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A B S T R A C T   

Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are two of 
the most used non-pharmacological interventions for Alzheimer’s Disease (AD). However, most of the clinical 
trials have focused on evaluating the effects on global cognition and not on specific cognitive functions. 
Therefore, considering that memory loss is one of the hallmark symptoms of AD, we aim to assess the efficacy and 
safety of tDCS and rTMS in memory deficits. For that, multilevel random effect models were performed 
considering the standardized mean difference (SMD) between active and sham stimulation. A total of 19 studies 
with 411 participants demonstrated positive effects in memory after tDCS (SMD=0.20, p = 0.04) and rTMS 
(SMD=0.44, p = 0.001). Subgroup analysis revealed that tDCS had greater efficacy when administered in 
temporal regions (SMD=0.32, p = 0.04), whereas rTMS was superior when applied in frontal regions 
(SMD=0.61, p < 0.001). Therefore, depending on the brain region of stimulation, both interventions produced a 
positive effect on memory symptoms in AD patients. Finally, the safety of both techniques was observed in the 
AD population after the reporting of almost no serious events.   

Introduction 

Alzheimer’s Disease (AD) is the most common cause of dementia 
worldwide and is characterized by a gradual and slow decline in mem-
ory and other cognitive processes capable of interfering with daily life 
(Sanches et al., 2021). AD pathology is defined by extracellular accu-
mulation of amyloid-β (Aβ), strings of hyperphosphorylated Tau pro-
teins accumulating inside neurons, and consequent neurodegeneration 
(Jack et al., 2016). Pathological changes in the brain begin long before 
the first signs of memory loss. For this reason, when diagnosed (usually 
when the first symptoms appear), the neuropathological process is 
already advanced (Trejo-Lopez et al., 2021). 

Interventions targeting AD primarily aim to prevent cognitive 
decline through pharmacological interventions and cognitive training. 

However, there is a growing need to investigate the effectiveness and 
safety of non-pharmacological therapies as potential preventive mea-
sures against the onset or progression of AD symptoms. At this level, 
non-invasive brain stimulation (NIBS) is proposed as a promising non- 
pharmacological therapeutic option for AD, where repetitive trans-
cranial magnetic stimulation (rTMS) and transcranial direct current 
stimulation (tDCS), are among the most extensively studied therapies for 
this disease. Some studies testing the effect of rTMS and tDCS showed a 
positive effect of these methods on the enhancement of global cognition 
in patients with AD (Sanches et al., 2021). tDCS is based on the appli-
cation of a weak constant electrical current (1–2 mA) through an active 
(anode) and a return electrode (cathode) (Nitsche & Paulus, 2000). The 
cortical excitability of the stimulated brain region can be modulated by 
the electrical current, which changes the likelihood of generating an 
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action potential (Rahman et al., 2013). As a result, anodal stimulation is 
suggested to increase cortical excitability, whereas cathodal stimulation 
decreases cortical excitability (Stagg & Nitsche, 2011). This is of 
particular interest for cognitive enhancement (Coffman et al., 2014) as 
well as for clinical application in neurological and psychiatric disorders 
(Fregni et al., 2021). 

On the other hand, rTMS is a non-invasive brain stimulation tech-
nique using a brief-lasting magnetic field to painlessly convey electrical 
current into a brain cortical area (Siebner et al., 2022). Such current has 
sufficient intensity to trigger action potentials in the stimulated region, 
allowing the propagation of the signal towards connected regions. 
Consequently, short rTMS patterns have been used to change or syn-
chronize frequency-specific rhythmic oscillations of neurons to modu-
late specific cognitive operations (Thut et al., 2011). The application of 
rTMS has demonstrated the ability to induce two distinct effects based 
on the frequency of the pulses. Specifically, when rTMS is administered 
at frequencies of approximately 5 Hz and higher, it has been observed to 
provide a sustained excitatory effect. Conversely, when rTMS is 
employed at frequencies of 1 Hz and lower, it has been found to elicit an 
inhibitory effect (Fitzgerald et al., 2006). Therefore, in line with tDCS, 
rTMS suggests its usefulness to enhance cognitive abilities (Luber & 
Lisanby, 2014), as well as a therapeutical tool for several clinical con-
ditions including AD (Lefaucheur et al., 2020). 

