Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Modelo Dinámico de un Recuperador de Gases -Sales Fundidas para una Planta Term...
Información de la revista
Vol. 14. Núm. 1.
Páginas 70-81 (Enero - Marzo 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4113
Vol. 14. Núm. 1.
Páginas 70-81 (Enero - Marzo 2017)
Open Access
Modelo Dinámico de un Recuperador de Gases -Sales Fundidas para una Planta Termosolar Híbrida de Energías Renovables
Dynamic Model of a Molten Salt -Gas Heat Recovery System for a Hybrid Renewable Solar Thermal Power Plant
Visitas
4113
Javier Bonillaa,b,
Autor para correspondencia
javier.bonilla@psa.es

Autor para correspondencia.
, Lidia Rocaa,b, Alberto de la Callec, Sebastián Dormidod
a CIEMAT-PSA, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - Plataforma Solar de Almería, Almería, España
b CIESOL, Centro de Investigación en Energía Solar, Instituto Mixto UAL-PSA.CIEMAT, Almería, España
c CSIRO Energy, 10 Murray Dwyer Ct, Mayfield West, NSW 2304, Australia
d UNED, Universidad Nacional de Educación a Distancia, Escuela Técnica Superior de Ingeniería Informática, Madrid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este artículo se presenta un modelo dinámico para un recuperador de gases - sales fundidas incluido en una planta de demostración de una tecnología de hibridación de plantas termosolares con otras fuentes de energías renovables. Tanto el demostrador como el modelo se han desarrollado en el ámbito del proyecto HYSOL. Este trabajo describe brevemente dicho proyecto, su tecnología, demostrador y principalmente el modelo dinámico del recuperador, cuyo estado estacionario ha sido comparado con los cálculos de diseño. El artículo se completa con simulaciones dinámicas donde se estudia la convergencia del modelo, la contribución de los distintos procesos físicos a la transferencia de calor y el impacto de las condiciones ambientales a las pérdidas térmicas.

Palabras clave:
Almacenamiento térmico
Energía solar de concentración
Turbina de vapor
Turbina de gas
Modelica
Abstract

In this paper, a dynamic model of a molten salt -gas heat recovery system of a demonstrator for a hybrid renewable solar thermal power plant, developed in the scope of the HYSOL project, is presented. This work describes briefly the HYSOL project, its technology, the demonstrator and mainly the developed heat recovery system dynamic model; its steady state has been compared to the expected results from plant design calculations. This paper is completed with dynamic simulations where, the model convergence is studied, the contribution of the different heat transfer processes is analyzed, and the impact of the environment conditions to thermal losses is evaluated.

