Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Simulación de Plataformas Robóticas de Movimiento para Aplicaciones de Realida...
Información de la revista
Vol. 14. Núm. 4.
Páginas 455-466 (Octubre - Diciembre 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3614
Vol. 14. Núm. 4.
Páginas 455-466 (Octubre - Diciembre 2017)
Open Access
Simulación de Plataformas Robóticas de Movimiento para Aplicaciones de Realidad Virtual Mediante Filtros Digitales
On the Simulation of Robotic Motion Platforms with Digital Filters for Virtual Reality Applications
Visitas
3614
Sergio Casas, Cristina Portalés
Autor para correspondencia
poricris@uv.es

Autor para correspondencia.
, Silvia Rueda, Marcos Fernández
Instituto de Robótica y Tecnologías de la Información y la Comunicación, Universitat de València, C/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

El uso de plataformas robóticas de movimiento en simuladores de vehículos y aplicaciones de Realidad Virtual es relativamente habitual. Sin embargo, el ajuste de los algoritmos que controlan su funcionamiento, denominados algoritmos de washout, no es sencillo y requiere de numerosas pruebas hasta obtener una apropiada fidelidad de movimiento. Disponer de herramientas que permitan simular plataformas de movimiento puede permitir simplificar esta tarea. Es por ello que este trabajo presenta un método para la caracterización y simulación de manipuladores robóticos mediante filtros digitales de segundo orden, sencillo de implementar y ajustar a partir de una caracterización previa. El simulador se construye con el objetivo de permitir la simulación rápida de manipuladores robóticos y se ejemplifica con una plataforma de dos grados de libertad, aunque el método propuesto podría emplearse en otros dispositivos. En las pruebas realizadas se valida la precisión y velocidad de la simulación, concluyéndose que se obtiene una fidelidad satisfactoria y una velocidad de simulación elevada que permite emplear el simulador como sustituto del hardware real con algoritmos de washout.

Palabras clave:
Plataformas de movimiento
simuladores
filtros digitales
realidad virtual
robótica
tiempo real
Abstract

Robotic motion platforms are used in many vehicle simulators and Virtual Reality applications. However, the set-up of the so-called washout algorithms that control the generation of self-motion is a hard process, since a great deal of tests need to be performed before reaching a proper motion fidelity. The availability of simulation tools eases this tuning task. Therefore, a motion platform characterization and simulation method is proposed in this paper. The method relies on second order digital filters and provides a reliable, yet very fast simulation system, which is assessed by means of a two degree-of-freedom motion platform, although the method might be applied to simulate other motion mechanisms.

