  Karplus  and  Michael  Levitt together  with
the  chemist  Arieh  Warshel.

Currently,  many  technologies  have  been  developed  to
boost  the  efficiency  of  the drug discovery  process.  Since

its  emergence,  CADDD  has  experienced  a  rapid  increase
in  development,  to  which  many  different  research  groups
around  the world have made  significant  contributions.  It
has  also  emerged  to  harness  various  sources  of  information
to  facilitate  the development  of  new  drugs  that  modulate
the  behavior  of  therapeutically  interesting  protein  targets,
accelerating  the early-stage  pharmaceutical  research.  Rapid
developments  in  CADDD  technologies  have  provided  an  envi-
ronment  to  expedite  the  drug  discovery  process  by  enabling
huge  libraries  of compounds  to be screened  and synthesized
in  short  time  and  at  a very  low  cost. Today,  CADDD  is  a  widely
used  term  to represent  computational  tools and  sources
for  the  storage,  management,  analysis  and  modeling  of
compounds10 used  at almost  every  stage  of  a  drug-discovery
project,  from  lead  discovery,  optimization,  target  identifi-
cation  and validation,  to  even  preclinical  trials.11

3.  Ligand- and structure-based methods

Evidence  of  computational  drug design  success  in  the field
of  drug development  is  reflected  in  a  significant  number  of
new  drug entities  that  are currently  in clinical  evaluation.

Computational  drug  design  has emerged  to  harness  dif-
ferent  sources  of  information  to  facilitate  the  development
of  new  drugs  that modulate  the behavior  of  therapeu-
tically  interesting  protein  targets.  These  computational
approaches  are classified  mainly into  two  families:  ligand-
and  structure-based  methods.

Ligand-based  methods  use  the existing  knowledge  of
active  compounds  against  the  target  to  predict  new  chemi-
cal  entities  that  present  similar  behavior.12 Given  a  single
known  active  molecule,  a  library  of  molecules  may  be
used  to  derive  a pharmacophore  model  to  define  the mini-
mum  necessary  structural  characteristics  a  molecule  must
possess  in order  to  bind  to  the target  of  interest.  Com-
parison  of  the  active  molecule  against  the  library  is  often
performed  via  fingerprint-based  similarity  searching,  where
the  molecules  are  represented  as  bit  strings,  indicating  the
presence/absence  of  predefined  structural  descriptors.13

In  contrast,  structure-based  methods  rely  on target-
ing  structural  information  to  determine  whether  a  new
compound  is  likely  to  bind  and  interact  with  a  receptor.  One
of  the  advantages  of  the  structure-based  drug  design  method
is  that  no  prior  knowledge  of  active ligands  is  required.14

From  a drug  3D  structure  it is  possible  to  design  new  ligands
that  can  elicit  a  therapeutic  effect.  Therefore,  structure-
based  approaches  contribute  to  the development  of new
drugs  through  the discovery  and optimization  of  the  initial
lead  compound.

Currently,  the  combination  of ligand-  and structure-
based  methods  has  become  a  common  approach  in  virtual
screening  since  it has  been  hypothesized  that their  integra-
tion  can  enhance  the  strengths  and  reduce  the drawbacks
of  each  method.

In  this section,  some  of  the most  representative  compu-
tational  approaches  used  to  design,  optimize  and develop  a
new  drug  are described.  Although  there  are remarkable  dif-
ferences  among  them,  they  share  a  common  goal:  harvesting
potential  ligands  or  hits  with  the capability  to  bind  to the
target  from  an extensive  database  of  generic  small  chemical
compounds  (Figure  1).  To  achieve  this goal,  many  essential
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Figure  1  Workflow  for  hit  identification:  from  data  preparation  to  finding  new  leads.  (A)  Standard  in  silico  drug  design  cycle
consists of  docking,  scoring  and  ranking  initial  hits based  on their  steric  and  electrostatic  interactions  with  the  target  site,  which
is commonly  referred  to  as  virtual  screening.  Generally,  in the  absence  of  structural  information  of  a  receptor,  and when  one  or
more bioactive  compounds  are available,  ligand-based  virtual  prescreening  is  utilized.  This  prescreening  method  is carried  out  by
similarity search.  The  basic  principle  behind  similarity  searching  is  to  screen  databases  for  similar  compounds  with  the  backbone
of the  lead  molecule.  (B)  In  many  situations,  2D similarity  searches  of  databases  are  performed  using  chemical  information  from
the first  generation  hits.  (C)  One  alternative  approach  employs  a  ligand-based  pharmacophore  strategy  that  is often  partnered  with
structure-based  docking  that  uses  a  more  stringent  scoring  matrix  to  determine  the relative  score  made  by  matching  two  characters
in a  sequence  alignment.  This  enhances  the  enrichment  of  initial  hits  and  identifies  the  best compounds  for  computational  evaluation,
which are  the  second  generation  hits.  (D)  In  the  second  phase,  the  molecular  interactions  between  the  target  and  the hits  often
identify ligand-based  sites  for  optimizing  these  metrics  for  a  unique  molecular  chemotype.  (E)  Computer  algorithms,  compounds
or fragments  of  compounds  from  a  database  are  positioned  into  a  selected  region  of  the  structure  (docking).  These  compounds  are
scored  and  ranked  based  on their  steric  and  electrostatic  interactions  with  the  target  site.  (F)  Structure  determination  of  the  target
in complex  with  a  promising  lead  from  the  first  cycle  reveals  sites  on the  compound  that  can  be optimized  to  increase  potency.

steps  and  decisions  have to  be  made  in order  to  eliminate
from  irrelevant  compounds  at the  beginning,  to end  up  with
those  that  show  better  potential  activity  or  have  side  effects
and  show  interaction  with  other  drugs. This  process  per-
formed  with  the assistance  of computational  algorithms  is
called  virtual  screening.

3.1. Ligand-based  methods

Lately,  pharmacophore  approaches  have  become  a quite
important  tool  in drug  discovery  due  to  the absence  of
3D  structures  of  potential  targets.  Methods  such  as  Phar-
macophore  Modeling  and Quantitative  Structure-Activity
Relationship  (QSAR) can  give  useful insights  into  the  nature
of  target-ligand  interactions,  which  in consequence  result
in  predictive  models  that can  be  suitable  for lead  discovery
and  optimization.15

Ligand-based  designing  approaches  rely  on  the
knowledge  of  the  structure  of  active  ligands  that  interact
with  the  target  of  interest  to  predict  new  chemical  entities

with similar  behavior.  The  argument  to  justify  the success
of  a  new  drug  design  is  based on  the features  of pre-
existing  ligands,  a  concept  known  as  molecular  similarity;
compounds  with  high  structural  similarity  are more  likely
to  have similar  activity  profiles.12 This  methodology  is
considered  an indirect  approach  to  drug  discovery,  and it is
usually  used  when the  3D  structure  of the  target  is  unknown
or  cannot  be predicted.

