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A B S T R AC T

The most important mechanism of carbapenem resistance in Enterobacteriaceae is the production of 
carbapenemases, although resistance can also result from the synergistic activity between AmpC-type or 
(to a lesser extent) extended-spectrum beta-lactamases combined with decreased outer membrane 
permeability. Three major molecular classes of carbapenemases are recognized: A, B and D. Classes A and D 
are serine-beta-lactamases, whereas class B are metallo-beta-lactamases (their hydrolytic activity depends 
on the presence of zinc). In addition to carbapenems, carbapenemases also hydrolyze other beta-lactams, 
but the concrete substrate profile depends on the enzyme type. In general terms, class A enzymes are to 
some extent inhibited by clavulanic acid, and class B enzymes do not affect monobactams and are inhibited 
by zinc chelators. Given Enterobacteriaceae producing carbapenemases usually also contain gene coding 
for other mechanisms of resistance to beta-lactams, it is not unusual for the organisms to present complex 
beta-lactam resistance phenotypes. Additionally, these organisms frequently contain other genes that 
confer resistance to quinolones, aminoglycosides, tetracyclines, sulphonamides and other families of 
antimicrobial agents, which cause multiresistance or even panresistance. Currently, the most important 
type of class A carbapenemases are KPC enzymes, whereas VIM, IMP and (particularly) NDM in class B and 
OXA-48 (and related) in class D are the more relevant enzymes. Whereas some enzymes are encoded by 
chromosomal genes, most carbapenemases are plasmid-mediated (with genes frequently located in 
integrons), which favors the dissemination of the enzymes. Detailed information of the genetic platforms 
and the context of the genes coding for the most relevant enzymes will be presented in this review.

© 2014 Elsevier España, S.L. All rights reserved.

Carbapenemasas en enterobacterias: tipos y epidemiología molecular

R E S UMEN

El mecanismo más importante de resistencia a carbapenémicos en enterobacterias es la producción de car-
bapenemasas, aunque dicha resistencia también puede deberse a la combinación de betalactamasas tipo 
AmpC o, en menor medida, de espectro extendido, combinadas con disminución de la permeabilidad de la 
membrana externa. Se conocen 3 tipos moleculares de carbapenemasas: A, B y D. Las de las clases A y D 
son betalactamasas de serina, mientras que las de clase B son metalobetalactamasas (su actividad depende 
del cinc). Las carbapenemasas también hidrolizan otros betalactámicos, además de carbapenémicos, pero 
el perfil de sustrato concreto depende de la enzima considerada. En términos generales, las enzimas de 
clase A se inhiben en mayor o menor medida por ácido clavulánico y las de clase B no afectan a los mono-
bactámicos y se inhiben por quelantes del cinc. Las enterobacterias que producen carbapenemasas, gene-
ralmente contienen otros genes de resistencia a betalactámicos y no es raro que presenten fenotipos de re-
sistencia a betalactámicos complejos. Además, estos organismos frecuentemente contienen genes de 
resistencia a quinolonas, aminoglucósidos, tetraciclinas, sulfonamidas y otros antimicrobianos, causando 
multirresistencia o incluso panresistencia. Actualmente, las carbapenemasas más importantes de clase A 
son KPC, las de clase B son VIM, IMP, y en especial NDM, y las de clase D, OXA-48 y similares. Aunque algu-
nas enzimas están codificadas por genes cromosómicos, la mayoría están mediadas por plásmidos (y los 
correspondientes genes con frecuencia se encuentran en integrones), lo cual favorece la diseminación de 
estas enzimas. En esta revisión se presenta información detallada sobre las plataformas y los contextos ge-
néticos de los genes que codifican las enzimas más relevantes.

© 2014 Elsevier España, S.L. Todos los derechos reservados.
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Introduction

Resistance to beta-lactams in Enterobacteriaceae and other Gram-
negative organisms is primarily mediated by beta-lactamases, 
although other mechanisms typically cooperate for an increased 
level of resistance. Multiple types of this family of enzymes are 
clinically relevant, but because of its production by multiresistant 
organisms, three are particularly important in Enterobacteriaceae: 
extended-spectrum beta-lactamases (ESBL), chromosomal or 
plasmid-mediated AmpC-type enzymes (AmpCs) and carbapenemases.

