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Abstract In the health sciences it is quite common to carry out studies designed to determine
the influence of one or more variables upon a given response variable. When this response
variable is numerical, simple or multiple regression techniques are used, depending on the
case. If the response variable is a qualitative variable (dichotomic or polychotomic), as for
example the presence or absence of a disease, linear regression methodology is not applicable,
and simple or multinomial logistic regression is used, as applicable.
© 2011 SEICAP. Published by Elsevier España, S.L. All rights reserved.

Introduction

In the early 1960s, Cornfield et al.1 were the first to use
logistic regression (LR). In 1967, Walter and Duncan2 used
this methodology to estimate the probability of occurrence
of a process as a function of other variables. The use of LR
increased during the 1980s, and at present it constitutes one
of the most widely used methods in research in the health
sciences, and specifically in epidemiology.

One of the aims in epidemiology is to study those factors
which at a given moment affect the existence of a health
problem, and to control the dimension of the latter, as well
as to construct models with predictive capacity that can
assess the mentioned health problem.

The objective of this procedure is to establish the
best model for explaining a qualitative dichotomic vari-
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able Y [0,1], called a response or dependent variable,
that will serve to explain whether an individual has a
health problem or not, based on another series of vari-
ables called covariables, predictor variables or simply
independent variables X1, X2, X3, . . ., Xm indicating the char-
acteristics of the subject, and which may be both discrete
and continuous. When the response variable (Y) is of the
dichotomic type, we refer to logistic regression, and when
the dependent variable (Y) is qualitative with more than two
categories (polychotomic), we refer to multinomial logistic
regression.

The logistic regression model is very appropriate for
addressing issues of this kind, provided a sufficiently numer-
ous and well-distributed sample is available. In addition,
in designing the study, and following an adequate litera-
ture search and with good knowledge of the subject, all
the important variables for explaining the response variable
must be taken into account.

In addition to avoiding the limitations of linear regression
when the result variable is dichotomic, this technique makes
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it possible to interpret the parameters in an easy manner in
terms of odds ratios (ORs).

The present article describes binary and multinomial
logistic regression, its calculation, and checking of the
assumptions for application, accompanied by an illustrating
example with the shareware R program3.

Prior definitions

Before starting with the logistic regression model, a
reminder will be provided of a series of concepts, which
later on will contribute to understanding the article better.

Risk or probability

The number of cases in which the event occurs, divided by
the total number of cases or risk of occurrence of the event.

Example: 20 out of every 200 newborn infants have
asthma. The risk of asthma is therefore 20/200 = 10%.

Odds

The number of cases in which the event occurs, divided by
the number of cases in which the event does not occur.

Continuing with the previous example: odds of
asthma = 20/180.

The risk of having offspring with asthma is seen to
increase in smoking women, with a frequency of 10 cases out
of every 40 smoking women. In this example the risk = 10/40
and odds of asthmatic newborn infant (NB) = 10/30.

For measuring the intensity of the relationship between a
given type of exposure (smoking) and a certain effect (asth-
matic NB), we use ‘‘measures of strength of association’’.
These measures of association never measure causality, vary
according to the design of the study, and are represented by
the relative risk and odds ratio.

Relative risk (RR)

Ratio between the risk of asthmatic NBs of smoking mothers
and asthmatic NBs of non-smoking mothers.

Example: RR = (10/40)/(20/200) = 2.5.

Odds ratio

Ratio between the odds of asthmatic NBs exposed to smok-
ing mothers and the odds of asthmatic NBs not exposed to
smoking mothers.

Example: OR = (10/30)/(20/180) = 3.
The RR is intuitive and easier to interpret than the OR,

although the latter is easier to calculate and can be made
in any design, since RR cannot be used in case-control or
retrospective studies.

The usual approach is to determine whether the existing
conditions are suitable for allowing OR to be a good estima-
tor of RR, and in this case we calculate OR and interpret it
as RR.

In order for OR to be a good estimator of RR, the following
must apply:

a) The frequency of disease is low (<10%).4

b) The controls are representative of the population from
which the cases are drawn.

c) The cases offer good representation of the population of
cases. To this effect it is always preferable for the cases
to be incident cases, not prevalent cases, i.e., new cases
rather than cases already observed at the start of the
study period.

Let us examine the interpretation of these two measures:

RR = 3 indicates that smoking women are three times
more likely to have asthmatic offspring than non-smoking
women.
RR = 1 indicates that there is no association between the
effect (smoking mother) and the cause (asthmatic NB).
RR > 1 indicates that there is a positive association, i.e.,
the presence of the risk factor is associated to a greater
frequency of the event.
RR < 1 indicates that there is a negative association, i.e.,
there is no risk factor, but rather a protective factor.