There  are several  ways  to  use  a known  active molecule
or  a set  of  them as  a  key  pattern  to  screen  a  small
molecule  library.  The  first  and simplest  approach  is  the
use  of  molecular  descriptors  or features.13 Physicochemi-
cal  properties,  such as  molecular  weight,  volume,  geometry,
surface  areas,  atom types,  dipole  moment,  polarizabil-
ity,  molar  refractivity,  octanol-water  partition  coefficient
(log  P),  planar  structures,  electronegativity,  or  solvation
properties----obtained  from  experimental  measurements  or
theoretical  models----are  used as  descriptors  to  compare  the
reference  molecule  or  set  of  molecules  with  a  large  library
of  compounds  at a  very  low cost.  This  task  can  be  done
efficiently  using  a symbolic  representation  of  the molecule.
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These  descriptors  are  encoded  as  bit  strings  indicating  the
presence  or  absence  of  the  predefined  properties,  or  can
be  further  classified  according  to  the different  types  of
molecular  representation:  constitutional  descriptors,  count
descriptors,  list  of  structural  fragments,  fingerprints,  graph
invariants,  quantum-chemical  descriptors,  and surface  and
volume  descriptors.16

Another  ligand-based  approach,  which  is  more  precise
than  molecular  descriptors,  is  the  use  of a pharmacophore
modeled  with  ligands  (ligand-based  pharmacophore  mod-
eling).  Given  the  set of  known  active  compounds  as  a
reference,  the  next  step to  the  use  of  molecular  descriptors
is  the  addition  of  the 2D  or  3D  structure  of  these  molecules
to build  what  is  called  a  pharmacophore  model.

According  to  the International  Union  of  Pure  and Applied
Chemistry  (IUPAC),  a pharmacophore  is  defined  as  ‘‘the
ensemble  of  steric  and  electronic  features  that is  neces-
sary  to  ensure  the optimal  supramolecular  interactions  with
a  specific  biological  target,  and  to  trigger  (or block)  its
biological  response.’’17 Therefore,  structurally  overlapping
in  space  features,  such as  steric  interactions,  positively
and  negatively  charged  groups,  hydrogen  bond donors  and
acceptors,  or  hydrophobic  regions  and  aromatic  rings----a
pattern  (not  a molecule)  representing  the  most  probable
characteristics  and  their  geometrical  constraints  is  used  as  a
consensus  model  for  the  screening  of  small  molecule  library.
Those  new  compounds  show a  high  degree  of  complemen-
tarity  with  the  pharmacophore,  and are likely  to be active
against  the  protein  target  of  interest;  thus, they  require
a  detailed  and  more  fine  study.  This  approach  has  been
used  extensively  in de novo design,  virtual  screening,  lead
optimization  and  multitarget  drug  design,  becoming  a key
computational  strategy  for  facilitating  drug discovery  in the
absence  of  a  macromolecular  target  structure.18

QSAR  method  consists  of finding  a  simple  equation  that
can  be  used  to  calculate  some property  from  the  molecular
structure  of  a  compound.  In  QSAR  modeling,  the  predictors
include  physicochemical  properties  or  theoretical  molecular
descriptors  of chemicals.  As  a  result, a  simple  mathemat-
ical  relationship  is  established.  Applications  of  QSAR  can
be  extended  to  any  molecular  design  purpose,  including
prediction  of  different  kinds  of biological  activities,  lead
compound  optimization  and  prediction  of  new  structural
leads  in  drug  discovery.  The  process  of  building  a  QSAR
model  is similar,  apart  from  what  type  of  property  is  being
predicted.  It  consists  of several  steps,  which  lead  to the
design  of  new  compounds  with  the  desired  activity  profile.19

The  first  step  involves  the selection  of  a  training  set  of
compounds  with  their  experimental  activities  to build  a
QSAR  model.  Ideally,  each  of  these  activities  should  cover
the  range  of  possible  values  for  that  activity.  The  next  step
is  to  compute  descriptors  that contain  sufficient  relevant
information  about  the  biological  phenomenon.  Despite  the
initial  difficulty  to  predict  in advance  which  descriptor
variables  will  be  valuable  once  descriptors  have  been  calcu-
lated,  one  of  them  should  be  included  in  the  QSAR  model.
A  correlation  coefficient  gives  a  quantitative  measure  of
how  well  each  descriptor  describes  the activity.  Thus,  the
descriptor  with  the  highest  correlation  coefficient  can  be
picked.  Next,  data  analysis  is  needed  to  calculate  the  best
mathematical  expression  linking  together  the descriptors
and  biological  activities,  in which  information  relating  the

essential  features  of the  chemical  and  biological  data  struc-
ture  is  obtained.  In the final  step,  validation  and predictions
for  non-tested  compounds  will  take  place.  An  experimental
validation  of the  model  needs  to be done, for  example,  by
verifying  already  biologically  tested  compounds  (test-set).
If  the QSAR  predicts  within  acceptable  restrictions,  it
may  be used for  a  more  extensive  prediction  of  more
compounds.  Results  should  be interpreted  for  the proposal
and  design  of  new  compounds  with  the desired  activity
outline.

3.2.  Structure-based  methods

In  contrast  to  ligand-based  methods,  structure-based  meth-
ods  work  directly  with  the 3D  structure  of  a  macromolecular
target  or  a  macromolecule-ligand  complex.  Both  approaches
rely  on  structural  target  information  to  determine  whether
a  new  compound  is  likely  to  bind  with  high  affinity  in
the  region  where  the interaction  modifies  the behavior
of  the  protein  with  a following  therapeutic  effect.  In this
way,  the target  is  used  as a mold,  where  the interaction
with  any  of  the  small  molecules  in the chemical  library  is
computationally  simulated.  Subsequently,  only  those  that
showed  a  better  fit  in  the  binding  site  are  selected.

These  strategies  are often  used  to  improve  the effect
of  known  ligands  using  the  biochemical  information  of  the
ligand-receptor  interaction  in  order  to  postulate  ligand
refinements  with  small chemical  modifications.  If  the
information  regarding  the binding  site  exists,  the  steric  com-
plementarity  of the  ligand can be improved  to  increase  the
affinity  for its  receptor.  Indeed,  using the  crystal  structure
of  the complex,  specific regions  of  the ligand  that  fit poorly
within  the active  site  can  be  targeted,  and some  chemical
modifications  to  lower  the energetic  potential  by making  van
der  Waals  interactions  more  negative  may  be postulated,
improving  the complementarity  with  the  receptor.  In a sim-
ilar  fashion,  functional  groups  on  the ligand  can  be  changed
in  order  to  augment  electrostatic  complementarity  with  the
receptor.18

3.3.  Docking

If  the structure  of  the target  has  been  solved  at  high  reso-
lution  with  X-ray  or  NMR  and  the  molecular  model  of  the
binding  site is  precise  enough,  the  best  possible  starting
point  in a structure-based  drug design  is  the application
of  docking  algorithms.  Molecular  docking  is  a molecular
simulation  technique  widely  used  to  research  the  interac-
tion  between  the ligand  and  target.  The  docking  process  is
the  virtual  simulation  of the energetic  interaction  between
the  ligand  and  the target,  including  the prediction  of the
best  ligand  conformation  and  orientation  within  the binding
site.20