Both ESBL and AmpCs show (very) poor hydrolytic activity against 
carbapenems, but when associated with porin loss or modification or 
even other low level resistance mechanisms, they (particularly AmpCs) 
can determine carbapenem resistance of clinical importance.1 On the 
other hand, some beta-lactamases efficiently hydrolyze carbapenems 
and are globally designated as carbapenemases. A few reports have 
also identified other mechanisms (such as altered penicillin-binding 
proteins), as a cause of carbapenem resistance in Enterobacteriaceae.2 
From a genetic point of view, some carbapenemases are related to 
other enzymes of the same molecular class lacking (relevant) 
carbapenemase activity. In 1980, Ambler proposed a beta-lactamase 
classification based on the sequence of these enzymes that included 4 
groups named A to D.3 The enzymes in groups A, C and D are serine-
beta-lactamases, whereas those in group B (requiring Zn for 
hydrolyzing their substrates) are metallo-beta-lactamases (MBL). This 
classification is also of interest from a biochemical, clinical and 
epidemiological point of view.

Besides carbapenems, carbapenemases can also hydrolyze other 
beta-lactams, although the concrete spectrum of affected substrates 
depends on the nature of the specific enzyme (Table 1). In addition, the 
organisms producing these enzymes frequently contain other resistance 
genes also affecting beta-lactams (see below); thus, carbapenemase-
producing Enterobacteriaceae do not necessarily present the phenotype 
corresponding to the presence of the carbapenemase alone. Multiple 
reports have documented Enterobacteriaceae producing more than one 
class of carbapenemase, which is not only important from a therapeutic 
point of view, but also for the epidemiological consequences of the (in)
adequate recognition of these enzymes.

The exact causes of the emergence and abrupt spread of 
carbapenemase-producing Enterobacteriaceae are not completely 
understood. It is possible that inadequate and uncontrolled use of 
carbapenems due to other resistance problems (particularly that of 
ESBL) have translated into a selective pressure favoring the transfer 
of genes from chromosomes to plasmids, with the subsequent 
dissemination of plasmids between strains and of strains between 
patients. The intercontinental movement of patients has also 
undoubtedly contributed to the problem.

Class A carbapenemases

This class of enzymes was recognized sporadically during the 
1980s, but became of major importance when KPC (Klebsiella 

pneumoniae carbapenemase) enzymes were identified in 1996 and 
spread worldwide after the 2000s.4

SME/IMI/NMC-A 

These three groups of enzymes are encoded by chromosomal 
genes and hydrolyze a broad spectrum of substrates, including 
penicillins, some cephalosporins, aztreonam and carbapenems.

The Serratia marcescens enzyme (SME-1) was first detected in 
England in 1982 in two S. marcescens. The variants SME-2 and SME-3 
have been reported in North America. The blaSME genes are found in 
cryptic prophage genomic islands within the S. marcescens 
chromosome.5,6

Imipenem-hydrolyzing beta-lactamase enzymes (IMI) were first 
discovered in Enterobacter cloacae in North America in 1996.7 The 
blaIMI-1 gene was located in the bacterial chromosome; however, a 
point-mutation derivative, blaIMI-2, was later identified encoded on a 
plasmid in Enterobacter asburiae strains recovered from various USA 
rivers and in E. cloacae from China.8 IMI carbapenemases are rare, 
and only 6 variants have been reported to date (IMI-1 to IMI-6) 
(http://www.lahey.org), most in Enterobacter spp. and exceptionally 
in Escherichia coli.5,9 

The expression of the blaIMI gene is regulated by a LysR 
transcriptional regulator, which is encoded by the blaIMI-R gene, 
adjacent to blaIMI. Upstream and downstream of the complex an IS2-
like element and a transposase gene are encoded, respectively, which 
may have been involved in its mobilization.5,9 

The spread of IMI-type plasmid-mediated carbapenemases is 
limited, and IMI-producing Enterobacteriaceae have been detected 
in North America, Argentina, France, Spain, Croatia, Finland and 
Ireland.9,10

The non-metallo-carbapenemase-A (NMC-A) enzyme was 
identified for the first time in E. cloacae in France in 1990.11 This 
enzyme differs from IMI-1 and IMI-2 by 8 amino acid substitutions 
and possesses a Lys-R regulator like IMI-type enzymes.5