Both RR and OR have no dimensions and take values
between zero and infinity. Thus:

OR = 1 is interpreted as indicating that there is no such risk
factor, since the odds for the exposed are the same as those
for the non-exposed.
OR > 1 is interpreted as indicating that there is a risk fac-
tor, since the odds of the event occurring in response to
exposure to the factor are greater than in the case of
non-exposure.
OR < 1 is interpreted as indicating that the odds of the event
occurring in those exposed to treatment are lower than in
the case of those not exposed to treatment, and thus we
are in the presence of a protective factor.
OR has no dimensions and takes values between zero and
infinity.

Binary logistic regression

The logistic regression model

Logistic regression models are statistical models in which an
evaluation is made of the relationship between:

- A dependent qualitative, dichotomic variable (binary or
binomial logistic regression) or variable with more than
two values (multinomial logistic regression).

- One or more independent explanatory variables, or covari-
ables, whether qualitative or quantitative.

In this section we describe the situation in which we
start with a response variable (dependent variable) with two
possible values (become ill or not become ill), and wish to
examine the effect upon it of other variables (predictors or
independent variables).

Definition of the best model depends on the type and
objective of the study. The model usually has two types of
objective: predictive or explanatory.
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In a model with predictive objectives we aim to establish
a parsimonious model, i.e., a model involving the least num-
ber of variables that best explain the dependent variable.

In the case of a model with explanatory objectives, we
aim to study the causal relationship between a ‘‘cause’’
variable and an ‘‘effect’’ variable, with due control of the
possible confounding variables (defined in Section ‘Interac-
tion and confounding factors’) or effect modifying variables
(interaction) in this causal relationship.

It is important to take this into account, since it leads to
completely different modelling strategies. Thus, in the case
of a predictive model, the best option is a model offering
more reliable predictions, while in the case of a model aim-
ing to estimate the relationship between two variables, the
best option is considered to be a model offering a more pre-
cise estimation of the coefficient of the variable of interest.

In explanatory models with variables presenting statis-
tically significant coefficients but whose inclusion in the
equation of the model does not modify the value of the coef-
ficient of the variable of interest, these will be excluded
from the equation, since no confounding factor is involved
in the causal relationship between the ‘‘cause’’ and the
‘‘effect’’ variables, and thus the relationship between these
two variables is not modified if the third variable is taken
into account.

In predictive models, if we have a variable with statisti-
cally significant coefficients, it is included in the equation,
since in this case we are seeking more reliable predictions.

A logistic regression model is very useful in the following
circumstances:

- Given a set of values of the independent variables, we
wish to estimate the probability that the event of interest
will occur (e.g., falling ill).

- Evaluation of the influence each independent variable has
upon the response, in the form of OR (since this is the value
resulting from the equation).

Construction of the model:
We start from the univariate case, i.e.:

- Y: dichotomic dependent variable, with response 0 when
the event does not occur (absence of event) and response
1 when the event is present (event).

- X1: independent variable, which may be of any nature,
qualitative or quantitative.

We wish to relate the true proportion p of individuals
presenting a certain characteristic (e.g., being ill) to the
value of a certain explanatory variable X1 as possible risk
factor. If linear regression is performed, and in order to use
the data to estimate the coefficients ˇ0ˇ1 of the equation:

p = ˇ0 + ˇ1X1

The above leads to absurd results, since p takes values
between 0 and 1, while in the regression model we assume
that p follows a normal distribution and therefore should be
between −∞ and +∞. In order to avoid this problem, it is
common to define a binding function f(p) between −∞ and
+∞, and then see whether we can assume the classical lineal

model.5 In this way a normal distribution for the dependent
variable f(p) is obtained, transforming the above equation
into the expression:

f(p) = ˇ0 + ˇ1X1 + e

where ‘‘e’’ are the residuals, i.e., the variability not
explained in the model, as defined in the linear regression
article.5

In the statistical setting it is common to use logit transfor-
mation: f(p) = ln{p/(1 − p)}. With this transformation, the
simple logistic model is:

y = logit(p) = ln
p

1 − p
= ˇ0 + ˇ1X1 + e

Or, equivalently:

p =
1

1 + exp − (ˇ0 + ˇ1X1)
+ e

For the multivariate case, the above expression is gener-
alised to the case in which there are k independent variables
or risk factors (X1, X2,. . .Xk), based on the expression:

y = ln
p

1 − p
= ˇ0 + ˇ1X1 + ˇ2X2 + · · · + ˇkXk + e

Or in terms of probability:

p =
1

1 + (exp − (ˇ0 + ˇ1X1 + · · · + ˇkXk))
+ e

The exponentials of the coefficients ˇi associated to the
independent variables are interpreted as the OR of suffering
the disease in question (or of occurrence of the event) for
each increase in the independent variable, adjusting for the
rest of independent variables.