Docking  is  a method  that  predicts  the preferred  orien-
tation  of one  small  molecule  bound  to  a target,  forming
a  stable  complex.  It consists  of multiple  steps. The  pro-
cess  begins  with  the  application  of  docking  algorithms  that
pose  small  molecules  within  the active  site of  the tar-
get.  Algorithms  are complemented  by  scoring  functions  that
are  designed  to  predict  the biological  activity  through  the
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evaluation  of  interactions  between  compounds  and  poten-
tial  targets.  Early  scoring  functions  evaluate  compound
fits  based  on  calculations  of approximate  shape  and elec-
trostatic  complementarities.  Pre-selected  conformers  are
often  further  assessed  using  more  complex  scoring  schemes
with  a  more  detailed  treatment  of electrostatic  and  van
der  Waals  interactions,  and  the  inclusion  of  at  least  some
solvation  or  entropic  effects.21

Thus,  docking  programs  have  mainly  three  purposes.
First,  docking  programs  serve  to  identify  potential  ligands
from  a  library  of  chemical  compounds.  Second,  they  can  pre-
dict  the  binding  mode  of  potential  ligands  or  known  ligands.
Finally,  using  the predicted  binding  pose,  these programs
calculate  putative  binding  affinities  used as  a  score  to  iden-
tify  those  compounds  which  are  more  likely  to  bind  the drug
target.

Docking  programs  have  shown  to  be  successful  in
screening  large  chemical  libraries,  reducing  them  into  a
more  manageable  subset  that  is  enriched  for binders.  In
cases  of  true  interactions,  the predicted  ligand  pose  often
correlates  well  with  experimentally  solved  protein-ligand
complexes.  While  structure-based  methods  have  led  to  the
identification  of  novel  drugs,  binding  pose  prediction  is  con-
sidered  one  of its  strengths.22 Since molecular  docking  plays
a  central  role  in predicting  protein-ligand  interactions  it
has  been  extensively  used  for  drug hit  discovery  and  lead
optimization.19,20,23---34

3.4. Structure-based  pharmacophore  modeling

The  pharmacophore  definition  mentioned  above  is still  valid
to  be  applied  when  the information  available  to design
a  drug  is  the  structure  of  the  target.  The  protocol  of
structure-based  pharmacophore  modeling  involves  an  anal-
ysis  of  the  complementary  chemical  features  of  the  active
site  and  their  spatial  relationships,  and  a  subsequent  phar-
macophore  model  assembled  with  selected  features.  In this
case,  a  pharmacophore  can  be  defined  on  the  analysis  of
the target  binding  site  (macromolecule  (without  ligand)-
based)  or  based  on  a macromolecule-ligand-complex.  The
macromolecule-ligand-complex-based  approach  is conve-
nient  when  a  ligand  is  located  at  the  ligand-binding  site
of  a  macromolecular  target  and  the  key  interaction  points
between  ligands  and  macromolecule  need to  be deter-
mined.  Again,  with  the spatial  arrangement  of  properties
such  as  hydrogen  bond  acceptors  and  donors,  basic  or  acid
groups,  partial  charges,  or  aromatic  and aliphatic  hydropho-
bic  regions  in  the active  site,  a  virtual  3D  mold  can  be
defined  with  a much  lower  computational  complexity  than
the  target  described  at an all-atom  level.  This  fact  brings  up
the  possibility  to  perform  a virtual  screening  with  a pharma-
cophore,  doing  a  search  over large  libraries  of  compounds
feasible  at  a reasonable  cost  and  time.

Structure-based  pharmacophore  modeling  has  been
extensively  used for drug hit  discovery  and  applied  in  the
identification  of  novel  ligands  using  a  database  searching
approach.35 Twenty-seven  homology  models  for  19  trans-
porters  and 38  predictive  pharmacophore  models  from
15  drug  transporters  have  been  generated  and published  to
date,  yet  only  a few  models  (i.e.,  hPEPT1,  P-gp, DAT,  BCRP,
and  MRP1).36

4. Integrated methods

Recently,  there  has  been  a  trend  towards  integrating  both
structure-  and  ligand-based  methods,  which  use  informa-
tion  on  the structure  of  the  protein  or  the  biological  and
physicochemical  properties  of bound  ligands,  respectively.
The  aim  is to  enhance  the reliability  of  computer-aided
drug  design  approaches  by  combining  relevant  information
from  the ligand  and  the protein.  At  the simplest,  building
a  3D  pharmacophore  to  find  potential  ligands  and  per-
forming  further  docking  studies  on  the target  constitutes  a
combined  approach.  These  integrated  approaches  fall  into
two  classes:  interaction-based  and docking  similarity-based
methods.  Interaction-based  methods  focus  on  identifying
the  key  interactions  between  the protein  and  ligand  using
available  physicochemical  data.  These  interactions  are  then
used  to screen  small molecule  libraries  for  compounds  capa-
ble  of  producing  such an interaction  profile.  In  contrast,
docking  similarity-based  methods  merge  structure-based
docking  methods  with  ligand  similarity  methods.  With  these
combinations,  virtual  screening  becomes  very  efficient  and
allows  exploring  libraries  of  up  to  106 small  molecules.37---41

5. Virtual screening

Before  having  the  computational  resources  and  tech-
niques  to  perform  a  computational  or  rational  drug design,
researchers  had  to  repeat  an exasperating  number  of  trial-
and-error  procedures  against the  targeted  protein  in  their
laboratories  to  test  some  hundreds  of  compounds  available
in  chemical  libraries.  Many  times,  this  challenge  was  only
affordable  for  big  pharmaceutical  companies  and institu-
tions,  being  a matter  of  luck,  expertise  or  intuition  for
the  rest  of laboratories.  The  number  of  possible  chemi-
cal  compounds  in  an exhaustive  search  should  be around
106.  Moreover,  this  amount  of  small molecules  can  only  be
tested  and  filtered  through  in silico  or  virtual  screening
(VS)  with  the use  of  powerful  computers.  The  process
of  virtual  screening  consists  of  selecting  compounds  from
large  databases  by  using  computational  tools  rather  than
physically  screening  them.  Through  this process,  active
compounds  that  could  modulate  a particular  biomolecu-
lar  pathway  can  be  rapidly  identified.  The  relevance  of
this  technique  is that the  cost/benefit  ratio justifies  the
presence  of  this approach  in  almost  any  drug  design  and
development  project,  even  though  the number  of  different
algorithms  and  strategies  for  successful  virtual  screening  is
a  matter  of  constant  debate  and depends  on  the  nature  of
the  project.