Guiana Extended-Spectrum beta-lactamase enzymes

Guiana Extended-Spectrum beta-lactamase enzymes (GES) were 
discovered in 2000 when the GES-1 beta-lactamase was reported. 
GES enzymes were originally considered ESBL, but some variants 
among the 24 currently recognized enzymes (http://www.lahey.
org), including GES-2, -4, -5, -6, -11, -14 and -18,12 are actually 
carbapenemases. GES-type enzymes have been detected worldwide 
in several Gram-negative bacteria. The Enterobacteriaceae GES-4, -5 
and -6 are the GES enzymes that have been found to have 
carbapenemase activity.8

blaGES genes are typically encoded as gene cassettes on class I 
integrons, which are located on transferable plasmids; however, 
chromosomally encoded blaGES genes have also been found in 
Enterobacteriaceae.5

Table 1

Hydrolytic profiles of the carbapenemases described in Enterobacteriaceaea

Molecular class Carbapenems Penicillins 1st & 2nd cephalosporins 3rd & 4th cephalosporins CLAV/EDTA Monobactams

A + + +b +/(w) ±/– +c

B + + + + –/+ –

D + + + (–)d –/(±) ±

CLAV/EDTA: inhibition by clavulanic acid and by EDTA; (w): weak hydrolytic activity.
aClass C enzymes can cause carbapenem resistance in Enterobacteriaceae when (over)expressed in strains with altered outer membrane permeability.
bCephamycins are poor substrates for most class A enzymes.
cSome GES enzymes do not hydrolyze aztreonam.
dOXA-163 efficiently hydrolyzes expanded-spectrum cephalosporins.
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KPC

KPC enzymes were first reported in 1996 from a K. pneumoniae 
isolated in North Carolina, North America.4 KPC-producing bacteria 
have since spread worldwide. Twenty variants have been identified 
thus far (KPC-1 to KPC-20) (http://www.lahey.org). The two most 
frequent variants are KPC-2 and KPC-3 (differing in just one amino 
acid). Since its first report, KPC-enzyme producers have been 
detected primarily in K. pneumoniae but also in E. coli, Citrobacter 

freundii, S. marcescens, Enterobacter spp., and Pseudomonas spp.5,8,13

Enterobacteriaceae producing KPCs show high resistance to both 
penicillins and cephalosporins, but only low to moderate resistance 
to carbapenems (which could make their recognition difficult). The 
inhibitory effect of clavulanic acid and of related inhibitors against 
these enzymes is also lower than for other class A enzymes. It is not 
uncommon that KPC-producing enterobacteria also express other 
plasmid-mediated beta-lactamases.

blaKPC-type genes are typically embedded in transposon Tn4401, a 
Tn3-based transposon that is able to mobilize this carbapenemase-
encoding gene at a high frequency (Fig. 1A).14 The transposon 
containing blaKPC has been found in a large variety of transferable 
plasmids, including plasmids belonging to IncFIIK, IncA/C, IncN, IncI2, 
IncX, IncR and ColE incompatibility groups.15,16 In addition to beta-
lactam resistance, plasmids encoding blaKPC usually harbor genes 
conferring resistance to other antimicrobial agents such as 
quinolones, aminoglycosides, tetracyclines, trimethoprim and 
sulphonamides. This situation has made most of the KPC-producing 
K. pneumoniae isolates multidrug- or even pandrug-resistant. 
Plasmid pKpQI is one of the most studied blaKPC-carrying plasmids. 
This mobile genetic element and several derivatives primarily 
associated with K. pneumoniae ST258 have been identified in Israel, 
Italy and North America since 2006.15,16 

K. pneumoniae ST258 has significantly contributed to the 
worldwide dissemination of KPC-enzymes, specifically to the KPC-2 
and KPC-3 variants. Despite ST258 having been the primary clone, 
many other K. pneumoniae strains and other enterobacterial species 
have been reported as KPC producers in different countries.17 KPC-
producing isolates are now considered endemic and predominate in 
several countries from the Americas, including some states in North 
America, Colombia, Brazil and Argentina. In Europe, Italy and Greece 
are the endemic countries, and in other countries, such as Spain and 
France, sporadic cases have been reported, some linked to imported 
isolates from endemic areas.17 Among Asian countries, Israel and 
China are considered endemic. In India, KPC-producing isolates have 
only occasionally been reported, as well as in Australia, New Zealand 
and on the African continent.17

Class B carbapenemases (metallo-beta-lactamases)

MBLs hydrolyze nearly all beta-lactams except monobactams by a 
mechanism that depends on the presence of zinc ions; as a 
consequence, MBLs are inhibited by the zinc chelator EDTA. 
Unfortunately, they are not inhibited by clavulanic acid and similar 
inhibitors and are frequently found in strains also coding for other 
enzymes, particularly ESBL (which cause resistance to aztreonam). 
Three subclasses (B1, B2 and B3) have been proposed based on 
substrate preference and protein structure, of which B1 includes the 
enzymes of greatest clinical interest.18 Among these enzymes, NDM-
1 (see below) presents a lower hydrolytic rate than representative 
enzymes of other families such as IMP-1 or VIM-2,19 but this is likely 
counterbalanced by having been encoded by a gene included in 
highly efficient genetic platforms.