High-frequency rTMS and anodal tDCS delivered for at least 2 weeks 
have shown improvements in cognitive function in patients with AD, 
maximizing performance and containing the progression of cognitive 
decline (Sanches et al., 2021). Nonetheless, studies approaching both 
techniques used different methods and stimulation parameters, which 
can complicate the understanding of the non-invasive brain stimulation 
techniques in AD (Holczer et al., 2020). Moreover, studies with rTMS 
and tDCS have demonstrated positive results in improving the general 
cognitive functioning of patients with AD, but their specific effect on 
several cognitive functions is not clear. This is the case with memory 
impairment, which is one of the earliest and most common symptoms of 
AD (Scheltens et al., 2016), even though research studies often do not 
prioritize the evaluation of this specific function. Studies examining the 
impact of tDCS/rTMS on AD primarily assess global cognition using 
tools such as Mini-mental state examination (MMSE), Montreal Cogni-
tive Assessment (MOCA), Clinical Dementia Rating (CDR), or Alz-
heimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog), 
which hinder a proper evaluation of specific cognitive functions such as 
memory. 

For that, we aimed to evaluate the literature about the efficacy of 
rTMS and tDCS on the enhancement of memory deficits in patients with 
an AD or probable AD diagnostic. Furthermore, although both tech-
niques have been demonstrated to be safe procedures in different pop-
ulations (Bikson et al., 2016; Rossi et al., 2021), a considerable number 
of studies do not evaluate the relevant adverse effects (AEs). Therefore, 
we also intend to evaluate the safety of both techniques in AD patients 
by analyzing the AEs. 

Methods 

The systematic review and meta-analysis’s various procedures were 
conducted accordingly to the recommendations in the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; 
Moher et al., 2009). Our study was registered on the international pro-
spective register of systematic reviews (PROSPERO) with reference 
number CRD42022349579. 

Literature search and study selection 

The literature search was performed in PUBMED, Web of Science, 
and Scopus using a combination of tDCS, rTMS, memory, and Alz-
heimer’s disease (all the terms and search strategies are reported in 
Table A in Supplementary Materials). The screening phase was 

performed in the Abstrackr (Wallace et al., 2012), in which each study 
was screened by two researchers independently. In case of disagree-
ments, a third researcher resolved the conflict. The eligibility evaluation 
comprised the following inclusion criteria: i) randomized controlled 
trials (RCTs), ii) rTMS or tDCS groups as the intervention groups, iii) 
studies with a sham-controlled condition, iv) memory evaluation as 
outcome, v) sample of the study with an AD or probable AD diagnostic, 
and vi) studies written in English. Case-studies, systematic reviews, 
meta-analyses, or studies with other cognitive function evaluation were 
excluded. When there were several publications with the same cohort, 
we selected the study with a larger sample size. Additionally, global 
cognition scales, such as the Mini-Mental State Examination (MMSE) 
and Montreal Cognitive Assessment (MoCA), were not considered 
because they represent a composite score of different cognitive func-
tions, only specific evaluations in memory were included. All studies’ 

eligibility was initially evaluated using the abstract, and then, in a 
subsequent phase, using the full-text manuscript. 

Data extraction 

The following information was extracted from each study: first 
author, year of publication, study design (e.g., crossover, parallel), 
number of subjects analyzed (i.e., excluding dropouts or outliers), 
cognitive training with stimulation (i.e., yes or no), safety evaluation (e. 
g., frequency of adverse effects), medication, diagnostic criteria, brain 
region of stimulation (i.e., anode, cathode, or coil location), tDCS pa-
rameters (i.e., intensity, density, and duration), rTMS parameters (i.e., 
intensity, frequency, and number of pulses), number of sessions (e.g., 
single or multi-session), and method of memory assessment (e.g., Rey 
Auditory Verbal Learning Test, n-back). The statistical results to extract 
were the mean and standard deviation of memory evaluation scores in 
active and sham groups for baseline, post-intervention, and follow-up. 
The Web Plot Digitizer (Rohatgi, 2017) was used to extract the statis-
tics from the graphs if the data was not presented in text or tables. At 
last, an email was sent to the corresponding author requiring the 
required information if the necessary statistical data was missing in any 
format. 

Statistical analysis 

The statistical analysis was performed in the memory outcomes using 
R (R Core Team, 2018) with the metafor package (Viechtbauer, 2010; 
metafor Version 4.0–0, released on 2023–03–19). 