Virtual  screening  offers many  advantages  over phys-
ical  screening.  It is  significantly  less  resource-intensive
and faster.  In  addition,  even  compounds  that  are  not
yet  available  can  be first  evaluated  by  virtual  screening,
and if they  are found  promising,  they  can  be bought
or  synthesized.  Thus,  millions  of  compounds  can  be  ana-
lyzed  by  virtual  screening.  However,  it is  important  to
keep  in mind  that  virtual  screening  is  still  a  relatively
coarse  filter,  which  particularly  considers  structure-based
screening  because  the prediction  of  binding  affinities
remains  one  of  the holy grails  of computational  chemistry.42
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Nevertheless,  several  successful  examples  have  been  pub-
lished  and  recently  reviewed.43

6. Successful applications of  computational
drug  discovery and  design

Rapid  developments  in  CADDD  technologies  and methodolo-
gies  have  provided  an environment  to expedite  the  drug
discovery  process  by  enabling  huge  libraries  of  compounds  to
be  screened  and  synthesized  in short  time  and  at a low  cost.
In  the  last  years,  numerous  projects  in  the  search  for  new  or
optimized  drugs  have  successfully  applied  these  approaches.
To  illustrate  the  relevance  of  the  applications,  some of them
regarding  in  silico  target  prediction,  hits  identification  or
leads  optimization  are  reviewed.

6.1.  In  silico  target prediction

In  the  Spring  of  2003,  a  severe  acute  respiratory  syndrome
(SARS)  outbreak  occurred  in  China.  Chen  et  al.  identified  by
docking-based  VS that an old  drug,  cinanserin,  a  serotonin
antagonist,  was  a  potential  inhibitor  of  the  3C-like  (3CL)
protease  of  SARS,44 which  is  important  in SARS  coronavirus
replicase  polyprotein  processing.  The  following  experimen-
tal  tests  showed  that  cinanserin  could  indeed  inhibit  3CL
protease  at  nontoxic  drug  concentrations  (IC50  =  5  mM),  and
has  the  potential  to  kill  the  SARS  virus.  The  authors  con-
cluded  that  because  it was  an old cheap  drug and  had an
established  safety  record,  cinanserin  could  be  used  as  an
emergency  treatment  or  for  stockpiling  for  future SARS  pan-
demics.

Fan  et  al.  conducted  another  case  study  of  in silico

target  prediction  in 2012.  These  authors  established  a  sys-
tem  biology  approach  by  combining  a human  reassembled
signaling  network  with  microarray  gene  expression  data  to
study  drug-target  interactions  and  provide  unique  insights
into  the  off-target  adverse  effects  for  torcetrapib.  The
results  suggested  that  platelet-derived  growth  factor  recep-
tor  (PDGFR),  interleukin-2  (IL-2),  hepatocyte  growth factor
receptor  (HGFR)  and  epidermal  growth  factor  receptor
(ErbB1)  tyrosine  kinase  were  highly  relevant  to  unfavorable
effects.45 Furthermore,  the  obtained  potential  off-targets  of
torcetrapib  were  identified  by  employing  the reverse  dock-
ing  strategy.

Another  case  study  included  fibroblast  growth factor
receptors  (FGFRs),  which  consist  of  an  extracellular  ligand
domain  composed  of a single  transmembrane  helix domain,
three  immunoglobulin-like  domains  and  an  intracellular
domain  with  tyrosine  kinase  activity  that  are  targets  for  the
treatment  of  various  human  cancers.  Chen  et  al.  used the
reverse  pharmacophore  mapping  approach  to  identify  tar-
get  candidates  for an active  compound  that  they  previously
synthesized  and showed  significant  in vitro  antiproliferative
effects.  In  silico  target  prediction  revealed  that  tyrosine
kinases  might  be  the  potential  targets  of  the represen-
tative  compound.  After following  structural  optimization,
the  structure-activity  relationship  (SAR)  analysis  aided by
molecular  docking  simulation  in the ATP-binding  site  demon-
strated  that  acenaphtho[1,2-b]pyrrole  carboxylic  acid  esters
are  potent  inhibitors  of  FGFR1  with  IC50  values  ranging  from

19 to  77  nM  exhibited  favorable  growth  inhibition  property
against  FGFR-expressing  cancer  cell  lines.46

6.2.  Cases  of lead  discovery  and  optimization

A  lead  compound  has the desired  activity  found  in a
screening  process,  but  its  activity  needs  to  be confirmed
upon  retesting.  For  lead  discovery,  docking  (a process  that
involves  the  prediction  of  ligand  conformation  and  orienta-
tion  within  a  targeted  binding  site)  is  one  of  the  most  widely
employed  techniques,  and it is  usually  embedded  in the
workflow  of  different  in  silico  approaches.  The  identification
of  small  molecules  and  the process  of  transforming  these
into  high-content  lead  series  are key  activities  in  modern
drug  discovery.

Three  compounds  of the most representative  examples  of
lead  discovery  and optimization  are zanamivir,  dorzolamide,
and  captopril.

Zanamivir  (Relenza®, Gilead  Sciences)  is  a neuraminidase
inhibitor  used  in  the treatment  and  prophylaxis  of  influenza
caused  by  influenza  A and  B viruses.  When  the structure
of  the  influenza  neuraminidase  protein  was  determined  by
X-ray  crystallography,  the  topology  of the active site was  elu-
cidated  allowing  for  the first  time  the design  of  an inhibitor
preventing  the virus  escaping  its  host  cell to infect  others.
This  achievement  was  accomplished  using  a  structure-based
drug  design  approach.  Various  sialic acid  analogs  were  devel-
oped,  aided  by  computer-assisted  modeling  of  the active
site.47

On  the other  hand,  dorzolamide  (Trusopt®, Merck),  a car-
bonic  anhydrase  inhibitor  and  an  anti-glaucoma  agent  that
decreases  the production  of  aqueous  humor,  was  the first
drug  in human  therapy  that  resulted  from  structure-based
drug  design  and  ab  initio  calculations.  To  achieve  the  design
of  dorzolamide  successfully,  the inclusion  of  two  concepts  in
the  project  was  crucial:  the prototype  compound  generates
two  enantiomers,  and  the active-site  cavity  is  amphiphilic.

Finally,  the design  of  the  antihypertensive  drug  cap-
topril  (Capoten®,  Bristol-Myers-Squibb)----an  angiotensin-
converting  enzyme  (ACE)  inhibitor  used for the  treatment  of
some  types  of congestive  heart  failure  and  hypertension----is
an  example  of the early  endeavors  and  successes  of
structure-based  and  ligand-based  drug  design.48 The  infor-
mation  necessary  for  the design  of  captopril  included  the
knowledge  that  the enzymatic  mechanism  of  ACE  was  simi-
lar  to  that  of  carboxypeptidase  A----with  the  difference  that
ACE  cleaves  off a dipeptide,  while  the  carboxypeptidase
A  cleaves  a single  amino  acid  residue from  the  carboxyl
end  of the  protein.49 Structure-activity  relationship  (SAR)
studies  were  critical  in  guiding  the  synthesis  of  captopril  4
(IC50  = 23  nM).50,51

7.  Successful applications in  cancer  drug
discovery

The  development  of  new anticancer  drugs  proves  to  be  a
very  elaborate,  costly  and  time-consuming  process.  CADDD
is  becoming  increasingly  important,  given  the advantage
that  much  less  investment  in  technology,  resources,  and
time  are required.  Due  to  the  dramatic  increase  of infor-
mation  available  on  genomics,  small molecules,  and protein
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structures,  computational  tools  are now  being  integrated  at
almost  every  stage  of  the drug  discovery  and  development.
Given  the  3D structure  of  a  target  molecule,  chemical  com-
pounds  may  have  a  potentially  higher  affinity  for  their  target
when  are  designed  rationally  with  the aid  of  computational
methods.  In recent  years,  several  cases  of  successful  appli-
cations  of  structure-based  drug design  have  been  reported.

