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Abstract 

In the present investigation, AlSi17 Aluminum alloy closed-cell foam is fabricated through Melt route process using Calcium 

powder as thickening agent and Titanium hydride as foaming agent along with the addition of 10wt% Silicon Carbide particles. 

The effect of pore and pore size on the deformation mechanism under static loading conditions is studied. Also, the fabricated 

foam properties are analyzed after the completion of the test. The strain rate loading conditions of the compression test conducted 

on the Al foam lies in the range of 10-3s-1 to 10s-1 and the above investigations are carried out according to the loading conditions. 

The Artificial Neural Artwork (ANN) approach is employed for predicting the compressive deformation of the fabricated Al alloy 

foam using simulations. The Plateau stress data is obtained from the compression tests and the neural network functions are 

successively modeled and later the specific energy absorption (SEA) is calculated from the plateau stress. The simulation results of 

the ANN are in good agreement with the compression test results and the predictions are performed with highest accuracy. 
© 2017 Portuguese Society of Materials (SPM). Published by Elsevier España, S.L.U.. All rights reserved. 
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1. Introduction* 

The defined characteristic of the commonly available 

aluminum foam is its usefulness as a light weight 

material. Due to its light weight, high strength and 

good stiffness, it is more suitable for crash energy 

absorption. Several times, it has been observed that 

the aluminum foam is filled with metal tube in its 

outer core, i.e. foam filled structure is used in 

different energy absorption applications [1-3]. 

Basically aluminum foam is classified into two 

categories (i) Open Cell, (ii) Closed Cell. Closed cell 

foams do not have interconnected pores. Normally the 

closed cell foams have higher compressive strength 

due to their structures. However, closed cell foams are 

also generally denser, require more material, and 
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consequentially more expensive to produce. The 

closed cells can be filled with a specialized gas to 

provide improved insulation. The closed cell structure 

foams have higher dimensional stability, low moisture 

absorption coefficients and higher strength compared 

to open cell structured foams. Open-cell metal foams 

are composed of interconnected pores. Since a fluid 

can circulate through the material, they are best fitted 

for heat transfer. Open cell structured foams contain 

pores that are connected to each other and form an 

interconnected network which is relatively soft. Open 

cell foams will fill with whatever they are surrounded 

with. If filled with air this could be a relatively good 

insulator, but if the open cells are filled with water, 

insulation properties would be reduced. Foam rubber 

is a type of open cell foam. All types of foam are 

widely used as core material in sandwich structured 

composite material [7]. Now days the closed cell 

aluminum foam is generally used for compression 

load action as it has some good mechanical properties 

i.e. low density range, average diameter of cell [1-5]. 

© 2017 Portuguese Society of Materials (SPM). Published by Elsevier España, S.L.U. All rights reserved.
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Basically there are nine methods to produce the 

aluminum foam, but gradually new techniques and 

improved methodologies are introduced for better and 

cheaper production. Initially melt-route processes 

were employed to produce the closed cell aluminum 

foam commercially. Mechanical behavior of 

composite matrix material was modelled using 

artificial network [6]. Mechanical properties were 

predicted to ceramic tool based on artificial neural 

network by Huang et al [8]. Artificial neural networks 

(ANN) are broadly known as a technology to tackle 

complex and ill-definitive problems. They are 

particularly useful in modeling non-linear problems, 

where analytical solutions gets rather complex and 

time taking. In such case, neural network is called as 

non-linear statistical data modeling tool. Also the 

compressive properties, such as, plateau stress, 

characteristics of closed cell Al foams studied by 

using structural properties of foams are given as input 

to the ANN system. The results of the ANN were 

found to be in good agreement with the experiment 

data. It was also found that these ANN models help 

the foam manufacturers to prepare a particular 

database of the foam properties [5]. They learn from 

the examples by constructing an input-output 

mapping. An artificial neural network (ANN) is an 

alternative way to challenge complex and ill- 

definitive problems. Neural network is the same as 

non-linear statistical data modeling tool having 

capability to learn and simplify by simulating realistic 

outputs for inputs. They work with the help of input

output mapping [5-6,8,9-16]. An ANN model was 

developed to study the association between metallic 

alloy composition, its micro-structure and its 

stretchable properties. The developed model may be 

used for predicting compression properties and to 

optimize the processing parameters [17-28]. 