Multilevel meta-analysis, subgroup, and moderator analysis 
The random-effect multilevel models were performed due to the high 

number of comparisons within some studies. As a result, the model 
considered the within variance for each study with multiple compari-
sons given that the individual effect sizes were nested within the cor-
responding study. For that, the extracted statistical data was used to 
compute the average change between baseline and post-intervention/ 
follow-up as well as the pooled standard deviation between both mea-
sures for each study. Using these statistical metrics, the effect size be-
tween active and sham stimulation was determined using the unbiased 
Hedges’ g (Hedges, 1981). 

The multilevel models were performed independently for tDCS and 
rTMS since they share distinct neurophysiological mechanisms of action 
(Cochrane, 2019). To assess the short- and long-term effects of the 
stimulation on memory capacity, independent meta-analyses were 
conducted between the pos-intervention and follow-up. The follow-up 
analysis was only carried out in rTMS given that the tDCS studies 
lacked sufficient data (i.e., only one study reported follow-up evalua-
tion). The Cochrane’s Q test was performed to evaluate heterogeneity 
between studies. See Table B in Supplementary Materials for the labels 
in the forest plots. 

Moderator and subgroup analysis were performed for the continuous 
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and categorical moderators respectively, namely: brain region stimula-
tion, intensity (for tDCS and rTMS), density, rTMS frequency, number of 
pulses, duration, study design, cognitive training, number of sessions, 
type of memory, and type of stimuli in the memory evaluation. The type 
of memory was categorized into short-term memory (STM), long-term 
memory (LTM), association memory (AM), working memory (WM), 
and recognition memory (RM) based on the task used to evaluate the 
memory. Additionally, the type of stimuli utilized in the memory 
assessment was also tested (e.g., letters, words, figures). 

Influential analysis and publication bias 
The leave-one-out method was employed to conduct the influential 

analysis. Given that we conducted a multilevel meta-analysis that 
allowed the inclusion of several comparisons from each study, this 
method allowed the meta-analysis to be recalculated by removing all the 
comparisons from a study each time (Viechtbauer & Cheung, 2010). 

Egger’s regression test and funnel plots were used to evaluate the 
publication bias (Egger et al., 1997). However, given that we are 
considering several measures from the same study, this heterogeneity 
within the study might influence the publication bias result. For that, all 
comparisons were displayed using funnel plots with estimates against 
their standard errors, with the colors denoting the study. On the other 
hand, Egger’s regression test was a multilevel meta-regression with the 
standard errors (SE) of the effect size estimates as predictors. Thus, even 
when the variation between and within studies is accounted for, a sig-
nificant effect on the SE suggests an asymmetry in the funnel plot 
(Fernández-Castilla et al., 2021). 

Safety evaluation 

The safety of tDCS and rTMS in the AD population was evaluated 
based on the AEs reported in each study between active and sham 
stimulation. 

Risk of bias 

The risk of bias was assessed by seven criteria, namely, random 
sequence generation, allocation concealment, selective reporting, other 
sources of bias, participants blinding, raters blinding, and lack of 
outcome data (Higgins et al., 2011). Each criterion was classified as 
“high risk”, “low risk” or “unclear” by two independent raters. A third 
researcher resolved the conflict in case of any mismatch between raters. 
The traffic light plots were done with the robvis package in R 
(McGuinness & Higgins, 2021); Version 0.3.0, released on 22–11–2019). 

Results 

The abstract screening comprised 2341 studies, resulting in the 
exclusion of 2253 studies and the inclusion of 88 studies. At this point, a 
third reviewer resolved 6.7 % of the disagreements between the reviews 
from the two reviewers. After that, 21 papers were chosen for full-text 
screening; however, two of them contained a sample of AD and fron-
totemporal dementia, and one of them lacked statistical data. The pri-
mary reasons for eliminating such records were the absence of a memory 
assessment or their lack of being randomized controlled trials with a 

Fig. 1. PRISMA flow diagram illustrating the literature search and inclusion process.  
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sham condition. Out of 3374 original records, a total of 19 studies were 
included; nine of these studies assessed the effects of rTMS, while 10 
studies used tDCS (Fig. 1). See Table C in Supplementary Materials for 
the list of studies included in the current meta-analysis. 

rTMS studies 

Study characteristics 
The nine studies with rTMS comprised a total of 300 participants 

with AD. Seven (out of nine) studies had a parallel design with multiple 
sessions of rTMS. The stimulation was mostly applied in frontal areas 
(five studies), whereas three studies evaluated rTMS in parietal regions 
and only one in the cerebellum. Most studies applied rTMS alone given 
that only two studies combined rTMS with cognitive training (see 
Table D in Supplementary Materials). All the studies performed a 
baseline memory assessment. Lastly, six studies evaluated memory in 
follow-ups, and one study was only included in the follow-up meta- 
analysis (Wei et al., 2022) given that the cohort used in the 
post-intervention evaluation was the same as another study (Jia et al., 
2021) but with a lower sample size. 

