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Abstract

Toll-like receptors (TLRs) are a family of transmembrane receptors that have been
preserved throughout evolution and which selectively recognize a broad spectrum of
microbial components and endogenous molecules released by injured tissue. Identification
of these ligands by TLRs triggers signalling pathways which lead to the expression of
numerous genes involved in a defensive response. In mammals, the products of these genes
initiate inflammation, coordinate the effector functions of innate immunity, instruct and
modulate adaptive immunity and initiate tissue repair and regeneration. Different
mutations and experimental models which alter TLR function have revealed the
significance of these receptors in susceptibility to infection and their involvement in the
pathogenesis of a large number of non-infective inflammatory disorders such as cancer,
allergy, autoimmunity, inflammatory bowel disease, or atherosclerosis. TLRs are currently
viewed as important targets for the development of new vaccines and innovative therapies
to prevent and treat human diseases.
& 2009 SEICAP. Published by Elsevier España, S.L. All rights reserved.

Introduction

Over the last two decades, research has revealed the
existence of a network of germline-encoded receptors
(termed pattern recognition receptors or PRRs) which
recognize microbial molecular motifs (pattern-associated
molecular patterns or PAMPs) and endogenous molecules
produced by injured tissue. These receptors regulate many

aspects of innate immunity and determine the polarisation
and function of adaptive immunity,1,2 but they are also
involved in the maintenance of tissue homeostasis by
regulating tissue repair and regeneration.3 This multiplicity
of functions reflects the existence of a tightly controlled
innate receptor network that surveys tissue for alterations
in homeostasis, and alerts and drives immunity. The
involvement of these receptors in a long list of conditions4

leaves open the possibility of establishing a universal
immunobiological model which explains all human disease.5

The most widely studied of these sensors are toll-like
receptors (TLRs). In recent years, the identification of
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several TLR mutations and common polymorphisms has
made it possible to determine their role in susceptibility
to infection, and they have been associated with many other
non-infectious diseases.6

In a previous work in this series, we reviewed the main
structural and functional features of TLRs, their ligands and
signalling pathways, and the importance of cooperation
between TLRs in the induction of a specific immune
response.7 In this review, we highlight the importance of
TLRs in the activation and modulation of inflammation, and
examine their role in some of the most frequent human
diseases.

TLRs as initiators of inflammation

In mammals, proteins and immune cells which participate in
host defence are distributed throughout the body and
continuously recirculate in blood and lymph. However, when
a pathogen gains entry to the host, or if an injury occurs, it
is necessary to concentrate them and their products at the
site of damage. Cells of the affected tissue and resident
immune cells sense pathogens and damage through multiple
PRRs that cooperate by activating a cascade of biochemical
events which in turn initiates the inflammatory response by
allowing exudation of plasma proteins and by driving
selective extravasation of leukocytes from the blood into
the surrounding tissue. TLRs are the most extensively
studied sensors of damage that participate in the initiation
of inflammation.

TLRs on epithelial barriers

Although the epithelium is considered a protective physico-
chemical barrier, epithelial cells are also able to sense
pathogens and injury through TLRs and induce the produc-
tion of antimicrobial peptides, cytokines, and chemokines
which neutralise pathogens and initiate inflammation.8–10

This recognition is the first step in the host-pathogen
interaction and has important implications for immune
protection. In addition, PAMPs mediate signals through TLRs
to induce a set of non-immune epithelial responses including
cell migration, wound repair, proliferation, and survival of
primary epithelial cells playing an essential role in the
regulation of mucosal homeostasis.11

Expression and activation of epithelial TLRs varies
according to their location. In the gut, the mucosal
epithelium is continuously exposed to a vast quantity of
antigens from food and commensal bacteria, as it is the
largest surface of the body in contact with environmental
antigens. Mucosa and intestinal microflora constitute a
complex and highly regulated ecosystem in which more
than 2000 species of microorganisms continuously interact
with nutrients and host cells in a symbiosis essential for
normal gut function and host health.12 Thus, to maintain a
normal intestinal function, the immune system must
develop immune tolerance to harmless antigens from food
and commensal bacteria, whilst maintaining the ability to
develop appropriate immune responses against pathogens.