In this work, melt route technique is used for 

making aluminum alloy foam and the melt viscosity is 

controlled by the addition of Ca thickening and TiH2 

as foaming agent. This paper focused on the study of 

compression properties of AAFs with relative 

densities ranging from 0.26 to 0.37 and with an 

average pore diameter, its variation ranging from 1.1 

mm to 1.8 mm using ANN model prediction. The 

input variables are strain rate, average pore diameter 

and relative density. AAN models are developed only 

for pr pl), capacity 

depending on the input variables. The aim of this 

illustrated work is to study the developed AAN model 

under which experimental analysis was carried out to 

describe the energy absorption behaviour of 

aluminum alloy foam in quasi-statics axial 

deformation.  

2. Experimental methodology 

2.1. Microstructural analysis 

Small piece of 10 mm x 10 mm were cut from the 

foam billets for microstructural observation of foam 

sample. The cut pieces were cold mounted in such a 

way that the exposed cells were filled with the cold 

mounting materials in order to avoid damaging of cell 

walls during grinding and polishing. The polished 

microstructures were examined under field emission 

scanning electron microscope (FE-SEM; Model: 

Supra 55, Carl Zeiss, Germany). Etched samples were 

sputtered with a thin layer of platinum prior to FE-

SEM observations. The micro-architectural 

characteristics of foam were studied by quantitative 

metallographic and image analysis technique. Figure 1 

show the pore size distribution of AlSi17 alloy foam 

having 78% pores in the 0.5-1.5 mm range. This was 

captured using Material Pro Software [7, 12]. 

 

 

Fig. 1. Pore size distribution as a function of the number of cell 

pores for AlSi17 AAFs with 10% SiC. 

2.2. Compression test 

Square samples of size 20 mm x 20 mm x 25 mm 

were used for compression testing of AlSi17 alloy 

foam. The foam samples were finally cut with slow 

speed diamond cutter to avoid cell loss and wall 

thickening. All sample tests were carried out using a 

universal testing machine (INSTRON: 8801) at strain 
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rate of 10-3s-1 to 10s-1. In the meantime, the load-

displacement data was recorded and it was converted 

to stress-strain graph. 

absorption (Ev) of these materials determined from 

compression stress-strain curves [4,7] were compared 

with each other. 

3. Results and discussion 

3.1. Porosity and pore geometries 

Porosity was the vital parameter of the foam 

materials, to expose during volume fraction of the 

pores as an eventual product. The foam porosity was 

calculated from the mass (m) and volume (v) of the 

sample. Other significant parameters were pore size of 

this material. Porosity and pore size were difficult to 

assign for microstructure using the traditional 

approach due to pore size distribution of foam, it was 

also analyzed the size of the individual pore of the 

foam sample found on the outer side was purposive by 

software perusal. The small slice of foam sample was 

being taken to determine the pore size. It is noted that 

the cell wall thickness of AAFs is varied from the 

length of casting billet and foaming temperature. The 

density of foam depends upon the some basic 

processes parameters i.e. thickening agent and 

foaming hydride power, which in turn has influenced 

the porosity and pore size. Figure 2 (a) shows the top 

portion of foam slice, (b) indicates the middle portion, 

and (c) shows the bottom portion of billet slice. Figure 

3(a) and (b) gives the pore structure, hence the pore 

structure depends on balancing the viscosity and 

interfacial energy of foaming liquid and presence of 

pressure difference between cell throughout the 

processing of foam. Basically the aluminum alloy 

liquid system exhibits the high interfacial energy, 

after making foam, the cell wall instantly breaks 

because of presence of high surface tension in liquid.  

 

 

 

 

 

 

 

 

 

 

Fig. 2. Thickness of the dense surface in different portion of AlSi17 

Al-alloy foam: (a) Top surface, (b) Middle surface, (c) Bottom 

surface. 

 

Fig. 3. Pore geometries: (a) spherical, (b) polyhedral shape of 

AlSi17 Al-alloy foam. 