The truly important aspect of the logistic regression
model is that we can jointly analyse various factors or
variables, with a view to examining how they can affect
occurrence or non-occurrence of the study event.

Coding and interpretation of the coefficients of the
model

Coefficients of the logistic model as risk quantifiers

It is advisable to adhere to the following recommendations
when coding the variables of a logistic regression model,
since it facilitates interpretation of the results:

- Dependent variable: we code as 1 the occurrence of the
event of interest, and as 0 the absence of the event.
Example: 1: disease yes, 0: disease no.

- Independent variables: these may be of different types:
- Numerical variable: in order to introduce the variable in

the model, it must satisfy the linearity hypothesis,6 i.e.,
for each unit increase in the numerical variable, the OR
(exp Bj) increases by a constant multiplicative value. In
this case we can use the variable as it is in the model.If
the linearity hypothesis is not met, we can transform
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the numerical variable, categorising it.When the vari-
able is continuous, the associated OR is interpreted as
the increase in risk per unit increase in the analysed
covariable, i.e., if the risk factor were age, the result
variable would be having or not having the disease, and
if the OR were 1.87, then this value would be inter-
preted as indicating that for each additional year of age
of the subject, the risk of suffering the disease increases
by 1.87. In other words, the probability of suffering the
disease increases 87% for each additional year of age,
adjusting for the rest of variables of the model in the
multivariate case.This is seen to be a model in which
the increase or decrease in risk on changing from one
factor value to another is proportional to the change,
i.e., to the difference between the two values, but not
to the starting point.

- Dichotomic variable: we code as 1 the case believed
to favour occurrence of the event, while the opposite
case is coded as 0, i.e., we code as 1 those individuals
exposed to a supposed risk factor, and as 0 those indi-
viduals not exposed to the mentioned factor.Thus, if we
code smoking mothers as 1 and non-smoking mothers as
0, and the event of interest is taken to be an asthmatic
child (coded as 1) versus a non-asthmatic child (coded
as 0), and we obtain OR = 2.23, then it can be concluded
that smoking mothers are at a 2.23-fold greater risk of
having an asthmatic child than non-smoking mothers.
Alternatively, this can be interpreted as indicating that
the risk of having a child with asthma in the case of a
smoking mother is a little over twice as great as in the
case of a non-smoking mother, in all cases adjusting for
the rest of covariables of the model.

- Categorical variable: this type of variable is divided into
different dichotomic variables representing the differ-
ent categories. These variables are known as indicator,
internal variables, design variables or ‘‘dummy’’ vari-
ables. Most statistical software applications generate
these variables internally on including a factorial type
variable in the model (i.e., with more than two cat-
egories).In this type of codification we usually select a
reference category, and the coefficient of the regression
equation for each ‘‘dummy’’ variable (always trans-
formed with the exponential function) corresponds to
the OR of that category with respect to the reference
level. Thus, we quantify the change in the risk of suf-
fering the event of each of the categories with respect
to the reference category. Accordingly, and continuing
with the previous example, if the variable of smoking
is taken to have three categories: never smoked, ex-
smoker, and active smoker, and we take as reference the
category ‘‘never smoked’’, then we will obtain the risk
of having an asthmatic child among ex-smoking mothers
versus the mothers who have never smoked. In turn, we
will obtain the risk of having an asthmatic child among
the mothers who are active smokers versus the mothers
who have never smoked.

When coefficient ˇ of the variable is positive, we obtain
OR > 1, and it therefore corresponds to a risk factor. If the
value ˇ is negative, OR will be <1, and the variable therefore
corresponds to a protective factor.

In other words, exp(ˇ) is a measure that quantifies how
much more risk of suffering the event is present in the indi-
vidual with the risk factor versus the individual without the
risk factor.

Interaction and confounding factors

A confounding factor is a variable that satisfies three condi-
tions:

1) It is a risk factor for the effect under study.
2) It is associated with the exposure under study.
3) It is not an intermediate link in the a priori postulated

causal chain between exposure and effect.

The presence of risk factors generates bias in evaluat-
ing the relationship between independent and dependent
variables.