Intestinal epithelial cells are structurally and functionally
polarised, with an apical surface facing the intestinal lumen
and a basolateral surface facing the adjacent cells in the

lamina propria. A continuous layer composed of mucus and
the glycocalyx lines the apical side of gut epithelium to
reinforce physical protection by trapping germs. Release of
mucines, IgA, and antimicrobial peptides prevents micro-
organisms from coming into close contact with the apical
surface of the epithelial cell layer. When bacteria breach
this protective barrier, epithelial cells sense it through TLRs
and activate an inflammatory response. Intestinal epithelial
cells express almost all the TLRs identified, but their
expression and activation are strategically regulated to
avoid unnecessary inflammation, and they play an essential
role in preserving peripheral tolerance.13–16

Prolonged exposure of these epithelial cells to PAMPs from
commensal bacteria induces selective down-regulation of
the apical expression of TLR2 and TLR4,13,17–19 which are
relocated either to intracellular compartments such as the
Golgi apparatus or to the basolateral membrane, where they
retain their full signalling ability to detect internalised
antigens.20,21 TLR5, however, is expressed exclusively on the
basolateral surface. This strategic distribution of intestinal
TLRs allows the host to detect a pathogen when it crosses
the intestinal epithelial barrier, thus preventing an over-
reaction to the commensal bacteria present in the intestinal
lumen. In the case of crypt epithelial cells, which are not
exposed to commensal bacteria, TLR2 and TRL4 are located
in the plasma membrane and recognize external ligands on
the cell surface.22 In addition, intestinal epithelial cells
express relatively high levels of mRNA for TLR3, since viral
dsRNA is not a natural ligand of microflora, thus allowing
these cells to stimulate an immune response to control viral
infection without being detrimental to the host.22

Basolateral TLR9-mediated signals are believed to acti-
vate an inflammatory response, whereas apical TLR9
stimulation delivers negative signals that curtail inflamma-
tory responses induced by basolateral stimulation by other
TLRs.23

In-vitro studies using intestinal epithelial cells have
demonstrated that prolonged incubation with several TLR
ligands results in a state of hyporesponsiveness to successive
challenges with those ligands, associated with increased
expression of TLR antagonists. Thus, functional negative
regulatory mechanisms in the gastrointestinal mucosa also
seem to prevent inappropriate immune responses to luminal
bacterial products.24

Taken together, these findings suggest that luminal
bacterial products help to maintain colonic homeostasis
and to regulate tolerance and inflammation via activation of
specific epithelial TLRs.

Likewise, the epithelial mucosa of the airway is an
important component of the innate immune system. It
senses microorganisms and damage and initiates a protec-
tive inflammatory response, although it too must remain
inactive against a long list of innocuous antigens to which it
is permanently exposed. The lung epithelium is a major
source of neutralising molecules, cytokines, chemokines,
and other inflammatory mediators which affect the innate
and adaptive immune responses and play an important role
in inflammatory lung diseases, including chronic obstructive
pulmonary disease and asthma.25,26 The production of these
mediators is mainly initiated by TLRs. Research using cell
lines or primary cell tissue has revealed that airway
epithelial cells express functionally active TLR1-10 (the
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most highly expressed are TLR2, TLR3, TLR5, and TLR6)27,28;
however, their exact expression patterns and levels have yet
to be elucidated. TLRs expressed on bronchial epithelial
cells induce a different cytokine profile from that of
macrophages, and seem to be involved in bringing about
the recruitment of neutrophils by chemotaxis as an initial
response to the entry of microbes rather than as a potent
inflammatory response.25 TLR activation in airway epithelial
cells induces the release of molecules which drive dendritic
cells (DC) to polarise naive T helper (Th) function.26,29

Furthermore, TLR expression in small airway epithelial cells
is regulated by Th1 and Th2 cytokines, and the response of
TLRs in the lung epithelium to viral and bacterial infections
seems to contribute to exacerbations of lung diseases.8

In vascular endothelial cells, TLR activation contributes
directly to the inflammatory response of the microvascu-
lature. In these cells, TLRs induce secretion of immune
mediators to the bloodstream, participate in leukocyte
recruitment, induce angiogenesis, and generate paracrine
signalling to local immune cells.30–34

TLRs on macrophages and mast cells

Tissue-resident macrophages express all TLRs (except TLR3)
and are highly responsive to their agonist. In these cells,
TLRs are important for each stage of phagocytosis, ranging
from engulfment of invading pathogens to antigen proces-
sing and presentation of antigenic peptides. TLRs regulate
the generation of vasoactive lipids35 and reactive oxygen
species,36 and lead to the production of cytokines such as
tumour necrosis factor (TNF)-a and interleukin (IL)-1b, and
to the release of chemokines that induce endothelial cell
activation and drive inflammatory cell recruitment.37 In
addition, TLR activation regulates the expression of major
histocompatibility complex (MHC) molecules and co-stimu-
latory molecules,38 and induces the release of IL-12 and IL-
10, cytokines which differentially alert DCs to polarise naive
T cells and activate specific adaptive immunity.39