Multilevel meta-analysis, subgroup, and moderator analysis 
The pooled effect estimate from the eight studies did not show a 

significant heterogeneity (p = 0.08, Q = 31.71), and a significant effect 
was found on memory skills immediately after rTMS (p = 0.001, SMD =
0.44, 95 % CI [0.18 0.7]) (Fig. 2). Subgroup analysis by the brain region 

of stimulation revealed a significant effect in memory after rTMS over 
frontal regions (p < 0.001, SMD = 0.614, 95 % CI [0.31 0.92]) without a 
significant heterogeneity among comparisons (p = 0.733, Q = 10.39). 
The studies applying rTMS over parietal areas did not present significant 
heterogeneity (p = 0.535, Q = 5.071), nor a significant effect in memory 
(p = 0.472, SMD = 0.074, 95 % CI [−0.12 0.27]). The moderator 
analysis revealed that rTMS intensity is a significant moderator in 
memory abilities (p < 0.001, SMD = −0.02, 95 % CI [−0.03 −0.01]) 
suggesting a higher effect in lower-intensity stimulation. However, this 
effect is highly influenced by Wu et al. (2022) who applied a 70 % rTMS 
and Jia et al. (2021) who applied a 105 % rTMS. All the other moder-
ators were not statistically significant (p > 0.05). 

Regarding the follow-up evaluations, the heterogeneity between the 
five studies was not statistically significant (p = 0.36, Q = 19.49), 
however only a trend for memory abilities improvement was shown (p =
0.07, SMD = 0.25, 95 % CI [−0.02 0.52]) (Fig. 3). The subgroup analysis 
revealed that studies applying rTMS over frontal regions with follow-ups 
did not reveal a significant heterogeneity (p = 0.39, Q = 14.91) and the 
marginal significant effect was maintained in memory skills follow-ups 
after rTMS over frontal regions (p = 0.09, SMD = 0.32, 95 % CI 
[−0.04 0.68]). The subgroup analysis of follow-ups after rTMS over 
parietal and cerebellar areas was not performed because there was only 
one study in each. Moderator analysis also revealed a significant effect of 
rTMS intensity (p = 0.001, SMD = −0.016, 95 % CI [−0.03 −0.01]). 
This is the same effect observed in the post-intervention analysis, 
namely a higher effect in lower-intensity stimulation. The other 

Fig. 2. Forest plot with pooled effect estimate from post-rTMS evaluations and underlying subgroup analysis concerning the brain region of stimulation.  
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moderators revealed statistically non-significant results (p > 0.05). 

Influential analysis and publication bias 
The leave-one-out method revealed that the pooled effect estimate 

from post-rTMS evaluation was not influenced particularly by any of the 
studies. However, in the follow-up analysis, the pooled effect was 
influenced by one study (Yao et al., 2022), in which rTMS was applied 
over the cerebellum. When this study was removed from the multilevel 
model, the trend turned into a statistically significant result (p = 0.04, 
SMD = 0.321, 95 % CI [0.01 0.63]), suggesting a long-term effect in 
terms of memory, for rTMS applied over frontal and parietal areas. 

The publication bias analysis performed in the post-intervention 
rTMS showed an asymmetry in the funnel plot based on the significant 
result of SE in the Egger’s regression test (p = 0.02, z = 2.32). However, 
the data outside the 95 % CI is mostly observed on the left side of the 
plot, which suggests lack of publication bias. Considering the data for 
follow-ups, the funnel plot follows a symmetry as shown in the multi-
level regression Egger’s test (p = 0.17, z = 1.38). The funnel plots are 
represented in Figure A of Supplementary Materials. 

tDCS studies 

Study characteristics 
The tDCS effects on memory were studied in 10 studies with a total of 

214 participants with AD. The designs used were five parallel and five 

crossover studies. Five studies (out of 10) applied tDCS over frontal 
areas, three over temporal areas and two tested both stimulations. 
Moreover, two of these studies performed an additional cathodal stim-
ulation, which was not considered in the current analysis due to the 
potential antagonistic effect in comparison with anodal stimulation 
(Cochrane, 2019). The tDCS was mainly applied alone because only two 
studies tested tDCS coupled with cognitive training (see Table E in 
Supplementary Materials). Regarding memory assessment, only one 
study did not provide a baseline evaluation (Cochrane, 2019). Further-
more, follow-up assessments were only performed in one study, which 
precluded the assessment of the long-term effects. 