Interaction exists when the magnitude of the associa-
tion between a given exposure and an effect ‘‘changes’’
according to the magnitude of a third variable, referred to
as an ‘‘effect modifier’’. If detected, it must be included in
the model independently with respect to the effect modifier
variable (through the cross-product of both variables).

Logistic regression models allow the introduction of
adjusting variables for confounding factors and interaction,
and can contain higher grade terms such as for example
(age2), transformations such as for example (ln age), and
also interactions such as for example (age × smoking).

Interpretation of the coefficients associated to the inter-
action is somewhat more complicated than in the previous
cases. In the example of mothers with asthmatic children,
if we have an OR associated to the interaction covariable
(age mother × smoking) of 1.05, it could be interpreted that
for smoking mothers, the risk of having an asthmatic child
increases 5% for each year of increase in the age of delivery
of the mother.

In order to evaluate the confounding effect, we simply
construct two models: one including the possible confound-
ing factor and the other without the confounding factor ---
observing the difference between the OR in one model and
the other.

In order to determine a possible modification of effect
or interaction of one variable with respect to another, the
simplest approach is to include a new variable represented
by the product of the two implicated variables in the model.
This yields a new coefficient associated to this new variable,
and if the partial contrast of this coefficient is statistically
significant, we will consider that interaction indeed exists.
It must be taken into account that in addition to the inter-
action variable, we also introduce those two variables in the
model separately.

Validation, hypothesis and selection of the
model

On comparing logistic regression with linear regression, the
former offers the advantage of not having to satisfy assump-
tions such as the existence of a linear relationship between
the response and the predictor variables, normality and
homoscedasticity of the residuals. The essential assumptions
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of logistic regression are independence between the succes-
sive observations and the existence of a linear relationship
between logit(x) and the predictors X1, X2, . . ., Xk.

One of the necessary considerations before applying
the logistic regression model is to determine whether the
relationship between the independent variable and the
probability of the event changes its sense or direction, or
not. An example of this is when we have a situation where for
small values of the independent variable an increase in this
variable also increases the dependent variable, while from a
certain value of the independent variable an increase in the
latter leads to a decrease in the dependent variable. If this
happens we cannot apply the model, although in the absence
of this change in sense or direction the logistic model would
be adequate.

We must also consider possible situations of colinearity,
which occurs when the model contains strongly correlated
independent variables --- leading to a meaningless model,
and thus to non-interpretable coefficient values.

Another point to be taken into account when constructing
a logistic regression model is the size of the sample. It will be
necessary to have at least 10 × (k + 1) cases in order to esti-
mate a model with k independent variables.7 We must take
into consideration that in the case of a qualitative variable
with j categories, we introduce j − 1 ‘‘dummy’’ variables in
the model, which will be regarded as j − 1 variables when
considering the number of cases required for construction
of the model.

Construction of the logistic model is carried out using
maximum likelihood methods. The models based on max-
imum likelihood methods are those, which maximise the
probability of obtaining the observed data, derived from the
adjusted model. These methods involve the construction of
the likelihood function (which, depending on the type of
regression used, will be more or less complex, and is strongly
tied to the distribution of the observed results) and max-
imisation of its result. This is equivalent to calculating the
coefficients of the model in a way that best explains the
data obtained. Due to the complexity of the maximisation
problem to be resolved, we need to use iterative methods
to find a solution. Based on the likelihood function, we can
calculate the deviation (or deviance) as −2 × logarithm of
the likelihood function. In this way maximisation of the like-
lihood function becomes a problem of minimisation of the
deviation (simplifying the problem of optimisation).

In constructing the model, we must first consider the
parsimonious model. To this effect we determine all the
independent variables that can form part of the model (con-
sidering also the possible interactions). For discriminating
the variables to introduce in the model, it is advisable to pre-
viously and separately study the relationship of each factor
with the dependent variable. The model should include the
variables found to be statistically significant in the bivari-
ate analysis, the confounders, and the clinically relevant
parameters.

There are several methods for the inclusion of variables in
the model,8 although the following three are the most com-
mon: (a) starting with a single independent variable, and
then adding new variables according to a pre-established cri-
terion (forward procedure); (b) starting with the maximum
model, followed by the elimination of variables according to
a pre-established criterion (backwards procedure); and (c)

the so-called ‘‘stepwise’’ procedure, which combines the
above two methods, and where in each step we can add or
eliminate another variable that was already present in the
equation.

The logarithm of the likelihood ratio of the models is the
criterion selected in each step of the construction of the
model in order to determine whether a new model is to be
chosen versus the current model. The smaller the likelihood
value, the better the model, although there is no adequate
minimum value. The likelihood function is a measure of the
compatibility of the data with the model; thus, if on adding
a variable to the model the likelihood does not improve to a
statistically significant degree, then this variable should not
be included in the equation.