Mast cells reside in the connective tissue and mucous
membranes, and respond rapidly to different stimuli by
releasing granules rich in histamine and heparin, along with
various hormonal mediators, chemokines, and cytokines
which activate the microvasculature to cause vasodilatation
and extravasation of fluid, which is responsible for the
characteristic signs of acute inflammation. Although these
cells are considered essential in host defence against
helminths and are the major effectors of IgE-associated
allergic disorders,40 recent works have revealed that they
also play a critical role in host defence against bacterial and
viral infection. Both human and rodent mast cells can
express a wide range of TLRs that are profoundly influenced
by the microenvironment. Direct activation of mast cells is
mediated through TLR receptors that recognize microorgan-
ism-derived components or danger signals similarly to that
of other leukocytes, although some responses to traditional
TLR ligands rely on signalling through co-receptors.41–47 TLR-
mediated activation of mast cells induces production of
chemokines and Th2 cytokines, which can also be accom-
panied by degranulation.46–49 In addition, the combination
of TLRs with the high-affinity IgE receptor synergistically
increases the ability of murine mast cells to produce

inflammatory cytokines such as TNF-a, IL-12 p70, IL-6, IL-
5, IL-13, and eotaxin 2, revealing that direct activation of
mast cells via TLRs by their respective microbial ligands
contributes to innate immune responses to pathogens. The
presence of pathogens can thus modulate the allergic
response.50

TLRs in the activation of effector cells

In an inflammatory response, the initial cellular infiltrate
consists of effector cells of innate immunity such as
phagocytes, eosinophils, and NK cells, all of which express
TLRs that drive their effector functions.

Resting neutrophils express mRNA for all TLRs (except
TLR3), whereas unstimulated monocytes express higher
levels of TLR mRNA (except TLR7). Their agonists directly
elicit inflammatory responses (except for cytosine-phos-
phate-guanine [CpG] motifs, which require pre-treatment
with granulocyte macrophage-colony stimulating factor).
TLR activation seems to participate in homing and survival
of neutrophils and in many of their effector functions, such
as the release of antimicrobial peptides, generation of
reactive oxygen intermediates, phagocytosis, biosynthesis
of vasoactive substances, and secretion of cytokines and
chemokines.51–53

Human eosinophils differentially express TLR1, 2, 4, 5, 6,
7, and 9. Ligands such as peptidoglycan (TLR2 ligand),
flagellin (TLR5 ligand), and imiquimod R837 (TLR7 ligand)
significantly up-regulate cell surface expression of inter-
cellular adhesion molecule (ICAM)-1 and CD18 and induce
the release of IL-1b, IL-6, IL-8, growth-related oncogene-a
and superoxides. Eosinophil TLR7/8 systems represent a
potentially important mechanism in host defence against
viral infection. This activation of eosinophils through TLRs
supports the idea that microbial infection may lead to the
exacerbation of allergic inflammation.54,55

NK/NKT cells can express all known TLR mRNA (TLR1-10),
which enables them to recognize pathogens and activate
effector functions such as cytotoxic response and cytokine
production.56 TLR3 is expressed on the cell surface, where it
functions as a receptor independently of lysosomes, whereas
TLR7/8 function requires the participation of lysosomes, as
do other cell types.57

NK cells are activated or primed by accessory cell–derived
cytokines, and this collaboration sometimes plays an
essential role in the activation of effector functions that
resolve infection.57 In addition, when infection occurs,
macrophages produce IL-12, which renders NK cells highly
responsive to TLR agonists so that they can produce
interferon (IFN)-g and chemokines. These in turn recruit
and fully activate macrophages, thus leading to the
development of inflammatory foci that are presumably
necessary for efficient eradication of microbes.58

TLRs are also constitutively expressed on somatic cells
such as fibroblasts, adipocytes, and smooth muscle cells,
and participate in inflammation. Different mediators re-
leased by sentinel and effector cells dramatically increase
TLR expression in somatic cells so that they can recognise
PAMPs and the endogenous agonists generated at inflamma-
tion sites, and respond to them by releasing new mediators
which amplify the process.59–62
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TLRs as drivers of adaptive response

TLRs in T-cell polarisation

The adaptive immune response generated against a specific
antigen is controlled by DCs. These cells are professional
antigen-presenting cells with the capacity to stimulate
naive T cells and polarise their function, thus acting as a
bridge between innate and adaptive immunity.63,64 The
naive CD4+ T cell differentiates into a Th1, Th2, Th17, or T
regulatory (Treg) cell phenotype, according to the density
and nature of the antigenic peptide presented, the class of
co-stimulatory molecules expressed by DCs, and the type of
polarising signals released.