Verona integron-encoded metallo-beta-lactamases

Verona integron-encoded metallo-beta-lactamase (VIM)-type 
enzymes were first identified in a carbapenem-resistant Pseudomonas 

aeruginosa clinical isolate in 1997 in Verona, Italy.20 To date, 41 
variants have been reported and this type of enzymes has become 
one of the most worldwide prevalent plasmid-mediated MBLs, being 
identified in several bacterial species. VIM enzymes are primarily 
produced by P. aeruginosa followed by E. coli, K. pneumoniae and to a 
lesser extent E. cloacae within the Enterobacteriaceae family. 

blaVIM have been found embedded primarily in class I integrons as 
gene cassettes, typically harbored in transposons, with more than 
100 different arrangements in the integron structure, including 
additional gene cassettes encoding resistance to aminoglycosides, 
chloramphenicol and sulphonamides, resulting in multidrug 
resistance (Fig. 1B). Initially, blaVIM-integrons were found to be 
located in the IncN plasmid type; however, they have recently also 
been found on large-size transferable plasmids belonging to other 
incompatibility groups, such as Inc A/C, IncR, IncHI2, IncI1 and IncW, 
as well as being integrated in the bacterial chromosome.15 

The dissemination of E. coli and K. pneumoniae isolates harboring 
blaVIM is primarily polyclonal, and isolates carrying these enzymes 
have been reported in a large number of countries from Europe, Asia 
and America in sporadic occurrence or causing significant 
outbreaks.8,21 It has been found in several Mediterranean countries 
(e.g., Greece, Italy) and in several countries from Southeast Asia (e.g., 
Taiwan, Japan), where a high prevalence of VIM-producing bacteria 
is found.22,23 

New Delhi metallo-beta-lactamase 

New Delhi metallo-beta-lactamase (NDM) was detected for the 
first time in 2008 in a K. pneumoniae isolate causing a urinary tract 
infection in a Swedish patient of Indian origin who had been 
previously hospitalized in New Delhi.19 It has since rapidly 

Figure 1. Schematic representation of several genetic structures associated with car-
bapenemase-encoding genes in enterobacterial isolates. A) Structure of a Tn4401 en-
coding blaKPC-2 gene. B) Structure of a class I integron containing a blaVIM-1 gene. C) Struc-
tures of a blaNDM gene associated with ISAba125. D) Structure of a Tn1999 encoding 
blaOXA-48 gene. E) Structure of a Tn1999.2 encoding blaOXA-48 gene.
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disseminated and has been detected increasingly in several countries, 
primarily in Enterobacteriaceae (particularly in E. coli and K. 

pneumoniae), and to a lesser extent in Acinetobacter spp. Currently, 
12 different variants of the NDM enzymes (NDM-1 to NDM-12) have 
been reported (http://www.lahey.org).

Reports on NDM enzymes have a social impact beyond their 
clinical aspects: the name given to the enzyme suggests a link to the 
health system in India, and this has been claimed to cause major 
economic losses in this country, where health care offered to foreign 
patients is provided at a lower cost than in many Western countries. 
From this point of view, NDM (multiresistance in general) can be 
perceived as a major menace with important economic 
consequences.

In Enterobacteriaceae, blaNDM are primarily carried on 
heterogeneous conjugative plasmids of varying sizes and belonging 
to different incompatibility groups, including IncL/M, IncA/C, IncF 
and IncHI1.15 These plasmids have spread between different 
Enterobacteriaceae strains, species and genera.24 Despite being found 
in plasmids, Acinetobacter spp. blaNDM genes are most often located  
on the chromosome, particularly in Acinetobacter baumannii. The 
genetic structures identified surrounding the blaNDM genes in 
Enterobacteriaceae are primarily associated with the insertion 
sequence ISAba125 on the upstream side, found as a full or truncated 
element, and with the bleMBL gene (bleomycin resistance encoding 
gene) on the downstream side, which can also be present as a 
complete or truncated structure (Fig. 1C). Both blaNDM and bleMBL 
genes are coexpressed under the control of the same promoter, 
which is located at the 3’-end of ISAba125. ISAba125 had previously 
been identified in A. baumannii, and in this species the blaNDM gene is 
flanked downstream by a second copy of ISAba125, forming the 
composite transposon Tn125. 