An  interesting  example  of  structure-based  pharma-
cophore  modeling  is  the identification  of  p53  upregulated
modulator  of apoptosis  (PUMA)  inhibitors.52 PUMA  is  a pro-
apoptotic  protein,  member  of the  Bcl-2  protein  family.  Its
expression  is  regulated  by  the tumor  suppressor  p53.53,54

PUMA  ablation  or  inhibition  leads  to  apoptosis  deficiency
underlying  increased  risks  for cancer  development  and ther-
apeutic  resistance.  This  cancer-treatment  target  is  central
in mitochondria-mediated  cell death  by  interacting  with
all  known  antiapoptotic  Bcl-2  family  members.54 Based  on
the  binding  of  BH3-only  proteins  with  Bcl-2-like  proteins,
some  approaches  have  been  used to  identify small  molecules
that  can  modulate  these  interactions  and therefore,  inhibit
apoptosis.  Most  of  the efforts  have  focused  on the devel-
opment  of  Bcl-2  family  inhibitors  that  mimic  the actions  of
the  pro-apoptotic  BH3  domains.  Such  compounds  have  been
identified  through  computational  modeling,  structure-based
design,  and  high-throughput  screening  of  natural  product
and  synthetic  libraries.55

On  the  other  hand,  Liu et  al. reported  a  combinatorial
computational  strategy  for  discovering  potential  inhibitors
against  insulin-like  growth factor-1  receptor  (IGF-1R),
which  is associated  with  several  cancers,  including  breast,
prostate,  and  lung  cancer.  IGF-1R  belongs  to  the  tyrosine
kinase  family  and  plays  a pivotal  role  in the signaling  path-
way  involving  cell growth,  proliferation,  and  apoptosis.  The
initial  hit  obtained  from  hierarchical  VS  was  subsequently
used  as the  query scaffold  for  the substructure  search
to build  a  focused  library.  The  library  was  then  screened
against  IGF-1R  with  an in-house  pharmacophore-constrained
docking  protocol.  Eventually,  15  out  of  39  compounds
exhibited  inhibitory  activity  in enzymatic  assessment.  Stri-
kingly,  the  two  most  potent  inhibitors  demonstrated  an
excellent  inhibitory  potency  (IC50  =  57  and  61 nM,  respec-
tively),  and also  presented  significant  selectivity  over
the  insulin  receptor  (IR),  which  is  highly  homologous  to
IGF-1R.56 The  authors  concluded  that  the promising  selec-
tive  IGF-1R  inhibitors----aside  from  being potential  antitumor
agents----could  be  investigated  as  molecular  probes  to differ-
entiate  the  biological  functions  of  IGF-1R  and IR.

Another  successful  example  of  small  molecules  designed
using  a  ligand-based  approach  is  the case  of tubulin
inhibitors.57 Tubulin  polymerization,  an  essential  compo-
nent  of  cell  cycle  progression  and cell division represents
an  important  target  for  anticancer  therapy.  Several  antimi-
totic  agents  (paclitaxel,  colchicine,  and  the  vinca  alkaloids)
have  been  discovered  and  are clinically  used,  but  they
often  show  significant  toxicity,  low bioavailability,  rapidly
acquired  resistance  and  the  resulting  overexpression  of
drug-resistant  pumps  that  eject  these  antimitotic  inhibitors
from  the  cell.  However,  due  to  these unfavorable  properties,
researchers  have  devoted  substantial  effort  to  discover  new
agents  with more  tolerable  and  efficient  properties,  partic-
ularly  as  it  is  believed  that antimitotic  agents  could  work  to
diminish  blood  supply  to  cancerous  tumors.

Liou et  al.  based  their  model  generation  on  a set  of
21  indole-derivatives  synthesized  originally  for  potential
tubulin  inhibition  and  used structure-activity  relationship
(SAR)  analysis  to  drive  it.  These  compounds  were  cho-
sen  such that  their  inhibitory  IC50  values  spanned  over
three  orders  of  magnitude,  from  1.2  nM  to  6 �M. Based  on
the  chemical  similarities  of  these  compounds,  the authors
selected  four  common  pharmacophoric  features----including
a  hydrogen  bond  donor,  a  hydrogen  bond  acceptor,  a
hydrophobic  group,  and  a  hydrophobic  aromatic  group----for
the construction  of a chemical  library.  Subsequently,
142  compounds  were  biologically  tested  using a human  oral
squamous  carcinoma  cell line  (KB).  Among  these  142 bio-
logically  tested  compounds,  four  were  found to  inhibit  the
KB  cell line  with  IC50 values  of  187 nM,  2.0 �M, 3.0  �M,  and
5.7  �M,  respectively.  The  most  potent  compound  of  these
four  active  molecules  was  also  found to  inhibit  the prolifer-
ation  of  other  cancer  cell lines  like  MCF-7  (breast  cancer),
NCI-H460  (human non-small-cell  lung  cancer),  and  SF-268
(human  central  nervous  system  cancer),  with  IC50  values  of
236  nM,  285 nM,  and  319  nM,  respectively.58

Another  example  of small  molecules  designed  using  a
computational  approach  is  the case  of  an  I-Kappa-B  Kinase
�  (IKK-�) inhibitor.59 IKK-�, which  is  a key player  in the
NF-�B  signaling  pathway,  represents  yet  another  poten-
tial  target  for  the treatment  of  cancer  in addition  to
inflammation.  In 2011,  Noha  et  al. decided  to  use  ligand-
based  pharmacophore  modeling  to  identify  new  compounds
with  affinity  to  IKK-�. The  ligand-based  pharmacophore
model for  this study  was  based  on a set  of  five  com-
pounds  with  high  activity  (IC50  values  of  100 nM  or  less)
and  at least  a several-fold  difference  in selectivity  for  IKK-�
over  NF�B  in  an attempt  to  develop  an IKK-� inhibitor-
specific pharmacophore  model.  The  model  was  further
refined  using  a  dataset  extracted  from  the literature  of
44  biologically  inactive  compounds,  128 active  compounds,
and 12,775  several  random  decoy  compounds.  The  top
ten  high-scoring  compounds  were  tested  in  vitro. Among
these,  the most  potent  inhibitor  (compound  NSC-719177)
could  inhibit  IKK-� with  an IC50  value  of  approximately
6.95  �M.59 Cell-based  analyses  were  also  conducted  to  test
the  ability  of  compound  NSC-719177  to inhibit  NF�B  acti-
vation  in HEK293  cells  stably  transfected  and  carrying  a
luciferase  reporter  gene  activated  by  a  promoter  com-
posed  of  multiple  copies  of  the  NF-�B  response  element.
Compound  NSC-719177  was  found  to have  a cell-based  assay
IC50  value  of approximately  5.85  �M  and  exhibited  dose-
dependent  activity  in inhibiting  TNF-�-induced  luciferase
activity.  Therefore,  Noha  et  al. were  able to  demon-
strate  the  successful  application  of  ligand-based  approaches
to  the identification  of  low  micromolar  inhibitors  against
IKK-�.59

