Buscar en
Revista Iberoamericana de Micología
Toda la web
Inicio Revista Iberoamericana de Micología Single-tube classical PCR for Candida auris and Candida haemulonii identificatio...
Información de la revista
Vol. 35. Núm. 2.
Páginas 110-112 (Abril - Junio 2018)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
5938
Vol. 35. Núm. 2.
Páginas 110-112 (Abril - Junio 2018)
Note
Acceso a texto completo
Single-tube classical PCR for Candida auris and Candida haemulonii identification
PCR múltiple para la identificación de Candida auris y Candida haemulonii
Visitas
5938
Laura Theilla, Catiana Dudiuka,b, Soraya Morales-Lopezc,d, Indira Berrioe,f, José Yesid Rodríguezg, Adriana Marinh, Soledad Gamarraa, Guillermo Garcia-Effrona,b,
Autor para correspondencia
ggarcia@unl.edu.ar

Corresponding author at: Laboratorio de Micología y Diagnóstico Molecular (CONICET) – Cátedra de Parasitología y Micología – Facultad de Bioquímica y Ciencias Biológicas – Ciudad Universitaria, Paraje el Pozo S/N, Santa Fe, Santa Fe CP 3000 Argentina.
a Laboratorio de Micología y Diagnóstico Molecular – Cátedra de Parasitología y Micología – Facultad de Bioquímica y Ciencias Biológicas – Universidad Nacional del Litoral, Santa Fe, Argentina
b Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), CCT-Santa Fe, Argentina
c Universidad Popular del Cesar, Valledupar, Colombia
d Laboratorios Nancy Flórez García S.A.S, Valledupar, Colombia
e Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
f Hospital General de Medellín “Luz Castro de Gutiérrez” ESE, Medellín, Colombia
g Centro de Investigaciones Microbiológicas del Cesar – CIMCE Ltda, Valledupar, Colombia
h Clínica General del Norte, Barranquilla, Colombia
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (2)
Abstract
Background

Candida auris and Candida haemulonii are emerging and multiresistant pathogens. C. auris has produced hospital outbreaks and is misidentified by phenotypic-based methods. The only reliable identification methods are DNA sequencing and MALDI-TOF.

Aims

To develop a classical-PCR method capable of rapidly and accurately identify C. auris and C. haemulonii.

Methods

A multiplex PCR was carried out in one tube that included an internal control and oligonucleotides that specifically hybridize to the ITS2 region of C. auris and C. haemulonii. The usefulness of the new method was verified by testing a collection of 50 strains of 20 different species (previously identified by ITS sequencing). The selection of species was made in order to emulate the C. auris panel used by the CDC to validate diagnostic tools. In addition, other yeast species not included in the aforementioned panel were incorporated based on reported identification errors.

Results

The results obtained with the proposed protocol were in total agreement with those obtained by ITS sequencing.

Conclusions

We present a PCR method able to unequivocally identify C. auris and differentiate it from C. haemulonii. It is inexpensive, fast and it could be a useful tool to reduce the chances of a C. auris outbreak.

Keywords:
Candida auris
Molecular identification
Candida haemulonii
Resumen
Antecedentes

Candida auris y Candida haemulonii son patógenos emergentes y multirresistentes. C. auris ha sido responsable de brotes hospitalarios y no se puede identificar por métodos fenotípicos. Los únicos métodos de identificación confiables incluyen la secuenciación y el MALDI-TOF.

Objetivos

Desarrollar un método de PCR clásica capaz de identificar rápidamente C. auris y C. haemulonii.

Métodos

Se llevó a cabo una PCR múltiple en un tubo que incluyó un control interno y oligonucleótidos que hibridan específicamente con la región ITS2 de C. auris y C. haemulonii. Para comprobar la utilidad del método se utilizó una colección de 50 aislamientos de 20 especies diferentes (identificadas por secuenciación del ITS). La selección de especies se hizo con el fin de emular el panel de especies que ofrece el CDC para la correcta identificación de C. auris. Además, se incluyeron especies que son confundidas con C. auris y no están incluidas en el citado panel.

Resultados

Los resultados obtenidos con el protocolo propuesto estuvieron en total acuerdo con los obtenidos por la secuenciación del ITS.

Conclusiones

El método que presentamos es capaz de identificar inequívocamente C. auris y diferenciarla de C. haemulonii. Es barato, rápido y podría ser una herramienta útil para reducir la posibilidad de brotes por C. auris.

Palabras clave:
Candida auris
Identificación molecular
Candida haemulonii
Texto completo

Candida auris and Candida haemulonii are closely related multiresistant yeast pathogens that are increasingly reported worldwide.1,6–8,10,11,13C. auris has become an important cause of nosocomial outbreaks. The CDC recommends all infected or colonized patients are isolated from the rest of the hospital population.6,7,9,11,14 In order to comply with these recommendations, the correct identification of this species in clinical laboratories is essential. Phenotypic-based commercial identification systems misidentify C. auris. The two unique recommended methods for C. auris accurate identification are rDNA sequencing and MALDI-TOF.5,9 Nevertheless, these two methods have limitations regarding speed, availability, database update and cost. The objective of this work is to propose an inexpensive single-tube classical PCR method able to quickly identify C. auris and differentiate it from C. haemulonii.