The origin of the blaNDM gene is still unknown, but it has been 
postulated that it was integrated into the chromosome of A. 

baumannii from an environmental species and later transposed onto 
Enterobacteriaceae plasmids of a broad host range of replication.8

Strains carrying plasmid-encoded blaNDM frequently coproduce 
other beta-lactamases such as oxacillinases (OXA-1, OXA-10), 
plasmid-mediated AmpCs (CMY-type, DHA-type), ESBLs (CTX-M-
type, SHV-type) and additional carbapenemases (VIM-type, OXA-
48), as well as other non-beta-lactamase enzymes conferring 
resistance to other antimicrobials (e.g., aminoglycosides, macrolides, 
quinolones). These elements can be found encoded in the same or in 
a different plasmid.25 This situation threatens public health because 
only a few treatment options, such as colistin and tigecycline, remain 
available.

NDM-type carbapenemase-producing Enterobacteriaceae have 
been identified progressively on all continents. However, India and 
Pakistan are the countries with the higher prevalence for what has 
been proposed as the primary reservoir of NDM-producing bacteria. 
In countries near the Indian subcontinent, such as China, a recent 
report has revealed a high incidence of NDM-producing 
Enterobacteriaceae isolated from patients in specific provinces.26 It 
has also recently been reported that NDM has become the most 
common class B carbapenemase in Enterobacteriaceae in the 
countries of the Gulf Cooperation Council.27 Outside Asia, the Balkans 
have been identified as another reservoir of NDM-producing 
bacteria.25

International dissemination of blaNDM-producing bacteria has 
been strongly associated with travel and receipt of medical care in 
South or Southeast Asia.24,25 The UK is currently one of the countries 
with a high incidence of patients with NDM-producing bacteria, and 
in most cases they are epidemiologically linked to the endemic areas 
with which the country has had historically close bonds.24 However, 
intra- and inter-country dissemination of NDM-positive strains 
within individuals who have not traveled to high risk areas have 
been also documented.24

IMP

IMP-1 carbapenemase was the first plasmid-encoded MBL 
detected, identified in a Japanese P. aeruginosa isolate in 1988.28 In 
1993, it was identified in a S. marcescens isolate in the same country.29 
blaIMP has since spread worldwide, and more than 40 variants have 
been identified. The IMP-type beta-lactamase has been reported 
primarily in P. aeruginosa, Acinetobacter spp. and in several 
enterobacterial species, including E. coli, K. pneumoniae, Klebsiella 

oxytoca, E. cloacae and Citrobacter spp.
As with blaVIM, blaIMP is found as a gene cassette integrated in class 

1 integrons and different integron structures harboring gene 
cassettes which confer resistance to diverse antibiotic families (e.g., 
aminoglycosides, sulfonamides, chloramphenicol). In addition to 
class 1 integrons, blaIMP gene cassettes have been found sporadically 
on class 3 integrons. These integrons are usually located in 
transposons and in conjugative plasmids, which enable its horizontal 
dissemination.21,30 Plasmids carrying blaIMP are not associated with a 
specific backbone and belong to diverse incompatibility groups that 
include IncL/M, IncN and IncHI2.15 Chromosomal location (primarily 
in Gram-negative non-fermenting bacilli) of blaIMP genes has also 
been reported, but appears to be uncommon.21

IMP-producing Enterobacteriaceae have been identified in several 
countries around the world causing outbreaks or sporadic cases, the 
highest prevalence has been found in Southeast Asia, Japan and 
Taiwan).21,30 

Class D carbapenemases

Class D carbapenemases include the oxacillinase (OXA)-type 
enzymes, some of which are narrow-spectrum beta-lactamases, 
others of which are ESBLs and a few that are carbapenemases. It has 
recently been suggested that OXA enzymes traditionally not 
considered to be carbapenemases (e.g., OXA-2, OXA-10) have some 
catalytic activity against carbapenems, and their ability to determine 
resistance to these agents actually depends on the host in which they 
are expressed.31 

OXAs show a lower hydrolytic efficiency of carbapenems than 
other carbapenemases, and carbapenem-resistant isolates with 
these enzymes often contain other resistance mechanisms (e.g., 
porin loss). In contrast to class A carbapenemases (and to class C 
beta-lactamases), class D enzymes cause high-level resistance to 
temocillin;32 although this compound can also be affected by class B 
enzymes, the latter are easily differentiated by their inhibition by 
zinc chelators.