DCs can be divided into several subsets on the basis of cell
surface marker expression, maturity, and function.65

Although many subtypes arise from different developmental
pathways, their phenotype and function are mainly modu-
lated by signals that the cells receive from pathogens, the
environment, and other immune cells.66 Under steady-state
conditions, tissue-resident DCs are mostly immature, but in
infectious processes, immature DCs migrate to the injured
region where they detect pathogens and damage via PRRs and
receive environmental inflammatory signals that induce their
maturation and activation. Many PRRs participate in these
processes, and of these, TLRs have been shown to be decisive
for the establishment of an adaptive immune response.
Pathways activated in DCs through TLRs trigger an array of
responses that affect the capture, processing, and presenta-
tion of antigens, as well as migratory activities and cell
survival. In addition, these pathways induce up-regulation of
different surface co-stimulatory molecules and stimulate
production of polarising cytokines and chemokines.67–73

In humans, two major subsets of blood-derived DCs have
been described: the myeloid DCs (mDC), which derive from
monocytes and are found in peripheral tissue, secondary
lymphoid organs, and blood, and the less frequent plasma-
cytoid DCs (pDC), which reside mainly in lymph nodes and
around highly endothelial venules. The striking differences
in TLR expression between these DC subsets restrict their
reactivity to the presence of a specific pathogen.73–75

Human mDCs express TLRs which recognize bacterial
components on the cell surface, particularly TLR1, TLR2,
TLR4, and TLR6, whereas TLR3 is expressed in putative
endosomes.76

Immature mDCs constitutively express the Jagged notch
ligand, which promotes antigen-specific CD4+ T cells to
differentiate into Treg cells or into Th2 cells.74,77 mDC
maturation induced through TLRs by microbial PAMPs
reduces the expression of Jagged-1 notch ligand, up-
regulates the expression of Delta-4 notch ligand (a co-
receptor that induces Th1 polarisation), and induces the
production of Th1-polarising cytokines. Binding of bacterial
PAMPs to TLRs also generates a potent negative signal which
prevents the development of Th2 cells.74,78 In contrast, a
number of helminth-derived products interact with TLRs to
induce a different programme for the maturation of mDCs,
which evolve to a different subset known as DC2. These DC2s
are relative immature and in some cases are
refractory to subsequent stimulation through TLR activa-
tion. DC2s can promote a robust antigen-specific Th2
response.79

The binding of a ligand to a specific TLR can elicit
different types of T-cell response, depending on the DC
microenvironment and the cadence and route of antigen
administration. For example, TLR4-stimulated DCs in the
presence of IFN-g produce high levels of IL-12 p70 and
express Delta-4 notch ligand to promote Th1 cell develop-
ment.80–83 However, in the presence of TGF-b and IL-6, TLR4
ligand favours the release of IL-23 by DCs, thus inducing
proliferation and stabilising Th17.84 When histamine and/or
thymic stromal lymphopoietin (TSLP) are present at high
levels, TLR4-stimulated DCs produce low levels of IL-12 p70
and express Jagged notch ligand, thus promoting Th2
polarisation.85

TLR2 ligands also have divergent effects on polarising
DCs. Under the influence of IL-10 and TGF-b, TLR2 ligands
stimulate DCs to polarise naive T cells to Treg cells, which in
turn also express TLR2, and the binding of specific ligands
induces their proliferation.71 Other authors have found that
synthetic lipopeptides containing the typical lipid part of
the lipoprotein of gram-negative bacteria stimulate a
distinct regulatory cytokine pattern and inhibit several Th2
cell-related phenomena. Triggering of TLR2 by these
lipopeptides promotes the in vitro differentiation of naive
T cells into IL-10 and IFN-g–producing T cells and suppresses
IL-4 production by Th2 cells.86 TLR2 ligand also acts as an
adjuvant for the Th1 response by enhancing the presenta-
tion of endogenous peptides.87 In addition, activation of
TLR2 expressed on T cells directly triggers Th1 effector
functions.88 These results would justify the fact that TLR2
ligands inhibit allergen-specific Th2 responses in sensitised
individuals.89 However, under certain conditions, some TLR2
ligands drive DC activation to induce a Th2 response or to
produce high levels of IL-23, which in turn promote
proliferation of Th17 cells.90,91

Human pDCs possess high levels of TLR7 and TLR9 and
constitutively express abundant interferon regulatory factor
7.92 This TLR repertoire expression gives these cells the
ability to respond to both microbial DNA and to RNA and
DNA-containing or RNA-containing immune complexes in the
endosome. TLR-activated pDCs produce large amounts of
type I and type III IFNs, TNF-a, IL-6, and waves of
chemokines, but they do not secrete IL-12 and hardly induce
any T-cell proliferation.92–94 Although type I IFNs were first
characterized as the major cytokines which confer early
protection against viruses and microbes, they also mediate
in an array of immunoregulatory functions and directly or
indirectly promote Th1 polarisation.92,95 Similarly, oligo-
deoxynucleotides containing unmethylated CpG motifs are
TLR9 ligands that stimulate a strong Th1 response in vivo.
Interestingly, some of them have been developed as
adjuvants for various vaccines against intracellular patho-
gens and cancer, and are also considered good candidates
for immunotherapy in atopic disorders.96 However, depend-
ing on the nature of the stimulus, pDC may also activate a
Th2 response under non-IFN–stimulating conditions.92 pDCs
have also been involved in the development of B-cell
maturation to antibody-secreting plasma cells and in the
establishment of immunological memory.92