A multiplex PCR tube was assembled with four primers. It contained the ITS universal primers (ITS1 [5′-TCCGTAGGTGAACCTGCGG-3′] and ITS4 [5′-TCCTCCGCTTATTGATATGC-3′]) that were used as internal controls.15 The remaining primers were designed to specifically hybridize the ITS2 region of C. auris and C. haemulonii. These specific primers were named as: C. auris (5′-CCACCGCGAAGATTGGTG-3′; orientation: antisense) and C. haemulonii (5′-CCGTTGGTGGATTTGTTTCT-3′; orientation: sense) (Fig. 1). The primer design was based on the following GeneBank accession numbers: HE797772.1 (C. auris ITS), JX459664.1 (C. haemulonii), JX459687.1 (C. haemulonii var. vulnera), EU881972.1 (Candida pseudohaemulonii) and JX459667.1 (Candida duobushaemulonii). ITS sequences of the species of the C. haemulonii complex were included in the PCR design to ensure the specificity of the primers. Oligonucleotides were purchased from GBT primers (Genbiotech-Argentina). PCR reactions were set in a 25μl final volume following the Pegasus DNA polymerase manufacturer's instructions (PBL-Argentina). Each PCR tube contained 1 unit of Pegasus Taq polymerase, 50ng of yeast DNA, 1× PCR buffer, 250μM dNTPs, 2mM MgCl2, 0.1μM of ITS4, 0.2μM of ITS1 primer and 0.1μM of C. auris and C. haemulonii specific primers. An Applied Biosystems thermocycler was used for DNA amplification using the following program: 2min 95°C (initial step) followed by 25 cycles of 30s at 95°C, 30s at 55°C and 1min at 72°C, and a final step of 10min at 72°C. PCR amplification products were resolved by electrophoresis using a 1.2% agarose gel.

Fig. 1.

Representation of fungal nuclear ribosomal DNA (rDNA). Arrows represent the primers used in this work. Lines show the expected PCR band sizes.

(0,18MB).

The usefulness of the new method was evaluated by testing a panel of 50 strains of 20 different species specifically assembled for this work. The species were chosen taking into account species that are indistinguishable from C. auris if the currently available methods are used.4,9 Many of these species are included in a CDC panel distributed to be used in the validation of diagnostic tools.3 All the strains of the panel were identified by ITS sequencing15 and were obtained from international collections (e.g. ATCC or CBS) or clinical samples. Our panel included 20 C. auris, 5 C. haemulonii, 1 C. pseudohaemulonii, 1 C. duobushaemulonii, 3 Candida guilliermondii, 2 Candida lusitaniae, 2 Saccharomyces cerevisiae, 1 Rhodotorula glutinis, 1 Candida sake, 1 Candida albicans, 1 Candida glabrata, 2 Candida parapsilosis sensu stricto, 2 Candida krusei, 2 Candida tropicalis, 1 Cryptococcus neoformans, 1 Candida orthopsilosis, 1 Candida nivariensis, 1 Candida dubliniensis, 1 Candida kefyr and 1 Candida famata. Yeast genomic DNAs were obtained using a phenol-based method.12

When C. auris or C. haemulonii DNA was used, the PCR amplification yielded two bands: a 401 nt ITS internal control band together with a 281 nt or a 118 nt species specific band, respectively. PCR products of different sizes showing the amplification of the ITS internal controls (using ITS1 and ITS4 primers) were obtained when DNA from other species were used (Fig. 2). In this study, we evaluated 50 strains and the results obtained with the proposed single tube PCR protocol were in total agreement with those obtained by ITS sequencing.

Fig. 2.

Electrophoresis of the PCRs resolved in a 1.2% agarose gel. M, molecular size marker. NC, negative control. (A) Lanes: 1, C. auris; 2, C. pseudohaemulonii; 3, C. sake; 4, Cryptococcus neoformans; 5, C. krusei; 6, C. dubliniensis; 7, Rhodotorula glutinis; 8, S. cerevisiae; 9, C. famata; 10, C. guilliermondii. (B) Lanes: 1, C. haemulonii; 2, C. pseudohaemulonii; 3, C. duobushaemulonii; 4, C. orthopsilosis; 5, C. lusitaniae; 6, C. albicans; 7, C. neoformans; 8, C. parapsilosis; 9, C. tropicalis; 10, C. nivariensis.

(0,18MB).

