Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Prototipo de una plataforma móvil de bajo coste para simulación de vuelo de al...
Información de la revista
Vol. 13. Núm. 3.
Páginas 293-303 (Julio - Septiembre 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4071
Vol. 13. Núm. 3.
Páginas 293-303 (Julio - Septiembre 2016)
Open Access
Prototipo de una plataforma móvil de bajo coste para simulación de vuelo de alto realismo
A low-cost mobile prototype for high-realism flight simulation
Visitas
4071
J.J. Ortega, M. Sigut
Autor para correspondencia
marsigut@ull.es

Autor para correspondencia.
Departamento de Ingeniería Informática y de Sistemas, Universidad de La Laguna, Avda. Francisco Sánchez, s/n. La Laguna, 38204. Santa Cruz de Tenerife, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este artículo se presenta un prototipo de plataforma móvil para simulación de vuelo de alto realismo. La parte central de este prototipo, que hemos denominado Albatros, es la maqueta hecha a mano. Esta maqueta es una réplica a escala de la plataforma a tamaño real que los autores pretenden construir en un futuro próximo. La maqueta está basada en la plataforma Stewart-Gough, y se ha equipado con actuadores neumáticos y potenciómetros magnéticos como sensores de posición. La plataforma móvil recibe la información de vuelo proveniente de un simulador de vuelo comercial en forma de la posición de referencia para los seis actuadores. Así, la plataforma móvil puede seguir los movimientos del avión simulado gracias a la implementación de seis controladores proporcionales-integrales. La interfaz entre el ordenador de simulación y la maqueta es una placa Arduino Mega. La simulación de vuelo de alto realismo se ha pretendido alcanzar gracias, por un lado, a un seguimiento lo más fiel posible de la consignas generadas por el software de simulación de vuelo y, por otro, a un retardo entre los movimientos del avión simulado y la maqueta tan pequeño como sea posible.

Palabras clave:
Simulación de vuelo
Arduino
control PID
bajo coste
alto realismo
sistema multiplataforma
Abstract

A low-cost mobile prototype for high-realism flight simulation is presented in this article. The most relevant part of this prototype that has been called Albatros is the hand-made mobile platform. The authors have the intention of constructing a real-size prototype based on the mock-up described here. This mock-up is based on a Stewart Gough platform and equipped with pneumatic actuators and magnetic potentiometers as position sensors. The mobile platform receives the flight information coming from a commercial flight simulator in the form of the reference position for the six actuators. Thus, the mobile platform can track the simulated aircraft movements thanks to the implementation of six proportional-integral controllers. An Arduino Mega circuit board is the interface between the computer and the mock-up. The high-realism flight simulation is achieved by means of the prototype motion and the short delay measured between the simulated aircraft movements and the platform ones.

