Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión
Información de la revista
Vol. 10. Núm. 2.
Páginas 121-132 (Abril - Junio 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
29911
Vol. 10. Núm. 2.
Páginas 121-132 (Abril - Junio 2013)
Open Access
Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión
Active and Semi-active Suspension Systems: A Review
Visitas
29911
Jorge Hurel Ezetaa,
Autor para correspondencia
, Anthony Mandowb, Alfonso García Cerezob
a Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, Campus Prosperina, Via Perímetral, km 30.5, 09-01-5863 Guayaquil, Ecuador
b Departamento de Ingeniería de Sistemas y Automática, Universidad de Málaga, Campus de Teatinos, C/Doctor Ortíz Ramos, s/n, 29071 Málaga, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

El propósito de este artículo es efectuar una revisión del estado del conocimiento en el modelado y control de los sistemas de suspensión activa y semiactiva. Se analizan las principales características de los diferentes tipos de sistemas de suspensión: pasiva, activa y semiactiva. Respecto al modelado y simulación de los sistemas de suspensión, se examinan los distintos enfoques, herramientas y aplicaciones en el contexto de la dinámica vehicular. Además, para el modelo de un cuarto de vehículo, ampliamente utilizado en la literatura, se ofrece su desarrollo mediante ecuaciones diferenciales, función de transferencia, y ecuaciones de estado, incluyendo soluciones y simulaciones en Simulink y SimMechanics. En cuanto al control, se revisan las principales estrategias para la suspensión de vehículos y se apuntan aplicaciones en otros campos de la ingeniería.

Palabras clave:
Simulación
Suspensión activa
Modelos
Suspensión pasiva
Robótica
Abstract

This paper reviews the state of the art in modeling and control of active and semi-active suspension systems. Distinctive characteristics are established for the major types of suspension systems: passive, active, and semi-active. Regarding modeling and simulation, different approaches, tools and applications are discussed in the context of vehicle dynamics. Besides, the quarter car model, which is widely used in research, is developed with differential equations, transfer functions, and state-space equations, as well as solutions for simulation in Simulink and SimMechanics. As for control of active and semi-active systems, the major strategies for vehicle suspension are reviewed. Furthermore, the paper outlines suspension control in other engineering applications.

Keywords:
Active suspension
Passive suspension
Models
Control
Texto completo
Referencias no citadas