Goodness of fit

In a logistic regression model, having estimated the latter by
means of the maximum likelihood method, the global fit is
described with statistics derived from the likelihood of the
model.

There are different statistics that describe the global
fit of the model to the data. One of them is the
−2log likelihood = −2LL. If the fit of the model were perfect,
then −2LL = 0. In other words, this value can be regarded as
a descriptor of the goodness of fit of this model, and the
closer it is to zero, the better the fit of the model.

There are two indexes that represent the proportion of
uncertainty of the data explained by the adjusted model.
Through analogy with the determination coefficient in the
linear regression, they are represented by R2 corresponding
to the R2 of Cox and Snell9 and the R2 of Nagelkerke.10

The value of the R2 of Cox and Snell9 has the inconve-
nience of not reaching the value 1 (100%) when the model
reproduces the data exactly.

For this reason, Nagelkerke proposed the corrected R2 of
Nagelkerke,10 which yields a value of 1 if the model explains
the 100% of the uncertainty of the data:

R2
c =

R2

R2
max

Another measure that describes the global fit of the
model is the chi-squared goodness of fit test. This is a chi-
squared goodness of fit statistic that compares the observed
values Yi with the values p(xi) predicted by the model.

The above indicators of goodness of fit have been pre-
sented from a purely descriptive perspective in relation to
fitting of the model.

Since the model has been estimated by the maximum
likelihood method, its global significance, i.e., the signifi-
cance of the set of included predictor variables, is assessed
with the so-called ‘‘likelihood ratio test’’.

The likelihood ratio test for studying the significance of
the model involves comparing the goodness of fit of the
saturated model (including all the variables) with the null
model (adjusted by a constant) through the deviations ratio
(deviance = −2log(likelihood)). We thus construct a statis-
tic that follows a chi-squared distribution with (number of
variables of the saturated model − 1) degrees of freedom
(df).11
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An analogous procedure could be considered for testing
the significance of the coefficient associated to a covariable
by simply comparing the complete model with the model
excluding the covariable of interest. Wald demonstrated
that the sample distributions of the maximum likelihood
estimations of the parameters ˇ are distributed according
to normal laws when the samples are large. Thus, the sig-
nificance of the parameters can be studied with the ratio
z = B/SE(B), which follows a standardised normal distribu-
tion, or with the square of this ratio, which is known as the
Wald statistic,12 and follows a chi-squared law:

�2
Wald =

[

B

SE(B)

]2

→ �2
1

The likelihood ratio test is more powerful than the Wald
test. Different studies13,14 have demonstrated the lack of
power of this test when the value of the parameter ˇ moves
away from zero, and recommend that a likelihood ratio test
(−2ln LR) should be used instead.

The calibration of the model is an aspect of the fit that
assesses concordance between the probabilities observed
in the sample (pi) and those predicted by the model
(˘ i). A contrast has been developed which evaluates the
general calibration of the model based on the expected
frequencies and the frequencies predicted by the model
(Hosmer---Lemeshow).15

However, in some statistical programs, such as the
program R, use is made of the modified le Cessie---van
Houwelingen statistic,16,17 which is a modification of the
Hosmer---Lemeshow statistic.

Multinomial logistic regression

The logit multinomial regression models are the extension
of the logistic models in the case where we study a cat-
egorical dependent variable with more than two possible
responses.6,18

If we wish to adjust, predict or estimate the possible
values of a polychotomic response variable Y (with more
than two possible discrete values Y1, Y2, . . ., Ym) from a set
of predictor variables (one or more covariables X1, . . ., Xn),
we use models of this kind.19

In these models there are no prior hypotheses on the dis-
tribution of the dependent variable, and they therefore are
ideal when we have a categorical variable with more than
two possible responses.

The rationale followed for estimation of the model is
equivalent to estimating a system of m − 1 logistic equa-
tions comparing in each equation each of the possible values
of the response variable with the reference value pre-
established by the investigator.