Keywords:
Flight simulation
Arduino
PID control
low-cost
high-realish
multiplatform system
Referencias
[Air Line Pilots Association (ALPA), 2007]
Air Line Pilots Association (ALPA), 2007. Safety Committee Statement of Position: The Need for Motion in Flight Simulation.
[Álvarez et al., 2009]
C. Álvarez, R. Saltaren, R. Aracil, C. García.
Concepción, desarrollo y avances en el control de navegación de robots submarinos paralelos: El robot Remo-I.
Revista Iberoamericana de Automática e Informática Industrial, 6 (2009), pp. 92-100
[Ames Technology Capabilities and Facilities, 2008]
Ames Technology Capabilities and Facilities. 2008. VMS -Vertical Motion Simulator. Recuperado de http://www.nasa.gov/centers/ames/research/technology-onepagers/vms.html.
[AMST, 2015]
AMST. (2015). Desdemona -The revolution in simulation. Recuperado de http://www.amst.co.at/en/training-simulation-products/desdemona/.
[Arai et al., 2012]
Arai, S., Kondo, H., Goto, H., Tanaka, Y., 2012. Evaluation of motion with washout algorithm for flight simulator using tripod parallel mechanism. In Proc. of the 19th International Conference Mechatronics and Machine Vision in Practice, Auckland.
[Bellmann et al., 2011]
Bellmann, T., Heindl, J., Hellerer, M., Kuchar, R., Sharma, K., Hirzinger, G., 2011. The DLR robot motion simulator Part I: Design and setup. In Proc. of IEEE International Conference on Robotics and Automation, Shanghai.
[Bürki-Cohen et al., 2004]
Bürki-Cohen, J., Go, T.H., Chung, W.W., Schroeder, J., 2004. Simulator platform motion requirements for recurrent airline pilot training and evaluation, Final Report.
[Bürki-Cohen et al., 2011]
Bürki-Cohen, J., Sparko, A.L., Bellman, M., 2011. Flight simulator motion literature pertinent to airline-pilot recurrent training and evaluation. In Proc. of AIAA Modeling and Simulation Technologies Conference, Portland.
[Bussolari and Lee, 1986]
S.R. Bussolari, A.T. Lee.
The effects of flight simulator motion on pilot performance and simulator acceptability in transport category aircraft.
Massachusetts Institute of Technology/NASA Ames Research Center, (1986),
[Caro, 1979]
P.W. Caro.
The relationship between flight simulator motion and training requirements.
Human Factors, 4 (1979), pp. 493-501
[Chunping et al., 2012]
P. Chunping, L. Ying, L. Jianmin, G. Yongjun.
A time varying washout approach for flight simulation hexapod motion system.
In Proc. of IEEE International Conference on Computer Science and Automation Engineering, (2012),
[FlightSafety International, 2015]
FlightSafety International. (2015). FlightSafety Simulators and Training Technology. Recuperado de http://www.flightsafety.com/fs_simulation_landing.php.
[Go et al., 2003]
T.H. Go, J. Bürki-Cohen, W.W. Chung, J. Schroeder, G. Saillant, S. Jacobs, T. Longridge.
The effects of enhanced hexapod motion on airline pilot recurrent training and evaluation.
In Proc. of AIAA Modeling and Simulation Technologies Conference, (2003),
[Grant et al., 2006]
P.R. Grant, B. Yam, R. Hosman, J.A. Schroeder.
Effect of simulator motion on pilot behavior and perception.
J. Aircr., 43 (2006), pp. 1914-1924
[Hall, 1989]
J.R. Hall.
The need for platform motion in modern piloted flight training simulators.
In Royal Aerospace Establishment, Tech Memo FM 35, (1989),
[Hitaka et al., 2009]
Y. Hitaka, Y. Tanaka, K. Ichiryu.
Motion analysis of tripod parallel mechanism.
Artif. Life and Robot., 14 (2009), pp. 494-497
[Izaguirre et al., 2011]
E. Izaguirre, L. Hernández, E. Rubio, P.J. Prieto, A. Hernández.
Control desacoplado de plataforma neumática de 3-GDL utilizada como simulador de movimiento.
Revista Iberoamericana de Automática e Informática Industrial, 8 (2011), pp. 345-356
[Kent, 2010]
J.L. Kent.
Limits on human perception, in: Psychedelic information theory.
Shamanish in the age of reason. PIT Press /Supermassive, LLC, (2010), pp. 37-48
[Levison and Junker, 1978]
W.H. Levison, A.M. Junker.
A model for the pilot's use of motion cues in steady-state roll-axis tracking tasks.
In Proc. of AIAA Flight Simulation Technologies Conference, (1978),
[National Aeronautics et al., 2014]
National Aeronautics and Space Administration. (2014). CVSRF Advanced Concepts Flight Simulator. Recuperado de http://www.aviationsystemsdivision.arc.nasa.gov/facilities/cvsrf/acfs.shtml.
[Pradipta et al., 2013]
J. Pradipta, M. Klunder, M. Weickgenannt, O. Sawodny.
Development of a pneumatically driven flight simulator stewart platform using motion and force control.
In Proc. of International Conference on Advanced Intelligent Mechatronics, (2013),
[Regional Airline Association (RAA), 2008]
Regional Airline Association (RAA).
Government research indicates simulator motion adds training complexity - RAA Recommends Operational Testing to Validate Effectiveness of Non-Motion Platforms.
Regional Airline Industry White Paper, (2008),
[Shiga et al., 2011]
Y. Shiga, Y. Tanaka, H. Goto, H. Takeda.
Design of a six degree-of-freedom tripod parallel mechanism for flight simulators.
Int. J. Automation Technol., 5 (2011), pp. 715-721
[Sung-Hua et al., 2011]
Ch. Sung-Hua, F. Li-Chen.
An optimal washout filter design with fuzzy compensation for a motion platform.
In Proc. of the 18th IFAC World Congress, (2011),
[Vaden and Hall, 2005]
E.A. Vaden, S. Hall.
The effect of simulator platform motion on pilot training transfer: A meta-analysis.
Int. J. Aviat. Psychology, 15 (2005), pp. 375-393
[Van der Pal, 1999]
J. Van der Pal.
The effect of simulator motion on parameter training for F-16 pilots, engineering psychology and cognitive ergonomics: transportation systems, medical ergonomics and training, pp. 267-275
[Van Heerden et al., 2011]
A. Van Heerden, R. Lidbetter, L. Liebenberg, E.H. Mathews, J.P. Meyer.
Development of a motion platform for an educational flight simulator.
Int. J. of Mechanical Engineering Education, 39 (2011), pp. 306-322
[Woodrow et al., 2013]
P.M. Woodrow, M.B. Tischler, S.G. Hagerott, G.E. Mendoza.
Low cost flight-test platform to demonstrate flight dynamics concepts using frequency-domain system identification methods.
In Proc. of AIAA Atmospheric Flight Mechanics Education Conference, (2013),
[Wu and Sun, 2013]
L. Wu, Y.P. Sun.
Development of a low-cost flight simulation training device for research and education.
In Proc. of the 2nd International Conference on Intelligent Technologies and Engineering Systems, (2013),
Opciones de artículo
Herramientas