Multilevel meta-analysis, subgroup, and moderator analysis 
The 10 studies studying tDCS did not reveal significant heterogeneity 

among them (p = 0.567, Q = 26.11) and a pooled significant effect after 
tDCS was found for memory (p = 0.04, SMD = 0.20, 95 % CI [0.01 0.39]) 
(Fig. 4). Anodal tDCS over temporal regions also showed a significant 
improvement in memory abilities (p = 0.04, SMD = 0.32, 95 % CI [0.02 
0.62]) without a significant heterogeneity among comparisons (p =
0.64, Q = 4.27). On the other hand, anodal tDCS over left dorsolateral 
prefrontal cortex (DLPFC) did not reveal a significant effect in memory 
(p = 0.27, SMD = 0.16, 95 % CI [−0.12 0.43]), nor significant hetero-
geneity (p = 0.48, Q = 20.64). 

The subgroup analysis in types of memory revealed that the tDCS 
effect was only significant when recognition memory was assessed (p =

Fig. 3. Forest plot with pooled effect estimate from the follow-up evaluations after rTMS and underlying subgroup analysis concerning the brain region of 
stimulation. 
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0.04, SMD = 0.49, 95 % CI [0.02 0.97]). Moreover, a significant effect of 
the number of tDCS sessions was also found (p = 0.049, SMD = −0.09, 
95 % CI [−0.17 0]), thus suggesting that studies with one session had a 
larger effect size. All other moderators were not statistically significant 

Influential analysis and publication bias 
The influential analysis suggested the instability of the pooled effect 

estimate from post-tDCS evaluation because the significant effect 
became marginally significant each time one of four studies was 
removed (Boggio et al., 2009; Cespón et al., 2019; Cotelli et al., 2014; 
Gangemi & Fabio, 2020). Finally, the funnel plot suggests a lack of 
publication bias due to its symmetry (Figure A of Supplementary Ma-
terials) and its non-significant result in Egger’s regression test (p = 0.58, 
z = 0.56). 

Risk of bias 

The risk of bias was mostly labeled as “unclear” or “low risk” 

following the criteria of the Cochrane Risk of Bias tool (Higgins et al., 
2011). The domains mostly evaluated with “Unclear” were randomiza-
tion (4 out of 9 in rTMS; 7 out of 10 in tDCS), allocation concealment (7 
out of 9 in rTMS; 7 out of 10 in tDCS), and participant blinding (9 out of 
9 in rTMS; 10 out of 10 in tDCS). Most studies did not report the exact 
randomization process and how they concealed their allocation 
sequence. Moreover, the participant blinding was not assessed using the 
proper questionnaires (Bang et al., 2010). On the other hand, selective 

reporting was labeled as “low risk” in all studies except one tDCS study, 
in which data from a single memory task was retrieved, although 
another task was also performed. There were only two studies with a 
“high risk” of bias, one in tDCS and another in rTMS, whereas all the 
others were labeled as “low risk”. Both “high risk” studies showed a 
baseline imbalance in sociodemographic characteristics between the 
active and sham group. The rater blinding was evaluated mostly as “low 
risk” (8 out of 9 in rTMS; 8 out of 10 in tDCS). Finally, only one tDCS 
study was labeled as “high risk” considering the attrition bias, whilst all 
the other studies were labeled as “low risk”. Overall, the tDCS studies 
showed higher risk of bias in comparison with the ones with rTMS. The 
traffic light plots with the risk of bias are represented in Figures B, C, D, 
and E in Supplementary Materials. 