For example, suppose we wish to relate the variable
weight at birth of a newborn infant, categorised as <2000 g,
2000---3500 g and >3500 g, to the independent variable
smoking mother (yes/no). In this case we fit a system of
two logistic models. If we establish as reference value the
category >3500 g, then one of the logistic models evaluates
the risk of birth weight <2000 g versus the category >3500 g,
controlling for the variable smoking mother. In the same
way we construct the second regression equation, compar-

ing the risk of weighing between 2000 and 3500 g, versus
the risk of weighing more than 3500 g, in the case of a
smoking mother versus a non-smoking mother. On resolving
the system of logistic equations we cover the entire set of
possible values of NB weight.

logit(p1) = ˇ1
0 + ˇ1

1X

logit(p2) = ˇ2
0 + ˇ2

1X

where:

p1 refers to the proportion of NB that weigh <2000 g versus
the reference group (NB weighing >3500 g).
p2 refers to the proportion of NB that weigh between 2000
and 3500 g, likewise compared with the same reference
group.
X refers to smoker or non-smoker status of the mother.

Example R

Univariate model

‘‘In the same study population of the multinomial exam-
ple we wish to determine the effect of having an
asthmatic mother (asmother) upon possible asthma in the
NB (whezev)’’

In the presented example we have the following vari-
ables:

Asmother (independent variable):
• 1 Asthmatic mother (can be labelled as Yes)
• 0 Non-asthmatic mother (can be labelled as No)
Whezev (dependent variable):
• 1 Asthmatic NB (can be labelled as Yes)
• 0 Non-asthmatic NB (can be labelled as No)

In order to define the model we use the function glm,
which defines a generalised lineal model20:

GLM.1<-glm(whezev∼asmother,family=binomial(logit),

data=Data)

The function glm adopts the following arguments:
Formula: we specify the functional form of the model we

wish to adjust as Y ∼ X1 + ··· + Xn.
Family: we specify the link function associated to the

generalised lineal model or, in other words, we indicate the
type of regression we wish to apply (in the case of logistic
regression we select the binomial(logit) family).

Data: we enter the name of the data frame where the
study variables are filed.

Note that we have filed the logistic model in the object
GLM.1.

We can produce a summary of the model by resorting to
the summary function. This summary can be seen in Fig. 1,
showing:
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Figure 1 Simple Logistic regression model with a categorical covariate.

1. The function used to calculate the model.
2. A descriptive summary of the residual standard

deviation of the model (Deviance Residuals), where we
see whether the errors of approximating the obtained
values to those predicted by the model are around the
value zero --- indicating general goodness of fit of the
model to the data obtained.

3. Estimated coefficients of the model (Estimate), stan-
dard error associated to the estimation of the coefficient
(S.E.), value of the statistic associated to contrast of
the null hypothesis of the associated coefficient (z-value)
together with the associated p-value (Pr(>|z|)) and a code
expressing the level of significance (˛) for which the men-
tioned coefficient would be significantly different from
zero.

4. The associated coefficient is significantly different from
zero (and therefore represents a factor that influences
the response variable) if the associated p-value is lower
than the level of significance pre-established by the
investigator and identified in the statistical summary by
the number of asterisks.

5. Lastly, information is provided related to the general
degree of fit of the model, where:
• Null deviance refers to the deviation residual asso-

ciated to the current model with its degrees of
freedom.

• Residual deviance refers to the deviation residual asso-
ciated to the adjusted model with its degrees of
freedom.

From these values we can calculate the general degree
of fit of the model via the goodness of fit, based on the
likelihood ratio of the model, Fig. 2. Note that in the table
appearing at this output, significance is obtained for the
contrast based on the likelihood ratio test --- thus indicating

Figure 2 Goodness of fit test of the model GLM.1.

Figure 3 Summary of the logistic model GLM.1.

that globally, the variable asthma mother contributes
relevant information for predicting the dependent variable
asthma NB.

Lastly, we can make use of the logistic.display( ) function
of the epicalc package,21 which adopts as argument a logis-
tic model of the above form and returns a table with the
most interesting information in clinical terms, summarised
in Fig. 3.

In this output we see:
The dependent variable used in the model with the com-

parison category versus the reference category used in the
model (the R program always uses as reference category
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Figure 4 Simple logistic regression model with a politomous covariate.

that with the least associated number value), along with
the covariable used in the model indicating comparison
value versus reference value, the odds ratio associated to
the covariable together with the associated 95% confidence
interval (95%CI), and the p-value of the contrast statistic
associated to the null hypothesis of the preferable coeffi-
cient (P(Wald) and P(LR-test) when there are few cases per
comparison category).

Interpretation of the model:
The model obtained at Fig. 3 can be expressed as:
logit(whezev) = coefficient (intercept) + coefficient

(asmother) × asmotherwhere

- coefficient(intercept) = −0.653;
- coefficient(asmother) = 1.569;
- whezev and asmother initially defined variables;
- Logit(whezev) = log(p/1 − p), where p = probability that a

NB of the sample is asthmatic.