In an attempt  to  articulate  how  the  iterative  process of
structure-based  design  can  lead  to  the development  of  drugs
with  pharmacological  potential,  more  examples  from  the
literature  are listed  in Table 1.60---100

With  the evolution  of  significantly  more  sophisticated
molecular  modeling  tools  and  the use  of  high-throughput
X-ray  crystallography  for a  target  alone  or  in  complex
with  small molecules,  rational  drug design  techniques  have
become  an indispensable  instrument  for  the development  of
target-based  therapies.
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Table  1  Selected  inhibitors  developed  with  computational  chemistry  and  rational  drug  design  strategies.

Compound
name

Therapeutic  area  Function  Approvals  References

Captopril  Hypertension
Congestive  heart  failure
Myocardial  infarction
Diabetic  nephropathy

ACE  inhibitor  1975  Ondetti  et  al.  (1977)51

Cushman  et  al.  (1977)50

Cushman  and  Ondetti
(1999)48

Cimetidine  Treatment  of  heartburn  and  peptic
ulcers

H2-receptor
antagonist

1978  Brimblecombe  et  al.
(1975)63

Henn  et  al.  (1975)64

Dorzolamide  Antiglaucoma  agent Carbonic
anhydrase
inhibitor

1989  Baldwin  et  al.  (1989)62

Saquinavir  Antiretroviral  drug  used  to  treat  or
prevent  HIV/AIDS
(1st  generation)

HIV-1  protease
inhibitor

1995  Graves  et  al.  (1991)65

Krohn  et  al.  (1991)66

Oseltamivir  Antiviral
(to  treat  influenza  A  and  influenza  B)

Influenza
neuraminidase
inhibitor

1996  Li et  al.  (1998)60

Lew  et  al.  (2000)61

Zanamivir  Antiviral
(to  treat  influenza  A  and  influenza  B)

Neuraminidase
inhibitor

1999  von  Itzstein  et  al.
(1993)81

Woods  et al.  (1993)82

Thomas  et  al.  (1994)83

Indinavir  Antiretroviral  drug  used  to  treat
HIV/AIDS
(1st generation)

HIV  protease
inhibitor

1996  Chen  et  al.  (1994)67

Ritonavir  Antiretroviral  drug  used  to  treat
HIV/AIDS
(1st generation)

HIV  protease
inhibitor

1996  Kempf  et  al.  (1995)68

Markowitz  et  al.  (1996)69

Nelfinavir  Antiretroviral  drug  used  to  treat
HIV/AIDS
(1st generation)

HIV  protease
inhibitor

1999  Chapman  et  al.  (1995)71

Wlodawer  (2002)70

Lopinavir  Antiretroviral  drug  used  to  treat
HIV/AIDS  against  strains  that  are
resistant  to  other  protease  inhibitors
(1st generation)

Peptidomimetic
HIV  protease
inhibitor

2000  Sham  et  al.  (1998)73

Fosamprenavir  Antiretroviral  prodrug  used  to  treat
HIV/AIDS
(phosphoester  that  is  rapidly  and
extensively  metabolized  to
amprenavir)
(1st  generation)

HIV  protease
inhibitor

2003  Falcoz  et  al.  (2002)74

Shen  et  al.  (2010)75

Atazanavir  Antiretroviral  drug  used  to  treat
HIV/AIDS
(2nd generation)

HIV  protease
inhibitor

2004  Robinson  et  al.  (2000)76

Piliero  (2002)78

Tipranavir  Antiretroviral  drug  used  to  treat
HIV/AIDS
(tipranavir  is active  against  strains
that are resistant  to  other  protease
inhibitors)
(2nd  generation)

Nonpeptidic  HIV-1
protease  inhibitor

2005  Doyon  et  al.  (2005)72

Darunavir  Antiretroviral  drug  used  to  treat
HIV/AIDS
(2nd generation)

Nonpeptidic  HIV-1
protease  inhibitor

2006  Koh et al.  (2003)79

Tie  et  al.  (2004)80

Imatinib  Chronic  myeloid  leukemia  Tyrosine  kinase
inhibitor

1990  Buchdunger  et  al.
(1996)84

Druker  et  al.  (1996)85

Gefitinib  NSCLC  EGFR  kinase
inhibitor

2003  Baselga  et al.  (2000)86

Sirotnak  et  al.  (2002)87
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Table  1  (Continued)

Compound
name

Therapeutic  area  Function  Approvals  References

Erlotinib  NSCLC
Pancreatic  cancer

EGFR  kinase
inhibitor

2005  Pollack  et  al.  (1999)88

Ng  et  al.  (2002)89

Bulgaru  et  al.  (2003)90

Sorafenib  Renal  cancer
Liver  cancer
Thyroid  cancer

VEGFR  kinase
inhibitor

2005  Heim  et  al.  (2003)93

Ahmad  and  Eisen
(2004)94

Wilhelm  et  al.  (2004)95

Lapatinib  ERBB2-positive  breast  cancer  EGFR/ERBB2
inhibitor

2007  Xia  et  al.  (2004)91

Wood  et  al.  (2004)92

Abiraterone  Metastatic  castration-resistant
prostate  cancer  or
hormone-refractory  prostate  cancer

Androgen
synthesis  inhibitor

2011  Jarman  et  al.  (1998)96

O’Donnell  et  al.  (2004)97

Jagusch  et al.  (2008)98

Crizotinib  NSCLC  ALK  inhibitor  2011  Butrynski  et  al.  (2010)99

Rodig  et  al.  (2010)100

ACE, angiotensin-converting enzyme; HIV, human immunodeficiency virus; AIDS, acquired immunodeficiency syndrome; EGFR, epidermal
growth factor receptor; NSCLC, non-small cell lung cancer; VEGFR, vascular epidermal growth factor receptor; ERBB2, erb-b2 receptor
tyrosine kinase 2 (also known as NEU, NGL, HER2, TKR1, CD340, HER-2, MLN 19, HER-2/neu); ALK, anaplastic lymphoma kinase.

