x

¿Aún no está registrado?

Cree su cuenta. Regístrese en Elsevier y obtendrá: información relevante, máxima actualización y promociones exclusivas.

Registrarme ahora
Ayuda - - Regístrese - Teléfono 902 888 740
Buscar en

FI 2016

0,500
© Thomson Reuters, Journal Citation Reports, 2016

Indexada en:

SCIE /JCR, Scopus, ScienceDirect

Métricas

  • Factor de Impacto: 0,500(2016)
  • 5-años Factor de Impacto: 0,344
  • SCImago Journal Rank (SJR):0,212
  • Source Normalized Impact per Paper (SNIP):0,308

© Thomson Reuters, Journal Citation Reports, 2016

Revista Iberoamericana de Automática e Informática industrial 2017;14:256-67 - DOI: 10.1016/j.riai.2017.05.003
Observadores Distribuidos Garantistas para Sistemas en Red
Guaranteed Distributed Observers for Networked Systems
Ramón A. Garcíaa,, , Francisco R. Rubioa, , Luis Orihuelab, , Pablo Millánb, , Manuel G. Ortegaa,
a Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Sevilla, España
b Departamento de Ingeniería, Universidad Loyola Andalucía, Sevilla, España
Resumen

En este artículo se propone un observador distribuido garantista para sistemas en red, considerando de forma explícita el problema de los retardos variables en las comunicaciones. Se asume que la información intercambiada entre agentes llega siempre a su destino, si bien las comunicaciones están sujetas a retardos variables, cuyo valor máximo se supone conocido. Cada observador trabaja con información parcial, y necesita comunicarse con observadores vecinos para llevar a cabo una estimación del estado completo del sistema. Para representar a los conjuntos garantistas, cuya función es acotar en tiempo real la región en la que se encuentra el estado del sistema, se ha optado por la utilización de zonotopos. Esto permite integrar de forma sencilla la información recibida por cada agente. Finalmente se presentan resultados de simulación para validar el algoritmo propuesto.

Abstract

This paper proposes a guaranteed distributed observer for networked systems, taking into account the problem of the variable delays in communications. We assume that the information exchanged among the agents always arrives to its destination, although the communication are subject to variable delays, whose maximum value is known. Each observer works with partial information, and needs to communicate with neighbouring observers to carry out an estimation of the complete state of the system. The guaranteed sets, whose function is to delimit in real time the region in which the state of the system belong to, are represented by zonotopes. This kind of sets allows a simple integration of the information received by each agent. Finally some results obtained with the proposed algorithm are shown in simulations.