Safety assessment 

A total of 12 studies evaluated safety, specifically six studies during 
or after the use of tDCS and six for rTMS. Most AEs reported were minor 
and related to scalp sensations, namely tingling or discomfort. In the 
context of tDCS research, six out of ten studies evaluated the safety of the 
technique. Most of the studies, specifically five out of six, did not report 
any adverse effect (Boggio et al., 2009, 2012; Bystad et al., 2016; 
Gangemi & Fabio, 2020; Rasmussen et al., 2021). However, one study 
reported itchiness (52.9 %), tingling (31.4 %), discomfort (13.7 %), and 
a burning sensation (13.7 %), even though tDCS was tolerable for all 
participants (Liu et al., 2020). 

Fig. 4. Forest plot with pooled effect estimate from post-tDCS evaluations and underlying subgroup analysis concerning the brain region of stimulation.  
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On the other hand, it is noteworthy that a majority of rTMS studies, 
specifically six out of nine, assessed the AEs. Participants from two 
studies did not report any major adverse effects during or after rTMS 
(Bagattini et al., 2020; Yao et al., 2022). In one of the studies reporting 
AEs, eight out of 47 participants reported painful scalp sensations, or 
eyelid twitches, and tinnitus (starting from the most prevalent to the 
least prevalent) in active and sham stimulation; however, all partici-
pants stated that the events were tolerable (Wu et al., 2022). Likewise, 
another study with repetitive paired associative stimulation (rPAS) re-
ported 11 out of 16 AEs after active stimulation (two of them related 
with sleep), whereas seven out of 16 also reported after sham rPAS 
(Kumar et al., 2020). All the previous AEs were minor and included 
headache, pain/discomfort, fatigue and frustration in both groups. 
However, in one study, rTMS was not tolerated by two participants in 
the active group (5 %) and one in sham group (3 %) (Jia et al., 2021). 
One of the participants reported persistent scalp discomfort, while the 
other two reported transient fatigue. All the other participants did not 
report serious adverse effects (Jia et al., 2021). 

Discussion 

Our study showed that rTMS over frontal regions and tDCS over 
temporal regions can improve memory abilities in people with AD. 
However, the prolonged effect of rTMS showed a statistical tendency 
towards enhancing memory, whereas the long-term effects of tDCS 
could not be assessed due to insufficient data. Finally, it was noted that 
both techniques demonstrate safety in the population affected by AD, 
with predominantly minimal side effects. 

rTMS 

The primary factor contributing to the enhancement of memory in 
individuals with AD using rTMS was found to be the frontal stimulation 
interventions. These interventions were conducted in five out of the nine 
studies that examined the effects of rTMS. The improvement of memory 
of subjects with AD by frontal rTMS is in line with previous meta- 
analyses showing improved global cognition after rTMS (Teselink 
et al., 2021; Xiu et al., 2023; Zhang et al., 2022). The region of stimu-
lation with better results in global cognition was the DLPFC, which is a 
core region in working memory (Barbey et al., 2013) and consequently 
involved in long-term memory formation (Blumenfeld & Ranganath, 
2006). Not surprisingly, all the studies included in our subgroup analysis 
of frontal rTMS targeted the DLPFC. A prior investigation has already 
demonstrated that rTMS targeting the DLPFC can enhance memory 
abilities in individuals diagnosed with mild cognitive impairment and 
AD (Chou et al., 2022). 

Interestingly, subjects with AD exhibit less neuroplasticity in the 
DLPFC region as compared to controls, which is associated with 
impaired working memory (Kumar et al., 2017). The diminished cortical 
plasticity might be due to the synaptic damage within networks 
involving cortical and subcortical regions, which are degenerated during 
AD progression (Walsh et al., 2017). A recent study demonstrated that 
following a six-week program of 10 Hz rTMS over the left DLPFC, pa-
tients with AD showed a modest improvement in global cognition 
alongside an increase in neuroplasticity (Li et al., 2021). Likewise, one 
session of high-frequency rTMS over left DLPFC was also capable of 
modulating cerebral blood flow in the stimulation region and underlying 
areas involved in the default mode network (DMN) (Shang et al., 2018). 
Hence, our results combined with previous literature on brain func-
tioning highlight the significance of DLPFC as a target area for memory 
enhancement in subjects with AD using rTMS. 