Considering  the relevance  of  the  examples  cited  above,
and  the  importance  of  these  approaches,  our  research
group  is  interested  in  finding  some  molecules  capable  of
inhibiting  the  transcription  factor  called  Yin-Yang  1  (YY1).
This  factor  has  been  observed  to  be  overexpressed  in can-
cer  patients,  and  its  activation  is  significantly  involved  in
chemotherapy  resistance  mechanisms.  In  pediatric  patients
with acute  lymphoblastic  leukemia  (ALL)  it was  reported
that  YY1  is overexpressed.101 The  in  vitro  inhibition  in ALL
cell  lines  showed  that  YY1 has  an  important  implication  in
chemoresistance  in these  cells.  Based  on  these  findings,
our  research  group  was  particularly  interested  in  identi-
fying  some  inhibitors  of  the activity  of  this transcription
factor  employing  CADDD  tools.  The  elucidation  of  the struc-
ture  of  the  YY1 and site-binding  domain  provides  a new
framework  to  understand  the  functions  of  this  transcrip-
tion  factor  and  leads  to  the  development  of rational  drug
design  for  the  treatment  of ALL.  An  overview  of  YY1 struc-
ture  and  activity,  its  actions  in  lymphoblastic  leukemia  and
chemoresistance,  and  how  structural  information  and high-
throughput  screening  have  been  or  can  be  used  for  drug
discovery  will  be  provided  in the  future.

The  process  of novel  drug  discovery  and development
is  recognized  to  be  very  expensive  and  time-consuming.
However,  thanks  to  recent  advances  in the development
of  physical  and  chemical  models  to  simulate  biomolecu-
lar  processes,  together  with  the  production  of  increasingly
powerful  computational  resources,  discovering  and  design-
ing new  drugs  as  anticancer  drugs is  an  affordable  task
for  many  research  institutions  and  laboratories  today.  With
the  required  computational  hardware  and software,  and
the expertise  in biochemistry,  biophysics,  and  biology,  many
projects  that  previously  demanded  a significant  investment
in  time  and  money  can  be  done  today  by  a  small group
of  researchers  in their workstations.  Moreover,  challeng-
ing  projects  not  even  conceivable  two  decades  ago  can be
today  tackled  with  the access  to  a  supercomputer.  By  using
CADDD  approaches,  researchers  are not  only accelerating

their  steps  and  projects.  Implementing  molecular  simula-
tions  in biomolecular  research  projects has  increased  our
knowledge  in fields  such as  structural  and chemical  biol-
ogy at  the  point  where  these  tools are  considered  as  other
useful  facilities  in  the laboratory.  The  optimization  of  these
techniques  and methods  occurs  this way  naturally  in its  the-
oretical  feedback  signaling  system.  Computational  models
generate  useful  predictions  to  be checked  with  experimen-
tal results,  and  biologists  and  physicians  demand  approaches
that  are more  accurate  to  computational  scientists.

Conflict  of interest

The  authors  declare  no  conflicts  of  interest  of  any  nature.

References

1. Arriaga E. New life tables for Latin American populations in
the nineteenth and twentieth centuries. Berkeley, California:
University of  California Press; 1968.

2. Overington JP, Al-Lazikani B, Hopkins AL. How many drug tar-
gets  are there. Nat Rev Drug Discov. 2006;5:993---6.

3. Imming P, Sinning C, Meyer A. Drugs, their targets and the
nature and number of drug targets. Nat Rev Drug Discov.
2006;5:821---34.

4. Reymond JL, Blum LC, van Deursen R. Exploring the chemi-
cal space of  known and unknown organic small molecules at
www.gdb.unibe.ch. Chimia (Aarau). 2011;65:863---7.

5. Hol WG. Protein crystallography and computer
graphics----toward rational drug design. Angew Chem Int
Ed Engl. 1986;25:767---78.

6. Myers S, Baker A. Drug discovery----an operating model for a
new era. Nat Biotechnol. 2001;19:727---30.

7. Rosenheim O, King H. The ring-system of  sterols and bile acids.
Part II. J  of  the Society of  Chemical Industry (currently known
as J  Chem Technol Biotechnol). 1932;51:954---7.

8. Nobel Prizes and Laureates. Available from: https://www.
nobelprize.org/nobel prizes/chemistry/laureates/



Computational  methods  for  anticancer  drug  discovery,  design,  and optimization  421

9. Kaldor SW,  Kalish VJ, Davies JF 2nd, Shetty BV, Fritz JE,  Appelt
K, et al. Viracept (nelfinavir mesylate, AG1343): a potent,
orally bioavailable inhibitor of HIV-1 protease. J  Med Chem.
1997;40:3979---85.

10. Song CM, Lim SJ, Tong JC.  Recent advances in computer-
aided drug design. Brief Bioinform. 2009;10:579---91,
http://dx.doi.org/10.1093/bib/bbp023

11. Jorgensen WL. The many roles of computation in drug discov-
ery. Science. 2004;303:1813---8.

12. Martin YC, Kofron JL, Traphagen LM. Do structurally simi-
lar molecules have similar biological activity? J Med  Chem.
2002;45:4350---8.

13. Mishra V, Siva-Prasad CV. Ligand based virtual screening to find
novel inhibitors against plant toxin Ricin by  using the ZINC
database. Bioinformation. 2011;7:46---51.

14. Kolb P, Ferreira RS, Irwin JJ, Shoichet BK.  Docking and
chemoinformatic screens for new ligands and targets. Curr
Opin Biotechnol. 2009;20:429---36.

15. Fujita T. The Extra Thermodynamic Approach to Drug Design.
In: Hansch C, Sammes PG, Taylor JB, editors. Comprehensive
medicinal chemistry: the rational design, mechanistic study
and therapeutic applications of chemical compounds. New
York: Pergamon Press; 1990. p. 497---560.

16. Todeschini R, Consonni V, editors. Molecular Descriptors
for Chemoinformatics. Weinheim, Germany: Wiley-VCH;
2009.

17. Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA. Glossary of
terms used in medicinal chemistry (IUPAC Recommendations
1997). Annu Rep Med Chem. 1998;33:385---95.

18. Yang SY. Pharmacophore modeling and applica-
tions in drug discovery: challenges and recent
advances. Drug Discov Today. 2010;5(11---12):444---50,
http://dx.doi.org/10.1016/j.drudis.2010.03.013

19. Xie L, Evangelidis T,  Bourne PE. Drug discovery using
chemical systems biology: weak inhibition of  multi-
ple kinases may contribute to the anti-cancer effect
of nelfinavir. PLoS Comput Biol. 2011;7:e1002037,
http://dx.doi.org/10.1371/journal.pcbi.1002037

20. Kitchen DB, Decornez H, Furr JR, Bajorath J.  Docking and
scoring in virtual screening for drug discovery: methods and
applications. Nat Rev  Drug Discov. 2004;3:935---49.

21. Gohlke H, Klebe G. Approaches to the description and pre-
diction of  the binding affinity of  small-molecule ligands
to macromolecular receptors. Angew Chem Int Ed Engl.
2002;41:2644---76.

22. Leach AR, Shoichet BK, Peishoff CE. Prediction of protein-
ligand interactions. Docking and scoring: successes and gaps.
J Med Chem. 2006;49:5851---5.