Abdel-Rohman and Hassan, 2010, Abu-Khudhair et al., 2009, Akcay and Türkay, 2008, Alexandre and Preumont, 1996, Alexandru and Alexandru, 2011, Allotta et al., 2008, Amer et al., 2011, Balike et al., 2011, Bhandari and Subramanian, 2010, Biral et al., 2008, Bluethmann et al., 2010, Blundell and Harty, 2004, Boada et al., 2005, Boers et al., 2002, Bouazara et al., 2007, Bronowicki et al., 1999, Canale et al., 2004, Cao and Liu, 2010, Cao et al., 2008, Chamseddine et al., 2008, Chen et al., 2011, Chen, 2009, Chen et al., 2008, Cheok and Huang, 1989, Choi et al., 2002, Christenson, 2001, Chrzan and Carlson, 2001, Chugo et al., 2004, Díaz et al., 2012, Dixon, 2009, Dong et al., 2010, Ekoru et al., 2011, Ezzine and Tedesco, 2009, Fakhari et al., 2010, Fallah et al., 2008, Felix-Herran et al., 2008, Fischer and Isermann, 2004, Fleming and Purshouse, 2002, Fruehauf et al., 1985, Gao et al., 2011, Guglielmino and Edge, 2004, Guo et al., 2004, Gysen et al., 2009, Gysen et al., 2008, Haibo and Jianwei, 2009, Hashemnia and Bahari, 2009, Heath, 2005, Hrovat, 1990, Hrovat, 1997, Huang and Fukuhara, 2006, Huang and Chen, 2006, Hurel et al., 2012a, Hurel et al., 2012b, Iagnemma et al., 2003, Jia et al., 2006, Kamel and He, 2010, Karnopp, 1986, Karnopp et al., 1974, Karnopp and So, 1998, Kazerooni et al., 2007, Khemliche et al., 2004, Kim et al., 1999, Kim et al., 2008, Kim and Hong, 2007, Koch et al., 2010, Koch et al., 2011, Korkmaz, 2011, Koulocheris and Dertimanis, 2009, Koumboulis and Tzamtzi, 2007, Kowal et al., 2008, Krebs et al., 2010, Krüger et al., 2002, Kumar, 2008, Kuo-Jung and Jia-Yush, 2004, Lee, 2004, Lee et al., 2008, Lee and Choi, 2000, Lin et al., 2006, Liu et al., 2010, Lizarraga et al., 2008, Lou et al., 1994, Malek and Hedrick, 1985, Mantaras et al., 2004, Margolis and Shim, 2001, Mei et al., 2005, Mei and Goodall, 2002, Miller and Nobles, 1990, Mudi and Pal, 1999, Nagai et al., 1997, Nan et al., 2008, Nehl et al., 1996, Nguyen et al., 2009, Olsson, 2006, Palazzolo et al., 1993, Papegay et al., 2005, Patil et al., 2010, Petek, 1992, Poetsch et al., 1997, Potau et al., 2011, Raibert et al., 2008, Rajeswari and Lakshmi, 2010, Ramli et al., 2004, Rattasiri and Halgamuge, 2003, Redfield, 1990, Rini et al., 2011, Rivin, 1985, Roth and Lizell, 1996, Samin et al., 2007, Sassi et al., 2005, Savaresi et al., 2010, Schiehlen, 2007, Schiehlen et al., 2006, Schoenfeld et al., 1991, Sharp and Hassan, 1986, Shen et al., 2007, Shen et al., 2006, Shi and Eberhart, 1998, Shiao et al., 2010, Shin, 2008, Shirahatti et al., 2008, Siau, 2008, Silva et al., 2008, Spelta et al., 2009, Spencer et al., 1997, Sun and Qingmei, 2007, Sun and Sun, 2007, Sun and Wang, 2010, Sunwoo et al., 1990, Tamai and Sotelo, 1995, Tang and Zuo, 2010, Tani and Shirai, 1989, Thompson and Davis, 1991, Tian and Li, 2009, Tsao and Chen, 2001, Venugopal et al., 2002, Waldron and Abdallah, 2007, Wang et al., 2007, Wang et al., 2005, Wang et al., 2008, Wang and Chen, 2010, Wu et al., 2008, Xie et al., 2006, Xinjie and Shengjin, 2009, Xu and Fei, 2010, Xue et al., 2011, Yagiz and Yuksek, 2001, Yang et al., 2009, Yoneda et al., 1994, Yong-Jie et al., 2008, Yoshimura et al., 1999, Yu et al., 2008, Yu et al., 2009, Zanella et al., 2001, Zapateiro et al., 2011, Zhang et al., 2009, Zhang et al., 2008 and Zhu and Tryggvason, 2004.