On the other hand, the follow-up memory evaluations were con-
ducted in just six out of the nine trials that were included in our analysis. 
The follow-up memory scores in the six studies revealed marginally 
significant improvement (p < 0.1). Nevertheless, the influential analysis 
revealed that the effect, which was marginally significant, attained 

statistical significance (p < 0.05) after excluding Yao et al. (2022) using 
the leave-one-out technique. Our findings are in line with a previous 
meta-analysis that showed the potential for multi-session rTMS to elicit 
effects lasting up to 12 weeks in cognitive functions (Chou et al., 2022), 
despite demonstrating a smaller effect size when compared to the 
post-rTMS evaluation. Another trial testing 10 Hz rTMS for five weeks in 
AD patients observed an enhancement in ADAS-Cog until six months 
after the stimulation, even though this improvement was only detected 
in those who had the most favorable response to the treatment (Nguyen 
et al., 2017). Likewise, a prolonged effect of rTMS is also observed in 
neurophysiological markers such as the modulation of cortical excit-
ability after the stimulation (Pascual-Leone et al., 1994). In a recent 
randomized controlled trial assessing the effects of 20 Hz rTMS in pa-
tients with AD, it was observed that brain activity exhibited a sustained 
modulation for a duration of up to 24 weeks following the initiation of 
the stimulation program (Koch et al., 2022). Therefore, rTMS poses as a 
potential technique to modulate memory and associated neurophysio-
logical over an extended period. Nevertheless, it is necessary to conduct 
further investigations to comprehensively evaluate the long-term 
effectiveness of the rTMS and identify the optimal population to focus 
on. 

tDCS 

Our tDCS analysis included 10 studies and revealed a significant 
improvement in memory abilities in AD patients. The subgroup analysis 
suggested that tDCS showed greater effectiveness when applied to 
temporal regions as opposed to frontal regions. In our analysis of tDCS 
studies, two of the selected studies employed a single-session crossover 
design to compare the effects of temporal stimulation with frontal 
stimulation. Liu et al. (2020) reported significant improvement on a 
2-back task following temporal tDCS, as compared to frontal and sham 
stimulations. In another study, Boggio et al. (2009) observed an 
enhancement of recognition memory following the application of frontal 
and temporal tDCS in comparison with a sham condition. 

The potential benefit of focusing on temporal areas rather than 
frontal areas in AD could be explained by the alterations in the func-
tional connectivity observed in the medial temporal lobe during the 
early stages of the AD continuum (Berron et al., 2020). Moreover, these 
changes also occur during memory processing in patients with AD, as 
indicated by reduced activations in the medial temporal lobe and su-
perior temporal/inferior parietal associative areas in comparison to 
healthy controls (Rémy et al., 2005). These findings suggest a potential 
reason for the greater efficacy of temporal tDCS in individuals with AD 
compared to healthy controls. It appears that stimulating the DLPFC 
using tDCS is the most effective method for modulating cognitive 
functions, including memory, in healthy older adults (Indahlastari et al., 
2021) and in patients with Parkinson’s disease (Suarez-García et al., 
2020). Therefore, it appears that patients with AD experience more 
advantages from temporal tDCS, whereas healthy individuals or patients 
with other neurodegenerative disorders may find tDCS in different brain 
regions more advantageous. In addition, the lack of effect of frontal tDCS 
compared to the improvement observed following frontal rTMS could 
possibly be attributed to distinct neurophysiological effect of both 
techniques on functional networks. For instance, in one study with older 
adults, high-frequency frontal rTMS increased functional connectivity 
within DMN, which was accompanied with an improvement in memory 
capabilities (Cui et al., 2022). On the other hand, research on tDCS 
studies has not yielded conclusive evidence on its effects on the DMN, 
and it has primarily been examined in younger adults (Coulborn & 
Fernández-Espejo, 2022; Peña-Gómez et al., 2012). Nevertheless, it is 
important to acknowledge that although DMN is a functional network 
altered in AD, it is not the only network that is impacted (Agosta et al., 
2012), and as such future studies should probe the mechanistic effects of 
brain stimulation techniques in several brain networks. 

Moreover, the tDCS effect size was not as large as the one observed in 
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the rTMS analysis (SMDtDCS = 0.20 vs. SMDrTMS = 0.44). This discrep-
ancy might be explained by differences between both techniques such as 
higher spatial resolution and neurophysiological specificity in rTMS 
(Priori et al., 2009). For instance, a study comparing the neurophysio-
logical effects of both techniques showed that 10 Hz rTMS increased the 
cortical excitability in the stimulation region in comparison with tDCS 
(Simis et al., 2013). Besides that, we should also underscore that our risk 
of bias analysis revealed higher risk in the tDCS studies in comparison 
with rTMS, namely in randomization, allocation concealment, selective 
reporting, and rater blinding. However, the comparative effect of these 
two techniques on brain functioning in clinical populations is still not 
clear, necessitating additional investigation in future studies. 