If the pressure is increased in the foaming processes 

then also the cell size will decrease [26-28].  

3.2. Microstructure characterization and energy 

dispersive X-ray analysis (EDXA) 

Microstructure of SiC used in making AAFs shows 

that the SiC particles are perfectly aligned with the 

average cell wall thickness of this foam. The TiH2 

powder with average particle size range of 20

and 44  

The micro structural analysis has been carried out in 

this investigation to explore about the characteristics 

of the Al alloy composite foams for the forty five 

work piece. The optimal electronic microscope is used 

to examine the micro structure; the Keller's etchant 

(Distilled water Nitric acid Hydrochloric acid 

Hydrofluoric acid) is applied on the upper surface in 

correct proportion to expose their grain structure and 

orientations of work piece of foam slice, is displayed 

in Figure 1 [4,6,19]. The micro structural analysis 

carried is out to obtain the optical micrographs in low 

and high magnification of the Al alloy composite 

foam to understand the wall thickness and distribution 

characterization of SiC particles. In this study, various 

micrographs have been discussed in Figure 4 and 5. 

Magnified view of micrograph of the cell wall of 

AAFs is shown in Figure 4(a) and Figure 4 (b) shows 

the microstructure of AlSi17+10%wt SiCp composite 

with uniform distribution of SiC particles and 

reasonably good bonding between SiC and the matrix. 

It can clearly observed that Figure 4 identifies the two 

different zones. It is evident that the cell wall of AAFs 

contains SiC particles, uniformly distributed in the 

matrix (under circle marked) over the cell wall of Al 

alloy composite foam. 
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Fig. 4. (a) and (b) reveal the microstructure behavior of AAFs by 

FE-SEM technique. 

These cell walls are dense in nature. This is because 

of the fact the bubble size normally depends on melt 

viscosity and surface tension which are primarily 

governed by the melt temperature and the amount of 

decreases with increase in TiH2 concentration used for 

foaming. As the number of cells increases and the cell 

size remained unchanged, it is expected that volume 

fraction of porosity will increase with increase in TiH2 

decrease. Figure 5 shows the energy dispersive X-ray 

analysis (EDXA) at various locations. This figure 

indicates the existence of intermetallic and oxides on 

the cell wall of aluminum alloy (AlSi17) foam [19]. 

 

 

Fig. 5. Microstructure of AlSi17 alloy foam cell wall with EDAX 

analysis at different point. 

3.3. Compression deformation and energy absorption 

mechanism 

The compression deformation behavior was studied 

by analyzing the compressive stress-strain diagram of 

AAFs. Experimentally it is witnessed for each sample 

that foam sample follows regular deformation 

mechanism, no sample is seen to go out of general 

deformation pattern. During the whole sample testing 

no sample faced unpredictable buckling failure. So it 

is noted that AAFs are not affected by deformation 

mechanism. The present work has investigated the 

plateau stress of aluminum alloy foam (AlSi17 with 

10wt% SiCp) and the potential of a neural network 

approach to correlate and predict its performance with 

the testing condition. Effect of various input 

parameters, i.e., average pore size, strain rate and 

relative density have been considered for the present 

study purpose. The range of these parameters is 

predicted in Table 1. In this step, three same samples 

were prepared for each state and later tests or 

investigations are applied to all the samples to avoid 

accidental errors". 

Table 1. Parameters used for ANN formulation. 

Sl. No Significant 

Parameter 

Parameters Range 

1 Average pore 

Diameters (mm)  

1.1-1.9 

2 strain rate (s-1) 0.001-10 

3 Relative density  0.29-0.34 

 

The compression stress-strain curve of AAFs at a 

strain rate of 10-2s-1 with relative density (RD = 0.29) 

and all the three regions as generally observed in 

conventional foam material are shown in Figure 

pl) is considered to be the 

average stress in plateau region and its increase with 

increase in RD. It is evident that the dense composite 

does not show any sharp yield point and transforms 

smoothly from yield to plastic region. After yielding, 

the dense composite exhibits work hardening 

phenomenon. Figure 6 (b) shows the deviation of 

plateau stresses, specific energy absorption along with 

relative densities at a diverse strain rate. It is evident 

that the relation between plateau stress and RD 

follows the power law irrespective of strain rate. The 

effect of higher strain rate is better than that of which 

is at lower strain rate and it also indicates the plateau 

stress does not follow any kind of precise trend with 

strain rate [19-20, 25]. 