In human and murine DCs, TLR3 and TLR4 act in potent
synergy with TLR7, TLR8, and TLR9 in the induction of a
selected set of genes. This synergic TLR stimulation
increases production of IL-12 and IL-23, as well as the
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Delta-4/Jagged-1 ratio, leading to DCs with enhanced and
sustained Th1 polarising capacity.80

TLRs as regulators of adaptive response

One of the most intriguing recent observations is that T and
B lymphocytes also express TLRs, and their respective
ligands activate processes that modulate their func-
tion.97–100 TLRs expressed on T cells seem to enhance cell
proliferation, adhesion, and survival, although they also
modulate cytokine production.98 In conventional human and
murine abT cells, TLR2, TLR5, TLR7, and TLR9 act as co-
stimulatory receptors in concert with a T-cell receptor
signal, rather than by inducing a direct cellular response.
Human alternative gdT cells also express mRNA for various
TLR2 and TLR3, and human CD8+ cells express TLR3 as a
functional co-receptor.101 There is also evidence that the
naturally occurring Treg cells can be directly regulated by
TLR2, TLR5, and TLR8. These receptors are able to repress
or enhance their suppressive activity, although the exact
relationship between microbial stimulation of the TLR
pathway and Treg cells is still unclear.100,102 Treg cells are
also indirectly regulated by TLRs, since mature DCs
activated through different TLRs produce IL-6, which
renders responder T cells refractory to the suppressive
effect of Treg cells.103

Activation of naive B cells requires the sequential
integration of signals mediated by antigen receptor cross-
linking and by antigen presentation to specific Th cells
through immune synapse, although it also seems to be
critically dependent on innate stimuli acting on TLR
expressed by B cells, or indirectly via cytokines provided
by TLR-activated DCs.97,104 In addition, binding of TLR in B
cells stimulates proliferation, the release of immunoglobu-
lin, and the production of chemokines.105,106

TLRs in tissue repair and regeneration

Following acute tissue injury, many cells die by necrosis and
release their intracellular content. In addition, matrix
turnover leads to the production of many breakdown
subproducts. Over the last few years, different studies have
revealed that these endogenous molecules act as ‘‘danger
molecules’’ that signal through TLRs and stimulate the
innate immune system by promoting inflammation.107

Interestingly, recent findings suggest that by recognizing
microbes and endogenous harmful stimuli, TLRs induce the
expression of several genes involved in the wound healing
response and in tissue regeneration to recover the structural
and functional integrity of injured organs.3,108 In this line of
research, TLRs and their ligands have recently been shown
to control mesenchymal stem cell functions. These cells can
be induced to differentiate into mesodermal cell lineages,
support and regulate haematopoiesis, regulate the stem-cell
niche, and may participate in the repair of tissue damage
inflicted by normal wear and tear, injury, or disease.109

It is well known that chronic inflammation due to
infection or sterile injury evokes a perpetuating wound
healing response that promotes the development of fibrosis,
organ failure, and cancer. These dysfunctions are now
associated with alterations in signals mediated by

TLRs.3,108,110 Accordingly, modulation of TLRs offers new
therapeutical perspectives in the recovery of tissues after
injury and in the control of conditions mediated by an
excessive reparative response such as fibrosis or cancer.

TLRs in human disease

TLRs in immunodeficiency and in susceptibility to
infection

Several authors associate human primary immunodeficien-
cies with abnormal TLR signalling, thus demonstrating the
importance of this pathway in the immune response.111,112

The first diseases affecting TLR function were human
immunodeficiencies associated with mutations in the gene
encoding NEMO, a protein required for the activation of the
transcription factor NF-kB in TLR signalling.7 Loss-of-func-
tion mutations in NEMO cause familial incontinentia pig-
menti, a genodermatosis that segregates as an X-linked
dominant disorder and that is usually lethal in the male
foetus. In affected females, it causes highly variable
abnormalities and produces severe skin inflammation.113,114

Hypomorphic mutations in NEMO are viable and give rise to
X-linked anhidrotic ectodermal dysplasia with immunodefi-
ciency (EDA-ID), with differing degrees of severity.115,116 In
addition to developmental disorders, NEMO-mutated pa-
tients present recurrent invasive pyogenic bacterial infec-
tions early in life, and later frequently develop atypical
mycobacterial disease. An autosomal-dominant form of EDA-
ID is associated with a heterozygous missense mutation in
the gene encoding IkBa, a protein that prevents NF-kB
translocation to the nucleus. This mutation is gain-of-
function, as it enhances the inhibitory capacity of IkBa
which results in impaired NF-kB activation. Clinical mani-
festations overlap with EDA-ID.117