Safety 

In the current study, we also intended to analyze the safety of each 
technique in AD patients. A total of twelve studies analyzed the AEs in 
both techniques where the most prevalent AE was related to scalp sen-
sations or discomfort. In general, every study reported minor and tran-
sient AEs that were tolerable in both techniques. Only one study using 
rTMS reported two dropouts (4 % of the study sample) due to persistent 
scalp discomfort and fatigue. Taken together, our findings suggest the 
safety of both techniques in the AD population in line with previous 
evaluations in other clinical populations (Bikson et al., 2016; Rossi et al., 
2021). In specific, the transient AEs observed in our study are consistent 
with those reported in other studies in chronic pain Cardenas-Rojas et al. 
(2020), major depressive disorder (Perera et al., 2016), non-fluent 
aphasia (López-Romero et al., 2019) and in healthy subjects (Poreisz 
et al., 2007). 

Limitations 

The current meta-analysis comprises a limited number of studies 
addressing the effect of tDCS and rTMS on memory abilities. Most 
studies evaluate the efficacy of both techniques in global cognition 
(Teselink et al., 2021; Xiu et al., 2023; Zhang et al., 2022), which makes 
it more difficult to comprehend how they affect a specific cognitive 
process. In particular, NIBS may have different effects depending on the 
stimulation parameters and underlying brain network because memory 
is a broad domain that may be divided into various subprocesses (e.g., 
STM, LTM, or WM). 

Additionally, most of the studies considered in our meta-analysis 
enrolled AD participants based on the probable AD criteria from 
NINCDS–ADRDA (Dubois et al., 2007) (see Table D in Supplementary 
Materials). One significant limitation of this diagnostic approach is that 
it relies heavily on clinical outcomes, with minimal incorporation of 
biomarkers. However, the probable AD criteria from NINCDS–ADRDA 
demonstrated sensitivities and specificities larger than 80 % when 
identifying patients with AD compared to other neurodegenerative 
disorders (Dubois et al., 2007). Likewise, studies using only clinical 
criteria, such as the Diagnostic and Statistical Manual of Mental Disor-
ders Fifth Edition (DSM-V), excluded anyone who had a diagnosis of a 
different neurodegenerative (Bystad et al., 2016; Jia et al., 2021; Wei 
et al., 2022). As a result, our sample of studies might comprise a het-
erogeneous population with distinct genetic and stochastic profiles and 
consequently divergent pathophysiology (Frisoni et al., 2022). Future 
research using NIBS on AD should prioritize identifying AD pathology to 
ensure accurate disease identification and a more uniform study 
population. 

Lastly, only one of the tDCS studies examined the long-term effect, 
therefore, our meta-analysis did not include a memory follow-up eval-
uation in the tDCS analysis. Likewise, even though it was possible to test 
the follow-up evaluation in rTMS, the number of studies was also low 
and with distinct follow-up periods, which suggests future AD studies to 
address how both techniques might be able to enhance memory in the 
long-term. 

Conclusion 

Overall, the current study showed that rTMS and tDCS can improve 
memory in AD patients. The rTMS yielded better results when admin-
istered in frontal regions, exhibiting a higher effect size compared to the 
tDCS, which showed greater efficacy when provided in temporal areas. 
However, the reason behind the superior efficacy of rTMS in frontal 
regions and tDCS in temporal regions is still not clear. Moreover, our 
results are consistent with prior meta-analyses testing the effect of both 
techniques on global cognition in AD. This is of particular interest 
because memory impairments are the most common symptom in AD, 
which can suggest that the similar effects observed in global cognition 
might rely mainly on memory ability and frontotemporal networks. 
Lastly, our analysis also suggests the safety of both techniques, as most 
of the studies examined reported minimal and transient side effects. 
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Rémy, F., Mirrashed, F., Campbell, B., & Richter, W. (2005). Verbal episodic memory 
impairment in Alzheimer’s disease: a combined structural and functional MRI study. 
NeuroImage, 25(1), 253–266. https://doi.org/10.1016/J. 
NEUROIMAGE.2004.10.045 

Rohatgi, A. (2017). WebPlot Digitizer. 
Rossi, S., Antal, A., Bestmann, S., Bikson, M., Brewer, C., Brockmöller, J., 
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