Keywords:
Thermal storage
Concentrating solar power
Steam turbine
Gas turbine
Modelica
Referencias
[ACS/Cobra, 2015]
ACS/Cobra T&I channel, 2015. Proyecto HYSOL. URL: https://www.youtube.com/watch?v=i69s5zWkVzM
[Boerema et al., 2012]
N. Boerema, G. Morrison, R. Taylor, G. Rosengarten.
Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems.
Solar Energy, 86 (2012 Sep), pp. 2293-2305
[Bohtz et al., 2013]
C. Bohtz, S. Gokarn, E. Conte.
Integrated Solar Combined Cycles (ISCC) to Meet Renewable Targets and Reduce CO2 Emissions.
In: Power-Gen Europe, Vienna, (2013), pp. 20
[Bonilla et al., 2015a]
J. Bonilla, A. de la Calle, M.-M. Rodríguez-García, L. Roca, L. Valenzuela.
Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger.
In: Proc. 11th International Modelica Conference, Versailles, (2015 a), pp. 873-882
[Bonilla et al., 2016]
J. Bonilla, L. Roca, E. Cerrajero, S. Mirabal, S. Padilla, A.R. Rocha.
Operation and Training Tool for a Gas -Molten Salt Heat Recovery Demonstrator Facility.
Procedia Computer Science, (2016),
00
[Bonilla et al., 2015b]
J. Bonilla, M.-M. Rodríguez-García, L. Roca, L. Valenzuela.
Object-Oriented Modeling of a Multi-Pass Shell-and-Tube Heat Exchanger and its Application to Performance Evaluation.
In: 1st Conference on Modelling, Identification and Control of Nonlinear Systems (MICNON), Saint-Petersburg, (2015 b), pp. 107-112
[Casella et al., 2006]
F. Casella, M. Otter, K. Proelss, C. Richter, H. Tummescheit.
The Modelica Fluid and Media library for modeling of incompressible and compressible thermo-fluid pipe networks.
In: Proc. 5th International Modelica Conference, Vienna, (2006), pp. 631-640
[Çengel, 2006]
Y.A. Çengel.
Heat Transfer: A Practical Approach.
McGraw-Hill series in mechanical engineering, 3rd edition, McGraw-Hill, (2006),
[Consorcio Proyecto HYSOL, 2013]
Consorcio Proyecto HYSOL, 2013. Proyecto HYSOL Website. URL: https://www.hysolproject.eu
[Dassault Systemes, 2015]
Dassault Systemes, 2015. Dymola 2016 FD01 -Multi-Engineering Modeling and Simulation. URL: https://www.dymola.com
[Dittus and Boelter, 1930]
F.W. Dittus, L.M.K. Boelter.
Heat transfer in automobile radiators of the tubular type.
University of California Publications in Engineering, 2 (1930), pp. 443-461
[Ferri et al., 2008]
R. Ferri, A. Cammi, D. Mazzei.
Molten salt mixture properties in RELAP5 code for thermodynamic solar applications.
International Journal of Thermal Sciences, 47 (2008 Dec.), pp. 1676-1687
[Ganapathy, 2003]
V. Ganapathy.
Industrial boilers and heat recovery steam generators: design, applications, and calculations.
Marcel Dekker, (2003),
[Gnielinski, 1976]
V. Gnielinski.
New equations for heat and mass transfer in turbulent pipe flow and channel flow.
International Chemical Engineering, 2 (1976), pp. 359-368
[Haaland, 1983]
S. Haaland.
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow.
Journal of Fluids Engineering, 105 (1983), pp. 89-90
[Idelchik, 2006]
Idelchik, I. E., 2006. Handbook of hydraulic resistance.(3rd edition).
[Kawaguchi et al., 2005]
K. Kawaguchi, K. Okui, T. Kashi.
Heat Transfer and Pressure Drop Characteristics of Finned Tube Banks in Forced Convection (Comparison of Heat Transfer and Pressure Drop Characteristics of Serrated and Spiral Fins).
Journal of Enhanced Heat Transfer, 12 (2005), pp. 1-20
[Mcbride et al., 2002]
Mcbride, B.J., Zehe, M.J., Gordon, S., 2002. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species (September), 297.
[Miller, 1984]
D.S. Miller.
Internal Flow Systems.
BHRA Fluid Engineering series, 2nd edition, Fluid Engineering Centre, (1984),
[Modak, 1978]
A.T. Modak.
Radiation from Products of Combustion.
Fire Research, 1 (1978), pp. 339-361
[Modelica Association, 2012]
Modelica Association, 2012. Modelica -A Unified Object-Oriented Language for Systems Modeling -Language Specification 3.3. httpss://www.modelica.org/libraries/Modelica. URL: https://www.modelica.org/documents
[Moody, 1944]
L.F. Moody.
Friction factors for pipe flow.
Transactions of the ASME, 66 (1944), pp. 671-684
[National Renewable Energy Laboratory, 2009]
National Renewable Energy Laboratory, U.D. o. E., 2009. Solar Advisor Model. Tech. rep. URL: httpss://www.nrel.gov/analysis/sam/pdfs/sam_csp_reference_manual_3.0.pdf
[Nir, 1991]
A. Nir.
Heat Transfer and Friction Factor Correlations for Crossflow over Staggered Finned Tube Banks.
Heat Transfer Engineering, 12 (1991), pp. 43-58
[Patankar, 1980]
S.V. Patankar.
Numerical Heat Transfer and Fluid Flow.
Hemisphere, (1980),
[Petukhov, 1970]
B.S. Petukhov.
Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties.
Advances in Heat Transfer, 6 (1970), pp. 504-564
[Petzold, 1983]
L.R. Petzold.
A description of DASSL: a Diferential/Algebraic System Solver.
Scientific Computing, (1983), pp. 65-68
[Rhie and Chow, 1983]
C.M. Rhie, W.L. Chow.
Numerical study of the turbulent flow past an airfoil with trailing edge separation.
The American Institute of Aeronautics and Astronautics Journal, 21 (1983 Nov.), pp. 1525-1532
[Richter, 2008]
C. Richter.
Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems..
Technische Universität Carolo-Wilhelmina zu Braunschweig, (2008),
Ph.D. thesis
[Roca et al., 2015]
Roca, L., Bonilla, J., Rodríguez-García, M.-M., Palenzuela, P., de la Calle, A., Valenzuela, L., 2015. Control strategies in a thermal oil -molten salt heat exchanger. In: 21st SolarPACES Conference.
[Servert et al., 2015]
J. Servert, E. Cerrajero, D. López, S. Yagüe, F. Gutierrez, M. Lasheras, G.S. Miguel.
Base Case Analysis of a HYSOL Power Plant.
Beijing, (2015), pp. 1152-1159 http://dx.doi.org/10.1016/j.egypro.2015.03.187
[Thermoflow Inc., 2015]
Thermoflow Inc., 2015. ThermoFlex - Fully-flexible design and simulation of combined cycles, cogeneration systems, and other thermal power systems. URL: http://www.thermoflow.com
[Weierman, 1976]
C. Weierman.
Correlations Ease the Selection of Finned Tubes.
The Oil and Gas Journal, 74 (1976), pp. 94-100
[Wetter, 2013]
Wetter, M., 2013. Modelica Buildings Library - A free open-source library for building energy and control systems. URL: http://simulationresearch.lbl.gov/modelica
[Zaversky et al., 2013]
F. Zaversky, J. García-Barberena, M. Sánchez, D. Astrain.
Transient molten salt two-tank thermal storage modeling for CSP performance simulations.
Solar Energy, 93 (2013 Jul.), pp. 294-311
[Zavoico, 2001]
A.B. Zavoico.
Solar Power Tower -Design Basis Document. Tech. Rep. July.
Sandia National Laboratories, (2001),
Opciones de artículo
Herramientas