The specific energy absorption with diverse foam has 

been calculated from their stress strain curves, which 

varies from 1.68MPa to 4.32MPa and the densities 

(0.77 to 1gmcc-1) using the relationship in Eq. 1 [19]: 

 

                       (1)  
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Fig. 6. (a) Stress-strain curve at a stain rate 10-2 s-1, (b) experimental 

results between plateau stress, specific energy absorption and 

relative densities. 

where Ev is specific energy absorp pl is the 

0 is the 

d is the strain at any 

instant of deformation (densification strain). The 

energy absorption (Ev) of the individual material was 

determined by superimposing fine grids on the stress 

strain curves and by counting the number of grids 

covered by the stress-strain curved up to desired strain 

level. The energy absorption by a single grid point is 

calculated from multiplication of its dimensions along 

stress axis with that along strain axis. The energy 

absorption of foams can be defined through the 

numerator of relation as stated in Eq. 1.The 

compression stress-strain curve for AAFs for various 

relative densities at fixed strain rate 10-2 s-1 is shown 

in Figure 7(a). This figure shows that the stable strain 

rate increases with increase in relative density (0.29 to 

0.34) and Figure 7(b) shows the variation of 

compression stress-strain curve with stable relative 

density (0.29). It is evident from this curve that the 

plateau stress lies in small range with wider variation 

of strain rate (10-3 s-1 to 10 s-1) [4, 12, 19-20]. 

 

Fig. 7. (a) Compression stress-strain curve of AlSi17 alloy foam for 

various relative densities at fixed stain rate 10-2s-1, (b) variation of 

compression stress-strain curve at diverse strain rates. 

3.4. Artificial neural network (AAN) and simulation 

characterization 

Artificial neural network is a study inspired from 

biological networks of human brain. Naturally the 

brain learns from experience in the same way we train 

the neural network to do certain actions. The basic 

building blocks of ANN are neurons. Each neurons 

works as shown in the F

given inputs are x1, x2, x3

weighted with wi1, wi2, wi3 .win. These weighted 

inputs are summed along with a bias bi. These 

summation values are given as input to the transfer 

function f () of the neuron which gives output yi. 

                           (2) 

                           (3) 

(a) 
(b) 

((

(b) 

(a) 

(b) 
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Fig. 8. A non-linear model of ANN. 

A simple ANN model is characterized by an input 

layer, hidden layers and output layer. The input layer 

has several neurons which serve as inputs to the ANN. 

The output layer has one or more neurons depending 

upon the number of outputs required from the neural 

network. Hidden layers consist of several numbers 

number of neurons; these depend upon the accuracy 

of neural network. Each neuron is connected to all 

neurons in the previous layers by respective weights 

and computed using activation function like tansig, 

logsig, purelin etc. An approximate function is framed 

between the inputs and outputs by modifying the 

weights in the neural network by using back 

propagation algorithm. It is a mean square algorithm, 

which modifies weights (Eq. 5) in order to reduce the 

mean squared error (MSE) (Eq. 4) between the 

experimental values and outputs of ANN. 

                         (4) 

= actual outputs 

= outputs of ANN 

                               (5) 

Where  

A feed-forward nature of neural network is used as 

shown in the Figure (9) in which the information 

flows in forward direction, from input neurons, 

through hidden neurons, to the output neurons. The 

strategy and training of AAN is done by changing the 

number of hidden layers, number of hidden neurons, 

transfer functions of the neurons, training function of 

the network and adaptive and learning functions of the 

network using neural network toolbar from MATLAB 

software. 

The plateau stress values of the experimental analysis 

for 45 samples varying from 2.10 MPa to 5.4 MPa. 

 

Fig. 9. Graphical presentation of the feed-forward ANN model. 