Mutations that affect IRAK4, a member of the IL-1
receptor–associated kinase family involved in TLR signalling,
determine immunodeficiency associated with recurrent
pyogenic bacterial infections and a poor inflammatory
response, but do not present developmental abnormal-
ities.118–122 In this immunodeficiency, susceptibility to
infection decreases with age, probably due to the develop-
ment of adaptive immunity. These patients are particularly
susceptible to pathogens such as Streptococcus pneumoniae

or Staphylococcus aureus, but are resistant to viral infec-
tions (probably through TLR3 and TLR4 production of IFNs).
Therefore, the IRAK4–mediated signal is crucial for immu-
nity against specific bacteria, but is redundant against most
other microorganisms.118

Studies on the incidence of infectious diseases in people
with single-nucleotide polymorphisms (SNPs) in TLRs reveal
that these minor alterations can produce a subtle but
specific distorted response and underline the role that TLRs
play in human susceptibility to infection.111 The importance
of TLRs in protection against sepsis has been demonstrated
in humans exhibiting polymorphisms in TLR genes and in
genetically modified mouse strains, thus opening new
perspectives in the search for an efficient therapy against
this disease.123

Other SNPs affect cytosolic adaptor proteins that TLRs
recruit to initiate the inflammatory cascade: in the case of
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the TIR domain–containing adaptor protein (or TIRAP), the
polymorphism (S180L) is associated with a protective effect
against invasive pneumococcal disease, bacteraemia, ma-
laria, and tuberculosis112; a different TIRAP polymorphism
(C558T) is linked with increased susceptibility to meningeal
tuberculosis.124

Another interesting field worthy of study in susceptibility
to infection is the ability developed by many virulent strains
of pathogens to evade immunity through TLRs. Such is the
case of the bacteria Mycobacterium tuberculosis, Yersinia

enterocolitica, Yersinia pestis, Yersinia pseudotuberculosis,
and fungi such as Candida albicans, and Aspergillus

fumigatus, which activate a TLR2-mediated mechanism to
induce an anti-inflammatory cytokine pattern that down-
modulates the microbicidal function of leukocytes.125–127 In
addition, some viruses have evolved mechanisms to block
TIR adaptors, thus limiting TLR signalling and modulating the
immune response.128

TLRs in atherosclerosis

Structural cells of the cardiovascular system (eg, endothelial
cells, vascular smooth muscle cells, and cardiac myocytes)
express functional TLRs that sense PAMPs and danger signals in
order to maintain cardiovascular health. Recent reports have
suggested their involvement in the development of athero-
sclerosis and other cardiovascular diseases.129,130

Atherosclerosis is considered an excessive inflammatory-
fibroproliferative response to numerous sources of injury to
the endothelium and smooth muscle cells of the artery wall.
The endothelial response to the injury seems to play an
essential role in the initiation of atherosclerosis, whereas
the presence of apo-B lipoproteins in the intima, their
retention and subsequent posterior modification promotes
chronic inflammation.131 The precise triggers for endothelial
damage in atherosclerosis have not been defined, but
exposure of the arterial wall to risk factors such as oxidated
low-density lipoprotein, mechanical stress, homocysteine,
and local or distant infections by viruses and bacteria is
associated with the development of lesions. Some of these
risk factors are potential inducers of TLR activation, and
mechanical stress is associated with up-expression of TLRs.
In addition, a mechanism for hyperlipidaemic initiation of
sterile inflammation can be postulated, because oxidised
lipoproteins or their component oxidised lipids have been
identified as TLR ligands. The idea that TLRs participate in
the initiation and development of atherosclerosis has been
supported by some clinical and experimental studies.132–134

TLRs in inflammatory bowel disease

Inflammatory bowel disease (IBD), broadly classified as
Crohn’s disease or ulcerative colitis, is caused by a
dysregulated mucosal immune response to a luminal anti-
gen, possibly a bacterium or a food, in a genetically
predisposed host.135 Thus, TLR mutations and dysfunction
may be contributing factors in the predisposition to and
maintenance of IBD, and an increasing amount of clinical
and experimental data reveal TLR deregulation in patients
with IBD. In active IBD, the expression of TLR3 and TLR4 is
differentially modulated in the intestinal epithelium. TLR3

is significantly down-regulated in active Crohn’s disease but
not in ulcerative colitis. In contrast, TLR4 is strongly up-
regulated in both conditions. TLR5 expression remains
unchanged in IBD, but the presence of high titers of
flagellin-specific antibodies in the serum of patients with
Crohn’s disease also implies the participation of this
receptor in the disease.14,136