Since the first C. auris isolation, rDNA ITS region sequencing has been used as the unique unequivocal identification tool.5,9,13 Later, the introduction of the MALTI-TOF technology in clinical labs added a new identification option.4 In 2016, the CDC suggested to molecularly characterize or identify by means of MALDI-TOF any clinically resistant yeast and/or any yeast identified as (i) Candida sake or Rhodotorula glutinis (with non-red colony) by using API20C, (ii) Candida catenulata by DB Phoenix and (iii) C. catenulata, C. guilliermondii, C. lusitaniae or Candida famata when using MicroScan.4,9

Herein we present a fast and inexpensive PCR method able to unequivocally identify the multiresistant species C. auris and C. haemulonii. As any other method of molecular identification, a possible drawback is the misidentification due to point mutations in the region where the primers hybridize. However, the ITS regions of all the C. auris and C. haemulonii strains included in this work were sequenced and showed exactly the same nt sequences as the genebank sequences used for the primers design. It must be noted that all the strains used in this work were isolated in different hospitals of Colombia. Geographic clonality was described for C. auris strains.2,9 Thus, these methodology should be tested using C. auris from other world's regions to ensure that all the C. auris share the exact ITS sequence. Other limitation of this PCR technique is that it is not able to differentiate C. haemulonii from C. haemulonii var. vulnera (a variety of C. haemulonii group I).2

The proposed PCR would be a useful tool for supporting the decision to isolate a patient, reducing the possibility of C. auris outbreaks.

Conflict of interest

None declared.

Acknowledgments

This work was supported in part by the Argentinian Ministerio de Ciencia y Tecnología (MinCyT) [grant number PICT-2013-1571, 2013-2017] to GGE. CD have a postdoctoral fellowship from CONICET.

References
[1]
R. Ben-Ami, J. Berman, A. Novikov, E. Bash, Y. Shachor-Meyouhas, S. Zakin, et al.
Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel.
Emerg Infect Dis, 23 (2017),
[2]
E. Cendejas-Bueno, A. Kolecka, A. Alastruey-Izquierdo, B. Theelen, M. Groenewald, M. Kostrzewa, et al.
Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts.
J Clin Microbiol, 50 (2012), pp. 3641-3651
[3]
Center for Disease Control and Prevention.
Antibiotics/antimicrobial resistance – isolates currently available.
(2017),
[4]
Center for Disease Control and Prevention.
Candida auris interim recommendations for healthcare facilities and laboratories.
(2016),
[5]
S. Kathuria, P.K. Singh, C. Sharma, A. Prakash, A. Masih, A. Kumar, et al.
Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method.
J Clin Microbiol, 53 (2015), pp. 1823-1830
[6]
M.N. Kim, J.H. Shin, H. Sung, K. Lee, E.C. Kim, N. Ryoo, et al.
Candida haemulonii and closely related species at 5 university hospitals in Korea: identification, antifungal susceptibility, and clinical features.
Clin Infect Dis, 48 (2009), pp. e57-e61
[7]
W.G. Lee, J.H. Shin, Y. Uh, M.G. Kang, S.H. Kim, K.H. Park, et al.
First three reported cases of nosocomial fungemia caused by Candida auris.
J Clin Microbiol, 49 (2011), pp. 3139-3142
[8]
R.E. Magobo, C. Corcoran, S. Seetharam, N.P. Govender.
Candida auris-associated candidemia, South Africa.
Emerg Infect Dis, 20 (2014), pp. 1250-1251
[9]
M. Mizusawa, H. Miller, R. Green, R. Lee, M. Durante, R. Perkins, et al.
Can multidrug-resistant Candida auris be reliably identified in clinical microbiology laboratories?.
J Clin Microbiol, 55 (2017), pp. 638-640
[10]
L. Rodero, M. Cuenca-Estrella, S. Cordoba, P. Cahn, G. Davel, S. Kaufman, et al.
Transient fungemia caused by an amphotericin B-resistant isolate of Candida haemulonii.
J Clin Microbiol, 40 (2002), pp. 2266-2269
[11]
A.C. Ruiz Gaitan, A. Moret, J.L. Lopez Hontangas, J.M. Molina, A.I. Aleixandre Lopez, A.H. Cabezas, et al.
Nosocomial fungemia by Candida auris: first four reported cases in continental Europe.
Rev Iberoam Micol, 34 (2017), pp. 23-27
[12]
J. Sambrook, E.F. Fritsch, T. Maniatis.
Molecular cloning: a laboratory manual.
Cold Spring Harbor Laboratory Press, (1998),
[13]
K. Satoh, K. Makimura, Y. Hasumi, Y. Nishiyama, K. Uchida, H. Yamaguchi.
Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital.
Microbiol Immunol, 53 (2009), pp. 41-44
[14]
S. Schelenz, F. Hagen, J.L. Rhodes, A. Abdolrasouli, A. Chowdhary, A. Hall, et al.
First hospital outbreak of the globally emerging Candida auris in a European hospital.
Antimicrob Resist Infect Control, 5 (2016), pp. 35
[15]
T.J. White, T.D. Bruns, S.B. Lee, J.W. Taylor.
Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.
PCR protocols: a guide to methods and applications, pp. 315-322
Copyright © 2018. Asociación Española de Micología
Opciones de artículo
Herramientas