Keywords:
Motion platforms
simulation
digital filters
Virtual Reality
robotics
real time
Referencias
[Abed-Meraim et al., 1997]
K. Abed-Meraim, W. Qiu, Y. Hua.
Blind system identification.
Proceedings of the IEEE, 85 (1997), pp. 1310-1322
[Cao et al., 2013]
Y. Cao, C. Gosselin, H. Zhou, P. Ren, W. Ji.
Orientation-singularity analysis and orientationability evaluation of a special class of the Stewart–Gough parallel manipulators.
Robotica, 31 (2013), pp. 1361-1372
[Casas et al., 2014]
S. Casas, J.M. Alcaraz, R. Olanda, I. Coma, M. Fernández.
Towards an extensible simulator of real motion platforms.
Simulation Modelling Practice and Theory, 45 (2014), pp. 50-61
[Casas et al., 2016]
S. Casas, I. Coma, C. Portalés, M. Fernández.
Towards a simulation-based tuning of motion cueing algorithms.
Simulation Modelling Practice and Theory, 67 (2016), pp. 137-154
[Casas et al., 2015]
S. Casas, I. Coma, J.V. Riera, M. Fernández.
Motion-Cuing Algorithms: Characterization of Users’ Perception.
Human Factors: The Journal of the Human Factors and Ergonomics Society, 57 (2015), pp. 144-162
[Casas et al., 2017]
S. Casas, R. Olanda, N. Dey.
Motion Cueing Algorithms: A Review - Algorithms.
Evaluation and Tuning. International Journal of Virtual and Augmented Reality, 1 (2017), pp. 90-106
[Cleary, 2016]
Cleary, K. (2016). Medical robotics for pediatric applications shoulder arthrography, ankle rehabilitation, and temporal bone surgery. Paper presented at the World Automation Congress (WAC), 2016.
[Dagdelen et al., 2009]
M. Dagdelen, G. Reymond, A. Kemeny, M. Bordier, N. Maizi.
Model-based Predictive Motion Cueing Strategy for Vehicle Driving Simulators.
Control Engineering Practice, 17 (2009), pp. 995-1003
[Fu and Li, 2013]
Fu, L., & Li, P. (2013). The research survey of system identification method. Paper presented at the Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2013 5th International Conference on.
[Fung et al., 2004]
Fung, J., Malouin, F., McFadyen, B., Comeau, F., Lamontagne, A., Chapdelaine, S., et al. (2004). Locomotor rehabilitation in a complex virtual environment. Paper presented at the Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE.
[Gotmare et al., 2017]
A. Gotmare, S.S. Bhattacharjee, R. Patidar, N.V. George.
Swarm and evolutionary computing algorithms for system identification and filter design: A comprehensive review.
Swarm and Evolutionary Computation, 32 (2017), pp. 68-84
[Grant and Reid, 1997]
P.R. Grant, L.D. Reid.
Motion Washout Filter Tuning: Rules and Requirements.
Journal of Aircraft, 34 (1997), pp. 145-151
[Groen and Bles, 2004]
E.L. Groen, W. Bles.
How to use body tilt for the simulation of linear self motion.
Journal of Vestibular Research, 14 (2004), pp. 375-385
[Hajimirzaalian et al., 2010]
Hajimirzaalian, H., Moosavi, H., & Massah, M. (2010). Dynamics analysis and simulation of parallel robot Stewart platform. Paper presented at the Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on.
[Hodge et al., 2015]
S.J. Hodge, P. Perfect, G.D. Padfield, M.D. White.
Optimising the Yaw Motion Cues Available From a Short Stroke Hexapod Motion Platform.
The Aeronautical Journal, 119 (2015), pp. 1-21
[Hulme and Pancotti, 2004]
Hulme, K.F., & Pancotti, A. (2004). Development of a virtual 6 DOF motion platform for simulation and rapid synthesis. Paper presented at the 45 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.
[Küçük, 2012]
Küçük, S. (2012). Serial and Parallel Robot Manipulators - Kinematics, Dynamics, Control and Optimization: InTech.
[Kurosaki, 1978]
Kurosaki, M. (1978, June 1978). Optimal washout for control of a moving base simulator. Paper presented at the Proceedings of the Seventh Triennial World Congress of IFAC (International Federation of Automatic Control), Helsinki, Finland.
[Lau et al., 2007]
H. Lau, L. Chan, R. Wong.
A virtual container terminal simulator for the design of terminal operation.
International Journal on Interactive Design and Manufacturing (IJIDeM), 1 (2007), pp. 107-113
[Li and Gosselin, 2012]
Li, S.J., & Gosselin, C.M. (2012). Determination of singularity-free zones in the workspace of planar parallel mechanisms with revolute actuators. Paper presented at the Applied Mechanics and Materials.
[Li et al., 2003]
Li, Y.-W., Wang, J.-S., Wang, L.-P., & Liu, X.-J. (2003). Inverse dynamics and simulation of a 3-DOF spatial parallel manipulator. Paper presented at the Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on.
[Ljung, 1999a]