OXA-48-like carbapenemases

The OXA-48 class D carbapenemase was first reported in a K. 

pneumoniae isolate recovered in Istanbul, Turkey, in 2003.33 OXA-48-
like carbapenemases have since been increasingly reported among 

Enterobacteriaceae in Turkey, the Middle East and North Africa. 
These have been considered the most important reservoirs.34 

blaOXA-48 is located in a composite transposon named Tn1999, 
which is constituted of two copies of IS1999 that flank the 
carbapenemase gene (Fig. 1D). These insertion sequences primarily 
confer two important functions to blaOXA-48; (I) the IS1999 located 
upstream of blaOXA-48 drives its expression by an outward-directed 
promoter and (II) they allow gene mobilization by transposition.35 In 
addition to Tn1999, other genetic backgrounds have been reported 
for blaOXA-48. One is Tn1999.2, which differs from the previous by the 
insertion of IS1R within the IS1999 located upstream of blaOXA-48 (Fig. 
1E).36 

The gene blaOXA-48 is harbored in a broad-host-range conjugative 
IncL/M plasmid of 62-kb.34,37 A particular feature of this plasmid is 
that Tn1999 disrupts its tir gene, which encodes a plasmid cell-to-



8 L. Martínez-Martínez and J.J. González-López / Enferm Infecc Microbiol Clin. 2014;32(Supl 4):4-9

cell transfer inhibitor protein. This leads to an increase in the transfer 
frequency of the plasmid, which is the proposed reason for the 
successful spread of blaOXA-48.38 

Since the discovery of OXA-48, several variants differing by a 
small number of amino acid substitutions have been reported, such 
as OXA-162, OXA-163, OXA-181, OXA-204, OXA-232, OXA-244 and 
OXA-245. All but OXA-163 possess similar hydrolytic properties as 
OXA-48.34,39 OXA-163 differs from OXA-48 by a nucleotide substitution 
and by 4 amino acid deletions. This structure makes OXA-163 able to 
hydrolyze expanded-spectrum cephalosporins but not carbapenems, 
the opposite hydrolytic properties as those of OXA-48.40

The origin of OXA-48 has been proposed to be from Shewanella 
spp., a waterborne bacterium. In silico analysis of the entire genome 
of Shewanella oneidensis initially suggested that this was the species 
from which blaoxa-48 emerged given it encoded in its chromosome a 
class D carbapenemase (OXA-54), which shared 84% nucleotide 
identity and 92% amino acid identity with OXA-48.41 It has recently 
been suggested, however, that blaOXA-48 is likely to have originated 
from Shewanella xiamenensis where a bla gene with only 4 silent 
nucleotide differences from blaoxa-48 and a bla gene encoding an OXA 
enzyme (OXA-199) with only 3 amino acid substitutions from OXA-
48, were found in one strain each in China.42 Genetic elements such 
as IS1999 might have been involved in the mobilization of Shewanella 
chromosomal carbapenemases to plasmids, which have then spread 
to other bacterial species. 

The emergence and rapid spread of OXA-48 producers in European 
countries has been observed in recent years, probably related to a 
high level of human population exchanges with the endemic areas 
(e.g., Turkey, the Middle East and North African countries).34 Spain, 
France, Germany, Switzerland, the Netherlands and the UK are the 
primary European countries in which a substantial increase in the 
number of Enterobacteriaceae producing OXA-48 carbapenemases 
have been reported, and in some countries it has become the 
predominant carbapenemase.10,23,43 In India (a country that recently 
has been proposed as an endemic area of this type of enzymes), 
OXA-181 is the primary identified OXA-48-like carbapenemase. In 
the Americas, Russia, China and Australia, only sporadic reports of 
OXA-48-like carbapenemases have been reported.10 

Other OXA-type carbapenemases have also been reported in 
Enterobacteriaceae, including those of groups OXA-23, OXA-40, 
OXA-51 and OXA-58; additional details can be found in the recent 
review of these enzymes.44
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