23. Combs AP. Structure-based drug design of  new leads for phos-
phatase research. IDrugs. 2007;10:112---5.

24. Coumar MS, Leou JS, Shukla P, Wu JS, Dixit AK, Lin WH,
et al. Structure-based drug design of  novel Aurora kinase A
inhibitors: structural basis for potency and specificity. J  Med
Chem. 2009;52:1050---62.

25. Khan A, Prakash A, Kumar D, Rawat AK, Srivastava R, Srivas-
tava S. Virtual screening and pharmacophore studies for ftase
inhibitors using Indian plant anticancer compounds database.
Bioinformation. 2010;5:62---6.

26. Bruncko M,  Oost TK, Belli BA, Ding H,  Joseph MK, Kunzer A,
et al. Studies leading to potent, dual inhibitors of Bcl-2 and
Bcl-xL. J Med Chem. 2007;50:641---62.

27. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA,
Garyantes T, et al.  Impact of  high-throughput screening in
biomedical research. Nat Rev Drug Discov. 2011;10:188---95,
http://dx.doi.org/10.1038/nrd3368

28. Cheung KM, Matthews TP, James K, Rowlands MG, Boxall KJ,
Sharp SY, et  al. The identification, synthesis, protein crys-
tal structure and in vitro biochemical evaluation of  a new

3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorg Med Chem
Lett. 2005;15:3338---43.

29.  Folkes AJ, Ahmadi K, Alderton WK, Alix S,  Baker SJ,
Box G, et al. The identification of 2-(1H-indazol-4-yl)-6-
(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-
thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective,
orally bioavailable inhibitor of class I  PI3 kinase for the
treatment of  cancer. J Med Chem. 2008;51:5522---32.

30.  Zarghi A, Kakhki S. Design, synthesis, and biological evaluation
of  new 2-phenyl-4H-chromen-4-one derivatives as selective
cyclooxygenase-2 inhibitors. Sci Pharm. 2014;83:15---26.

31.  Kumari S,  Idrees D, Mishra CB, Prakash A, Wahiduzzaman
Ahmad F, et  al. Design and synthesis of a novel class of carbonic
anhydrase-IX inhibitor 1-(3-(phenyl/4-fluorophenyl)-7-imino-
3H-[1,2,3]triazolo[4,5d]pyrimidin 6(7H)yl) urea. J Mol Graph
Model. 2016;64:101---9.

32.  Zhang HQ, Gong FH, Li CG, Zhang C, Wang YJ,  Xu YG,
et al. Design and discovery of  4-anilinoquinazoline-acylamino
derivatives as EGFR and VEGFR-2 dual TK inhibitors. Eur J Med
Chem. 2016;109:371---9.

33.  Nokinsee D,  Shank L, Lee VS, Nimmanpipug P. Estima-
tion of  inhibitory effect against tyrosinase activity through
homology modeling and molecular docking. Enzyme Res.
2015;2015:262364, http://dx.doi.org/10.1155/2015/262364

34.  Kesherwani M,  Gromiha MM, Fukui K,  Velmurugan D.  Identifica-
tion of  novel natural inhibitor for NorM----a multidrug and toxic
compound extrusion Transporter----an insilico molecular mod-
eling and simulation studies. J  Biomol Struct Dyn. 2016:1---20,
http://dx.doi.org/10.1080/07391102.2015.1132391

35.  Chang C, Ekins S, Bahadduri P, Swaan PW. Pharmacophore-
based discovery of  ligands for drug transporters. Adv Drug Deliv
Rev. 2006;58(12-13):1431---50.

36.  Chang C, Swaan PW.  Computational approaches to modeling
drug transporters. Eur J  Pharm Sci. 2006;27:411---24.

37.  Kaserer T, Beck KR, Akram M, Odermatt A, Schuster D. Pharma-
cophore models and pharmacophore-based virtual screening:
concepts and applications exemplified on hydroxysteroid dehy-
drogenases. Molecules. 2015;20:22799---832.

38.  Schuster D, Kowalik D, Kirchmair J, Laggner C, Markt P,
Aebischer-Gumy C, et al. Identification of chemically diverse,
novel inhibitors of  17�-hydroxysteroid dehydrogenase type 3
and 5 by  pharmacophore-based virtual screening. J  Steroid
Biochem Mol Biol. 2011;125(1-2):148---61.

39.  Lai CJ, Tay BH. Pharmacophore-based screening targeted
at upregulated FN1, MMP-9, APP reveals therapeutic com-
pounds for nasopharyngeal carcinoma. Comput Biol Med.
2016;69:158---65.

40.  Zhou S, Zhou L, Cui R, Tian Y, Li X, You R, et al.
Pharmacophore-based 3D-QSAR modeling, virtual screening
and molecular docking analysis for the detection of MERTK
inhibitors with novel scaffold. Comb Chem High Throughput
Screen. 2016;19:73---96.

41.  Shirgahi TF, Bagherzadeh K,  Golestanian S,  Jarstfer M,  Aman-
lou M. Potent human telomerase inhibitors: molecular dynamic
simulations, multiple pharmacophore-based virtual screening,
and biochemical assays. J Chem Inf Model. 2015;55:2596---610.

42.  Schneider G. Virtual screening: an endless staircase. Nat Rev
Drug Discov. 2010;9:273---6.

43.  Ripphausen P, Nisius B, Peltason L,  Bajorath J. Quo vadis,
virtual screening? A comprehensive survey of prospective
applications. J Med Chem. 2010;53:8461---7.

44.  Chen L, Gui C, Luo X, Yang Q, Günther S,  Scandella E, et  al.
Cinanserin is an inhibitor of  the 3C- like proteinase of  severe
acute respiratory syndrome coronavirus and strongly reduces
virus replication in vitro. J  Virol. 2005;79:7095---103.

45.  Fan SJ, Geng Q, Pan Z, Li X, Tie  L,  Pan Y, et al.  Clarifying off-
target effects for torcetrapib using network pharmacology and
reverse docking approach. BMC Syst  Biol. 2012;6:152.



422  D. Prada-Gracia  et al.

46. Chen Z, Wang X,  Zhu W,  Cao X, Tong L,  Li H, et al.
Acenaphtho[1,2-b]pyrrole-based selective fibroblast growth
factor receptor 1 (FGFR1) inhibitors: design, synthesis, and
biological activity. J Med Chem. 2011;54:3732---45.

47. Elliott M. Zanamivir: from drug design to the clinic. Philos Trans
R  Soc Lond B Biol Sci. 2001;356:1885---93.

48. Cushman DW, Ondetti MA. Design of  angiotensin converting
enzyme inhibitors. Nat Med. 1999;5:1110---3.

49. Steitz TA, Ludwig ML, Quiocho FA, Lipscomb WN.  The struc-
ture of carboxypeptidase A. V. Studies of enzyme-substrate
and enzyme-inhibitor complexes at 6 Å  resolution. J  Biol Chem.
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