Ljung, L. (1999). System identification: Wiley Online Library.
[Ljung, 1999b]
L. Ljung.
System Identification: Theory for the User.
2nd Edition ed., Prentice Hall, (1999),
[Lozoya-Santos et al., 2017]
Lozoya-Santos, J. d. J., Tudon-Martinez, J.C., & Salinas, J. (2017). Control Design for a Motion Cueing on Driving Simulator. Paper presented at the Journal of Physics: Conference Series.
[Mathworks, 2017]
Mathworks. (2017). https://www.mathworks.com/products/matlab.html. MATLAB, The Language of Technical Computing Retrieved 02/01/2017, 2017.
[Mauro et al., 2016]
S. Mauro, L. Gastaldi, S. Pastorelli, M. Sorli.
Dynamic flight simulation with a 3 dof parallel platform.
International Journal of Applied Engineering Research, 11 (2016), pp. 9436-9442
[MSC, 2017]
MSC. (2017). http://www.mscsoftware.com/product/adams. Adams, The Multibody Dynamics Simulation Solution Retrieved 02/01/2017, 2017.
[Nahon and Reid, 1990]
M.A. Nahon, L.D. Reid.
Simulator motion-drive algorithms - A designer's perspective.
Journal of Guidance, Control, and Dynamics, 13 (1990), pp. 356-362
[Optitrack, 2017]
Optitrack. (2017). http://optitrack.com/. Motion Capture Systems - Optitrack Retrieved 02/01/2017, 2017, from http://www.naturalpoint.com/optitrack/.
[Ortega and Sigut, 2016]
J.J. Ortega, M. Sigut.
Prototipo de una plataforma móvil de bajo coste para simulación de vuelo de alto realismo.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 13 (2016), pp. 293-303
[Paarmann, 2001]
L.D. Paarmann.
Design and analysis of analog filters: a signal processing perspective.
Springer Science & Business Media, (2001),
(Vol. 617)
[Page, 2000]
Page, L.R. (2000). Brief History of Flight Simulation. Paper presented at the SimTecT 2000 Proceedings, Sydney, NSW, Australia.
[Parrish et al., 1975]
R.V. Parrish, J.E. Dieudonne, D.J. Martin Jr..
Coordinated Adaptive Washout for Motion Simulators.
Journal of Aircraft, 12 (1975), pp. 44-50
[Reid and Nahon, 1985]
L.D. Reid, M.A. Nahon.
Flight Simulation Motion-Base Drive Algorithms: Part 1 - Developing and Testing the Equations.
University of Toronto, (1985),
[Reid and Nahon, 1988]
L.D. Reid, M.A. Nahon.
Response of airline pilots to variations in flight simulator motion algorithms.
Journal of Aircraft, 25 (1988), pp. 639-646
[Reymond and Kemeny, 2000]
G. Reymond, A. Kemeny.
Motion Cueing in the Renault Driving Simulator.
Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 34 (2000), pp. 249-259
[Rorabaugh, 1993]
C.B. Rorabaugh.
Digital Filter Designer's Handbook - Featuring C Routines.
TAB Books - McGraw Hill, (1993),
[Royal-Aeronautical-Society, 1979]
Royal-Aeronautical-Society. (1979). 50 Years of Flight Simulation, Conference Proceedings. London, UK.
[Schmidt and Conrad, 1969]
S.F. Schmidt, B. Conrad.
The Calculation of Motion Drive Signals for Piloted Flight Simulators.
Palo Alto, CA, USA, (1969),
[Selvakumar et al., 2010]
Selvakumar, A.A., Pandian, R.S., Sivaramakrishnan, R., & Kalaichelvan, K. (2010). Simulation and performance study of 3—DOF parallel manipulator units. Paper presented at the Emerging Trends in Robotics and Communication Technologies (INTERACT), 2010 International Conference on.
[Sinacori, 1977]
J.B. Sinacori.
The Determination of Some Requirements for a Helicopter Flight Research Simulation Facility.
Moffet Field, (1977),
[Sivan et al., 1982]
R. Sivan, J. Ish-Shalom, J.K. Huang.
An Optimal Control Approach to the Design of Moving Flight Simulators.
IEEE Transactions on System, Man & Cybernetics, 12 (1982), pp. 818-827
[Sjöberg et al., 1995]
J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.Y. Glorennec, et al.
Nonlinear black-box modeling in system identification: a unified overview.
Automatica, 31 (1995), pp. 1691-1724
[Slob, 2008]
J.J. Slob.
State-of-the-Art Driving Simulators a Literature Survey.
Eindhoven University of Technology, (2008),
[Stewart, 1965]
Stewart, D. (1965). A Platform with six degrees of freedom.
[Vogel et al., 2016]
Vogel, C., Fritzsche, M., & Elkmann, N. (2016). Safe Human-Robot Cooperation with High-Payload Robots in Industrial Applications. Paper presented at the The Eleventh ACM/IEEE International Conference on Human Robot Interaction.
[Winder, 2002]
Winder, S. (2002). Analog and digital filter design: Newnes.
[Zhang and Zhang, 2013]
C. Zhang, L. Zhang.
Kinematics analysis and workspace investigation of a novel 2-DOF parallel manipulator applied in vehicle driving simulator.
Robotics and Computer-Integrated Manufacturing, 29 (2013), pp. 113-120
Opciones de artículo
Herramientas