Polymorphisms of human TLR4 (Asp299Gly and Thr399Ile)
have been associated with the development of Crohn’s
disease and ulcerative colitis in Caucasian populations. In
patients with ulcerative colitis, Pierik et al observed an
association between the polymorphisms TLR1 R80Tand TLR2
R753G and pancolitis, and a negative relationship between
TLR6 S249P and proctitis. These results suggest that TLR2
and its co-receptors TLR1 and TLR6 are involved in the initial
immune response to bacteria in the pathogenesis of IBD.137

An important immune stimulatory effect mediated by TLR9
is induced by non-methylated CpG motifs found in bacterial
DNA. In animal models of colitis, administration of CpG was
able to perpetue disease activity.138

Recently, TLRs were reported to contribute to the
pathogenesis of IBD in cooperation with NOD2, a member
of the nucleotide-binding oligomerisation domain (NOD)–-
like receptor family.139 Although that study supports the
idea that alterations in gastrointestinal TLR functions are
the underlying mechanisms leading to Crohn’s disease and
ulcerative colitis, TLR dysfunction could also be a patholo-
gical consequence of chronic inflammation induced by other,
unknown factors.

TLRs in allergy

Allergic diseases are caused mainly by aberrant Th2 immune
responses to innocuous antigens in susceptible individuals.
The hygiene hypothesis proposed that, in developed
countries, the low microbial stimulation of immunity in
early life could lead to a weak Th1 response and a stronger
Th2 response to allergens. Today, allergy is viewed as the
result of an improper balance between peripheral tolerance
and immunity.140,141

Although the aetiology of allergy is not completely
understood, differential activation of TLRs on DCs and in
the epithelium are associated with the prevalence of
allergic diseases.26 It is clear that DCs play an essential role
both in the sensitisation phase and in the maintenance of
disease, mainly through excessive polarisation to Th2 cells
and/or deficient generation of Treg cells. It has been
proposed that all types of microbial stimulation (polarising
both Th1 and Th2) induce Treg cells that control excessive
immune responsiveness and, as a consequence of the
reduction in contact with microorganisms, production of
Treg diminishes. This leads to a failure in the inhibition of a
T-specific response against innocuous antigens such as
allergens.142,143 However, other authors have recently found
functionally active Der p 1–specific Treg cells in both non-
atopic and Der p 1–sensitive atopic individuals, thus advising
caution when interpreting allergic disorders as simply
resulting from defective Treg cell activity.144

TLRs also participate in the production of thymic stromal
lymphopoietin (TSLP), a recently described cytokine pro-
duced by the skin and airway epithelium, capable of
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instructing DCs to polarise naive T cells toward the Th2
subset. In addition, TSLP can interact directly with mast
cells to initiate Th2 cytokine production and mediate its pro-
allergic effects by a non–T-cell route. TLR-mediated release
of TSLP provides an important new link between innate
immunity and allergic disease, and opens new therapeutic
possibilities in allergy.25,29

In addition to DCs, other cells that participate in the
induction and control of allergic reaction, such as mast
cells, mononuclear phagocytes and T and B lymphocytes,
also express TLRs that are activated by microbial antigens.
In this way, the presence of pathogens can modulate the
allergic response.

Therefore, understanding the regulatory role of TLRs in
the pathogenesis of allergic inflammation may help to
improve inflammation control in allergic patients.145,146

There is experimental evidence that modulation of DCs by
TLR ligands could be used to prevent and cure allergy. Thus,
TLR2 has been reported to cooperate with IFN-g to reverse
the Th2 skew in an in vitro allergy model.89,147 Under certain
conditions, TLR stimulation, especially via TLR9, reduces
Th2-dependent allergic inflammation through induction of
Th1 responses and could prove useful in the treatment of
allergic diseases, whereas other TLR ligands appear less
attractive.146 Modulation of DCs to induce a tolerant state
mediated by Tregs is currently seen as a useful therapeutic
option to avoid this aberrant immune response.140,148 The
potential of TLR ligands as a novel class of pharmaceutical
tool for the prevention or treatment of allergic disorders is
currently being analysed.71,149