Palabras clave
Estimación Distribuida, Observadores de Estado, Sistemas con Retardos, Sistemas en red, Zonotopos
Keywords
Distributed Estimation, State Observers, Delays Systems, Networked systems, Zonotopes
Referencias
Alamo et al., 2005
T. Alamo,J.M. Bravo,E.F. Camacho
Guaranteed state estimation by zonotopes
Automatica, 41 (2005), pp. 1035-1043
Bars et al., 2012
F.L. Bars,J. Sliwka,L. Jaulin,O. Reynet
Set-membership state estimation with fleeting data
Automatica, 48 (2012), pp. 381-387
Briñón Arranz et al., 2009
L. Briñón Arranz,A. Seuret,C. Canudas deWit
Translation control of a fleet circular formation of AUVs under finite communication range
In: 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shangai, (2009 December)pp. 8345-8350
Caro, 2004
J.M.B. Caro
Control predictivo no lineal robusto basado en técnicas intervalares
Universidad de Sevilla, (2004)
Ph. D. thesis
Combastel, 2015
C. Combastel
Zonotopes and kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence
Automatica 2015 1., (2015), pp. 265-273
Farina et al., 2010
M. Farina,G. Ferrari-Trecate,R. Scattolini
Distributed moving horizon estimation for linear constrained systems
IEEE Transactions on Automatic Control, 55 (2010), pp. 2462-2475
Feng et al., 2013
J. Feng,Z. Wang,M. Zeng
Distributed weighted robust kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises
Information Fusion, 14 (2013), pp. 78-86
Fridman, 2014
E. Fridman
Introduction to time-delay systems: Analysis and control
Springer, (2014)
García et al., 2015
R.A. García,F.R. Rubio,M. Guinaldo,L. Orihuela,P. Millán
An asynchronous technique for distributed estimation based on zonotopes
International Conference on. IEEE, (2015)pp. 1-7
Guinaldo et al., 2016
M. Guinaldo,J. Sánchez,S. Dormido
Distributed adaptive control of linear multi-agent systems with event-triggered communications
Applied Mathematics and Computation, 274 (2016), pp. 195-207
He et al., 2016
He, X., Xue, W., Fang, H., Nov 2016. Consistent distributed Kalman filter with adaptive matrix weights. In: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV). pp. 1-6.
Iyengar and Brooks, 2016
S.S. Iyengar,R.R. Brooks
Distributed sensor networks: sensor networking and applications
CRC press, (2016)
Johansson, 2000
K.H. Johansson
The quadruple-tank process: a multivariable laboratory process with an adjustable zero
IEEE Transactions on Control Systems Technology, 8 (2000 May), pp. 456-465
Le et al., 2013
V.T.H. Le,C. Stoica,T. Alamo,E.F. Camacho,D. Didier
Zonotopes: From guaranteed state-estimation to control
John Wiley and Sons, (2013)
Li et al., 2014
H. Li,Y. Shi,W. Yan
Distributed receding horizon estimation for sensor networks with improved consensus strategy
In: Proceedings of the 33rd Chinese Control Conference, (2014 July), pp. 316-321
Mahmoud and Khalid, 2013
M.S. Mahmoud,H.M. Khalid
Distributed kalman filtering: a bibliographic review
IET Control Theory Applications, 7 (2013 March), pp. 483-501
Millán et al., 2012a
P. Millán,L. Orihuela,C. Vivas,F.R. Rubio
Control óptimo-L2 basado en red mediante funcionales de Lyapunov-Krasovskii
Revista Iberoamericana de Automática e Informática Industrial, 9 (2012), pp. 14-23
Millán et al., 2012b
P. Millán,L. Orihuela,C. Vivas,F.R. Rubio
Distributed consensusbased estimation considering network induced delays and dropouts
Automatica, 48 (2012), pp. 2726-2729
Olfati-Saber, 2007
R. Olfati-Saber
Distributed Kalman filtering for sensor networks. In: 46th IEEE Conference on Decision and Control
New Orleans, (2007 December)pp. 5492-5498
Orihuela et al., 2013
L. Orihuela,P. Millán,C. Vivas,F.R. Rubio
Reduced-order H2/H distributed observer for sensor networks
International Journal of Control, 86 (2013), pp. 1870-1879
Richard, 2003
J.P. Richard
Time-delay systems: an overview of some recent advances and open problems
Automatica, 39 (2003), pp. 1667-1694
Roshany-Yamchi et al., 2013
S. Roshany-Yamchi,M. Cychowski,R.R. Negenborn,B.D. Schutter,K. Delaney,J. Connell
Kalman filter-based distributed predictive control of large-scale multi-rate systems: Application to power networks
IEEE Transactions on Control Systems Technology, 21 (2013 Jan), pp. 27-39
Rubio et al., 2014
F.R. Rubio,P. Millan,L. Orihuela,C. Vivas
Estimación y control distribuidos de sistemas sobre redes de comunicación
Revista Iberoamericana de Automática e Informática Industrial, 11 (2014), pp. 377-388
Weimer et al., 2012
J. Weimer,J. Araújo,K.H. Johansson
Distributed event-triggered estimation in networked systems
IFAC Proceedings Volumes, 45 (2012), pp. 178-185
Wu et al., 2016
Wu, J., Elser, A., Zeng, S., Allgower, F., 2016. Consensus-based distributed Kalman-bucy filter for continuous-time systems. IFAC-PapersOnLine 49 (22), 321-326, 6th IFAC Workshop on Distributed Estimation and Control in Networked Systems NECSYS 2016Tokyo, Japan, September 2016.
Zhang et al., 2016
H. Zhang,Q. Hong,H. Yan,Y. Luo
Observer-based decentralized event-triggered H control for networked systems
Journal of the Franklin Institute, –, (2016),
DOI: http://dx.doi.org/10.1016/j.jfranklin.2016.09.021
Zhou et al., 2013
B. Zhou,K. Qian,X.-D. Ma,X.-Z. Dai
A new nonlinear set membership filter based on guaranteed bounding ellipsoid algorithm
Acta Automatica Sinica, 39 (2013), pp. 146-154
Autor para correspondencia. (Ramón A. García ramongr@us.es)
Copyright © 2017