In this way we can interpret the risk of asthma in a NB of
an asthmatic mother as being exp(1.569) times that of the
case of a non-asthmatic mother. In other words, the risk of
asthma for a NB of an asthmatic mother is 4.8 times greater
than in the case of a non-asthmatic mother.

Polychotomic covariable (or discrete with more than two

possible categories)

Weight at birth of the multinomial example is regarded
as a factor associated with asthma in the newborn
infant.

In this case we would have to include as many ‘‘dummy’’
variables as categories --- 1 of the associated variable.

Figure 5 Summary of the model GLM.3.

This is done automatically by the R program, and we only
have to indicate the name of the variable where it is defined.
The only point we have to take into account is that the poly-
chotomic variable must be of the factorial type; see Fig. 4.

The information obtained in the case of a dependent
polychotomic variable is the same as in the dichotomic
case but including each of the ‘‘dummy’’ variables auto-
calculated by the program.

Using the logistic.display( ) function we can obtain a sin-
gle table offering the information relating to each of the
covariables of the model; see Fig. 5. Thus, the risk of asthma
in a NB weighing <2000 g doubles when compared with a NB
weighing >3500 g (even if the difference is not significant
and we therefore cannot be sure of the correctness of the
result).

Continuous covariable

Here we wish to relate a continuous or numerical variable to
the dependent variable asthma in the infant. We consider in
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Figure 6 Model to check the linearity of the continuous
covariable.

Figure 7 Logistic regression model with a continuous covari-
able.

this case the forced expiratory volume in one second (fev1)
as covariable of the model.

We first must check the linearity of the continuous vari-
able, whereby proportional increments of the independent
variable lead to proportional increments in the odds ratio.
To this effect we can categorise the continuous variable into
several categories and check that there is certain linearity in
the coefficients associated to the model obtained on adjust-
ing the dependent variable to the categorised variable.

Data$fev1 cat < -cut(Data$fev1, b = 4)

The function cut( ) adopts the following arguments:
Data: continuous variable we wish to categorise into sub-

groups.
No. of categories (b): with this parameter we indicate

the number of categories we wish to obtain.
The function returns a variable with different no. of cat-

egories of equal length from the variable data.
The model obtained can be seen in Fig. 6. The table shows

that the OR associated to each of the categories decreases
as the % exhaled volume increases. This result corroborates
the linearity hypothesis of the continuous variable, as we
therefore can include it as continuous variable in the model,
as can be seen at Fig. 7. The output shown in the table

indicates that the risk of suffering asthma decreases 0.44-
fold for each one-unit increase in the spirometry result (or, in
other words, a one-unit increase in the spirometry response
increases the odds of not suffering asthma a little over 2-
fold; 1/0.44 = 2.27).

It should also be mentioned that although the cate-
gorised continuous variable does not contribute relevant
information to the model (P-LR test = 0.226 > 0.05), the con-
tinuous variable does prove significant. This is because when
grouping a continuous variable we always run the risk of los-
ing information due to poor categorisation of the variables.

Multivariate model

Continuing with the above example, we perform a multivari-
ate analysis for the result variable asthma in the NB.

To this effect we have selected an iterative forwards and
backwards stepwise criterion for the selection of variables
based on the criterion of minimisation of the AIC,5 starting
from an intermediate model including the variables weight-
birth, sex (sex of the NB) and smokermother. Posteriorly,
we evaluate the rest of the study variables, and finally the
resulting multivariate model is produced at Fig. 8. As can
be seen in the table, the variables influencing the develop-
ment of asthma in the NB are whether the mother smokes
and whether the mother has asthma.

The results obtained show that:

- The risk of suffering asthma in a NB with a smoking mother
is 56% greater than in the case of a non-smoking mother,
for equal asthmatic condition of the mother.

- The risk of suffering asthma in a NB with an asthmatic
mother is more than five times the risk in the case of a NB
with a non-asthmatic mother, for equal smoker condition
of the mother.

- Lastly, if we wish to compare the risk of asthma in a NB
with an asthmatic and smoking mother versus the case of
a mother who neither smokes nor has asthma, we sim-
ply calculate 1.56 × 5.22 = 8.14. Thus, a smoking mother
with asthma is eight times more likely to have an asth-
matic child than a mother who neither smokes nor has
asthma.

For validation of the model, we can again compare
the calculated model with the null model, or alternatively
as commented in the section on goodness of fit, we can
calculate the Hosmer---Lemeshow statistic as modified by
Cessie---van Houwelingen.