The variable parameters for the 45 samples are strain 

rate, average pore diameter and relative density. The 

input processing parameters for ANN were listed in 

Table 2. In this ANN model feed-forward back 

propagation technique is used and is trained in 

MATLAB R2015a. It uses supervised learning for 

training the data with the use of inputs and outputs. A 

large number of neural networks are tested to train the 

neural network by changing the number of hidden 

layers, number of hidden neurons and the activation 

functions. The best topology is selected when the 

trained and tested data errors are satisfactory. The best 

topology for our ANN model is 3-10-1(3 neurons in 

input layer, 10 neurons in the hidden layer and 1 

neuron in the output layer). The activation function 

Eq. 

the activation function used in the output layer neuron 

Eq.  

Logsig function: 

                             (6) 

Tansig function:- 

 -1             (7) 

For training the neural network levenberg-Marquadt 

optimization method is used. The predicted plateau 

stress values through ANN are plotted against 

experimental values for studying correlation as shown 

in the Figure 10(a).The co-

obtained between predicted and target data is 0.9464, 

which shows very good resemblance between the 

predicted values and experimental values. The 

experimental value, predicted plateau stress values 

and average pore diameter is plotted against the 

samples as shown in the Figure 10(b). 
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Fig.10. (a) Compared the simulated results with experimental of 

plateau stress with perfect line, (b) plateau stress variation both 

condition (experimental and AAN) with average pore diameter. 

Table 2. Input processing parameters for ANN architecture. 

Sl. no Strain rate 

(s-1) 

Average pore size 

(mm) 

Relative 

density  

1 0.001 1.2 0.29 

2 0.001 1.2 0.29 

3 0.001 1.3 0.30 

4 0.001 1.4 0.31 

5 0.001 1.4 0.31 

6 0.001 1.3 0.30 

7 0.001 1.5 0.32 

8 0.001 1.4 0.32 

9 0.001 1.3 0.30 

10 0.01 1.6 0.33 

11 0.01 1.3 0.30 

12 0.01 1.4 0.31 

13 0.01 1.4 0.31 

14 0.01 1.3 0.30 

15 0.01 1.7 0.34 

16 0.01 1.7 0.34 

17 0.01 1.6 0.33 

18 0.01 1.4 0.32 

19 0.1 1.2 0.29 

20 0.1 1.8 0.34 

21 0.1 1.2 0.29 

22 0.1 1.6 0.33 

23 0.1 1.6 0.33 

24 0.1 1.5 0.32 

25 0.1 1.5 0.32 

26 0.1 1.2 0.29 

27 0.1 1.4 0.31 

28 1 1.6 0.33 

29 1 1.3 0.30 

30 1 1.5 0.32 

31 1 1.9 0.34 

32 1 1.8 0.34 

33 1 1.9 0.34 

34 1 1.3 0.30 

35 1 1.4 0.31 

36 1 1.2 0.29 

37 10 1.3 0.30 

38 10 1.2 0.29 

39 10 1.5 0.32 

40 10 1.3 0.30 

41 10 1.2 0.29 

42 10 1.5 0.32 

43 10 1.4 0.31 

44 10 1.3 0.30 

45 10 1.6 0.33 

4. Conclusions 

The effect of strain rate on aluminum alloy (AlSi17) 

foam reinforced with 10%wt. SiC particle has been 

optimized under the compression loading conditions. 

The following conclusions can be drawn from the 

above study; Energy absorbing characteristic behavior 

of AlSi17alloy foam with different strain rate has 

been examined experimentally. These kinds of 

deformation procedure were observed during the 

crushing of foam. Most of aluminum alloy foam 

crushing ended to exhibit the regular mode collapse. 

The aluminum alloy foam has the maximum load 

(a) 

(b) 
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carrying ability and high energy absorption behaviour. 

AAN models are developed for the prediction of 

compressive properties (plateau stress) of AAFs by 

the help of experimental database. Maximum number 

of experimental data is established from the quasi-

static compression test for analyzing the compression 

deformation behavior i.e. plateau stress separately and 

SEA capacity along with their mechanical properties. 

The input data selected for evolving the ANN model 

are the mechanical characteristics of AAFs i.e. the 

strain rate, average pore diameter and relative density. 

In the meantime using the ANN modeled higher co-

target data is 0.9464, which shows very good 

resemblance with the predicted values and 

experimental values.  
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