TLRs in autoimmunity

The identification and characterization of endogenous
ligands capable of stimulating immunity through PRRs has
provided new perspectives in the study of the aetiology of
autoimmune diseases. It has been proposed that, in certain
autoimmune disorders, recognition of endogenous ligands by
TLRs drives sterile inflammation sustained by innate immune
cells that contributes to a loss of tolerance.150 Similarly, it
must be emphasized that many autoantigens are generated
by tissue injury and are able to stimulate innate immunity
through TLRs. This supports the idea that many of them are
autoantigens, because they act as autoadjuvants which
directly activate innate immunity to induce a self-directed
immune response.151,152 For example, different studies in
vivo and in vitro have revealed that endosomally translo-
cated self-DNA or self-RNA have, respectively, a TLR9- or
TLR7-dependent potential to stimulate pDCs in a similar way
to microbial nucleic acid. Activation of pDCs through these
TLRs induces release of type I IFN. Because repeated
administration of recombinant IFN to patients with tumours
or chronic viral infections induces systemic lupus erythema-
tosus (SLE), aberrant production of IFN-a induced by
endocytosed self-DNA and self-RNA through TLRs is con-
sidered a key event in the pathogenesis of SLE.151

TLRs in cancer

Functional TLRs are expressed in a wide variety of tumours,
and evidence suggests that TLR signalling pathways in

tumours may be associated with subversion of host defence
in favour of the neoplastic process.153 Activation of tumoral
TLRs induces the synthesis of proinflammatory factors and
immunosuppressive molecules. These enhance the resis-
tance of tumour cells to cytotoxic lymphocyte attack and
facilitate their evasion from immune surveillance or, as in
the case of multiple myeloma, may promote proliferation
and survival of tumour cells by inducing the release of
cytokines such as IL-6, IL-13, TNF-a, and other growth
factors.154 Moreover, TLRs induce resistance to apoptosis,
increase angiogenesis and vascular permeability, and en-
hance tumour cell invasion by regulating metalloproteinases
and integrins.155,156 In addition, alterations in signals
mediated by TLRs for tissue regeneration in chronic injury
could induce cancer.3,110 This promotion of tumours induced
by TLRs justifies the association between multiple chronic
inflammatory diseases and infections and the pathogenesis
of many cancers.4

These novel functions of TLRs in tumour biology suggest a
new class of targets for cancer therapy.153 It has been
reported that blockade of the TLR4 pathway reverses
tumour-mediated suppression of T-cell proliferation and
natural killer cell activity in vitro and in vivo, thus delaying
tumour growth and prolonging the survival of tumour-
bearing mice.154 However, TLRs also regulate tumour
immunity or tolerance through immune responses mediated
by Treg, DCs, and other immune cells.157 It has long been
noted that some products of microorganisms and several
drugs show clinical activity against tumours that could be
based on TLR binding to immune cells. Despite the notion
that TLRs in tumour cells may benefit tumour progression,
several innovative strategies for using TLR agonists in
vaccine development have been based on their ability to
prime a tolerant immune system to recognize and destroy
tumour cells.158–160 However, these immune adjuvants can
evoke different host responses by targeting specific TLRs and
their associated signalling pathways, and recent studies
show that while some immune responses are beneficial,
others could be deleterious as anti-cancer therapies.161–163

Under certain conditions, the combination of immunother-
apy based on TLR ligands with other approaches may have
promising synergistic effects. In this sense, there is evidence
that radiation combined with TLR-targeted immunotherapy
could enhance tumour-directed immunity164 and that the
increased efficiency of adjunctive treatment with the TLR-7
agonist imiquimod and cryosurgery could make this a
suitable therapeutic strategy for lentigo maligna.165 Thus,
it is important not only to carefully select target TLRs by
using an optimised mix of TLR agonists, but also to take into
account other factors in the tumour microenvironment that
modulate innate immunity for a prime adaptive response.

Conclusions and further perspectives

TLRs play a crucial role at all stages of the inflammatory
response and in tissue repair and regeneration. The
possibility of modulating these stages through TLRs has
opened an array of opportunities to develop innovative
vaccines and therapies for the prevention and treatment of
infectious and non-infectious inflammatory disorders.160,166

Many of these therapies are currently being evaluated in
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clinical trials.96,159,167,168 However, although TLR-based
therapies have enormous biological potential and offer
promising results, their benefits are not free of
risk,161,163,169–172 and more research is required before
drugs enter the trial phase and routine clinical practice.

We must remember that TLRs are not the only players in
inflammation, and several important questions remain
unanswered. For example, we do not know how different
TLRs cooperate with each other and communicate with the
different PRRs, accessory cells, and microenvironment
mediators to elicit the optimal immune response to a
specific injury. Accordingly, therapeutic modulation of TLR
function could trigger unexpected harmful responses if
other simultaneously occurring non-TLR inflammatory sig-
nals are not considered. Furthermore, we need a more
precise understanding of the role of each TLR in the
pathophysiology of the different diseases.

Once a diagnosis has been reached, TLR-based therapy
should be prescribed on an individual basis after a thorough
evaluation of the patient’s immune status by an expert
immunologist. Consequently, the success of these potent
biological therapies will require new diagnostic techniques
and the efforts of multidisciplinary teams including im-
munologists with detailed knowledge of potential side
effects.
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