Figure 8 Multivariate logistic regression model.
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We load the foreign22 and Design23 libraries needed for
calculation of the statistic.

> library(foreign)

> library(Design)

In order to calculate this statistic we must calculate the
matrix of design and the response variable associated to the
adjusted model.

> modelo < -lrm(whezev∼smokermother + asmother,

x = T, y = T, data = Data)

Lastly, we use the function residuals.lrm to specify the
type of contrast of goodness of fit we wish to obtain; see
Fig. 9. The table shows that since the contrast does not prove
significant (p-value = 0.587), there is no statistical evidence
of an absence of fit of the data to the model.

Figure 9 Goodness of fit test.

Multinomial model

Returning to the example commented in the theoretical
development of the model, we define the model based on
the multinom function:

MLM.1 < -multinom(weightbirth)∼smokermother,

data = Data, trace = FALSE

This adjusts a multinomial model by means of the for-
mula Dependent variable ∼ Covariables, of the set of data
specified in the second argument data=B.D. The command
trace refers to whether we wish to observe parameters of
the iterative maximum likelihood method of the fit of the
model (based on neural networks).

Figure 10 Multinomial logistic regression model.

We select the mlogit.display function of the epicalc pack-
age for obtaining a representation of the model that is more
interpretable at clinical level; see Fig. 10. A description
is given below of the table that appears at the mentioned
output:

Outcome and referent group (result variable and refer-
ence group)

We see that on comparing all with the reference group
of greatest weight (>3500 g), what we are evaluating are
factors that influence weight loss in the NB.

Row 1 (R1). --- coefficient of interception (intercept, inde-
pendent term or constant) of each of the adjusted models
(comparing weights of 2000---3500 g versus >3500 g, and com-
paring weights of <2000 g versus >3500 g), standard error
associated to each coefficient.

R2. --- coefficient associated to the covariable entered
in the model (smokermother[T.Yes] = compares smoking
mother versus non-smoking mother), standard error, rela-
tive risk and confidence interval associated to the covariable
smoking mother (smokermother).

The degree of statistical significance associated to each
of the coefficients can be seen by means of the code of the
number of asterisks in each of them.

Lastly, we have information relating to the general
degree of fit of the model (Residual Deviance and AIC).

Thus, the first column (associated to the first compar-
ison model) of the summary, given by the mlogit.display

function, can be expressed as:

OR(2000---3500 g/ > 3500 g)

= exp(0.43 + 1.31 × Smoking mother(YesvsNo)) = 3.765.

where OR(2000---3500 g/>3500 g) is the risk associated to
weighing between 2000 and 3500 g, given that the NB weighs
more than 2000 g (categories 2000---3500 or >3500); there-
fore, the risk of weighing between 2000 and 3500 g in the
case of a NB of a smoking mother is 3.7-fold greater than
in the case of a non-smoking mother, if the weight of the
infant is >2000 g. In other words, the risk of low weight in a
NB of a smoking mother is 3.65-fold greater than in the case
of a non-smoking mother, since the weight of the infant is

>2000 g.

Exp(0.43) is the exponential function of the independent
term of the model and reports the risk associated to weigh-
ing between 2000 and 3500 g in a NB of non-smoking mother,
given that the weight of the NB is >2000 g.

Regarding the second model, the risk of weighing <2000 g
in a NB of a smoking mother is 3.84-fold greater than in the
case of a non-smoking mother (likewise taking into account
that the infant weighs either <2000 g or >3500 g).

Lastly, if we wish to calculate the risk associated to
an infant with weight <3500 g, we simply divide the risk
associated to the second column between the risk associ-
ated to the first column (thus yielding the risk of weighing
<2000 g, given that the infant weighs <3500 g). In this way,
for the case of a smoking mother, this risk increases 5%
(3.84/3.65 = 1.05) versus a non-smoking mother.

As in the case of the logistic regression, we can calculate
the general goodness of fit by comparing the adjusted model
(MLM.1) with the null model (adjusted for the independent
term) to calculate the general goodness of the fit.
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Figure 11 Goodness of fit test for the multinomial model.

The following code in R allows us to obtain the gen-
eral goodness of the fit making use of the likelihood ratio
test.

Construction of the null model:

MLM < -multinom(weightbirth∼1,

data = Data, trace = FALSE)

Fig. 11 shows the comparison of models based on the
likelihood ratio test. The table shows the statistical signif-
icance (Pr(Chi) = p-value of the contrast of hypotheses) ---
thus confirming that globally, the predictor variable smok-
ing mother (smokermother) significantly contributes to the
result obtained by the dependent variable (weightbirth).
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