Referencias
[Abdel-Rohman and Hassan, 2010]
M. Abdel-Rohman, J.M. Hassan.
Compensation of time delay effect in semi-active controlled suspension bridge.
Journal of Vibration and Control, 16 (2010), pp. 1527-1558
[Abu-Khudhair et al., 2009]
A. Abu-Khudhair, R. Muresan, S. Yang.
Fuzzy control of semi-active automotive suspensions.
International Conference on Mechatronics and Automation, pp. 2118-2122
[Akcay and Türkay, 2008]
H. Akcay, S. Türkay.
RMS performance limitations and constraints for quarter-car active suspensions.
16th Mediterranean Conference on Control and Automation, pp. 425-430
[Alexandre and Preumont, 1996]
P. Alexandre, A. Preumont.
Force control of a six-legged walking machine.
IEEE Colloquium on Information Technology for Climbing and Walking Robots, 162–2 (1996), pp. 1-5
[Alexandru and Alexandru, 2011]
C. Alexandru, P. Alexandru.
A comparative analysis between the vehicles passive and active suspensions.
International Journal Of Mechanics, 5 (2011), pp. 371-378
[Allotta et al., 2008]
B. Allotta, L. Pugi, F. Bartolini.
Design and experimental results of an active suspension system for a high-speed pantograph.
IEEE/ASME Transactions on Mechatronics, 13 (2008), pp. 548-557
[Amer et al., 2011]
N. Amer, R. Ramli, W. Mahadi, M. Abidin.
A review on control strategies for passenger car intelligent suspension system.
International Conference on Electrical, Control and Computer Engineering, pp. 404-409
[Balike et al., 2011]
K.P. Balike, S. Rakheja, I. Stiharu.
Development of kineto-dynamic quarter-car model for synthesis of a double wishbone suspension.
Vehicle System Dynamics, 49 (2011), pp. 107-128
[Bhandari and Subramanian, 2010]
V. Bhandari, S. Subramanian.
Development of an electronically controlled pneumatic suspension for commercial vehicles.
International Conference on Power, Control and Embedded Systems, pp. 1-6
[Biral et al., 2008]
F. Biral, M. Grott, R. Oboe, C. Makei, E. Vincenti.
Modelling, control and design of heavy duty suspension systems.
10th IEEE International Workshop on Advanced Motion Control, (2008), pp. 771-776
[Bluethmann et al., 2010]
B. Bluethmann, E. Herrera, A. Hulse, J. Figuered, L. Junkin, M. Markee, R. Ambrose.
An active suspension system for lunar crew mobility.
IEEE Aerospace Conference, (2010), pp. 1-9
[Blundell and Harty, 2004]
M. Blundell, D. Harty.
The Multibody Systems Approach to Vehicle Dynamics.
Butterworth-Heinemann, (2004),
[Boada et al., 2005]
M.J. Boada, B.L. Boada, C. Castejón, V. Díaz.
A fuzzy-based suspension vehicle depending on terrain.
International Journal of Vehicle Design, 37 (2005), pp. 311-326
[Boers et al., 2002]
Y. Boers, S. Weiland, A. Damen.
Average H2 control by randomized algorithms.
International Journal of Control, 75 (2002), pp. 637-644
[Bouazara et al., 2007]
M. Bouazara, S. Gosselin-Brisson, M. Richard.
Design of an active suspension control for a vehicle model using a genetic algorithm.
Transactions of the Canadian Society for Mechanical Engineering, 31 (2007), pp. 317-333
[Bronowicki et al., 1999]
A.J. Bronowicki, N.S. Abhyankar, S.F. Griffin.
Active vibration control of large optical space structures.
Smart Materials and Structures, 8 (1999), pp. 740
[Canale et al., 2004]
M. Canale, M. Milanese, Z. Ahmad, E. Matta.
An improved semiactive suspension control strategy using predictive techniques.
International Conference on Information and Communication Technologies: From Theory to Applications,
[Cao and Liu, 2010]
J. Cao, H. Liu.
An interval fuzzy controller for vehicle active suspension systems.
IEEE Transactions on Intelligent Transportation Systems, 11 (2010), pp. 885-895
[Cao et al., 2008]
J. Cao, H. Liu, P. Li, D. Brown.
State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies.
IEEE Transactions on Intelligent Transportation Systems, 9 (2008), pp. 392-405
[Chamseddine et al., 2008]
A. Chamseddine, H. Noura, M. Ouladsine.
Sensor location for actuator fault diagnosis in vehicle active suspension.
IEEE International Conference on Control Applications, pp. 456-461
[Chen et al., 2011]
J. Chen, W. Guo, W. Feng, H. Chen, F. Dong.
Research of semi-active suspension self-adjust sky/ground-hook hybrid control simulation.
International Conference on Electric Information and Control Engineering,
[Chen, 2009]
Y. Chen.
Skyhook surface sliding mode control on semi-active vehicle suspension system for ride comfort enhancement.
Engineering, 1 (2009), pp. 23-32
[Chen et al., 2008]
Y. Chen, J. He, X. Li, J. Peng, M. Gao.
A study on matching and multi-objective fuzzy control strategy of heavy truck suspension system.
International Symposium on Computational Intelligence and Design, (2008), pp. 91-94
[Cheok and Huang, 1989]
K.C. Cheok, N.J. Huang.
Lyapunov stability analysis for self-learning neural model with application to semi-active suspension control system.
IEEE International Symposium on Intelligent Control, pp. 326-331
[Choi et al., 2002]
S.-B. Choi, H.-S. Lee, Y.-P. Park.
H∞ control performance of a full-vehicle suspension featuring magnetorheological dampers.
Vehicle System Dynamics, 38 (2002), pp. 341-360
[Christenson, 2001]
Christenson, R.E., 2001. Semiactive control of civil structures for natural hazard mitigation: Analytical and experimental studies. Ph.D. thesis, Department of Civil Engineering and Geological Sciences, Notre Dame, Indiana.
[Chrzan and Carlson, 2001]
M.J. Chrzan, J.D. Carlson.
MR fluid sponge devices and their use in vibration control of washing machines.
Proceedings of SPIE The International Society for Optical Engineering. Vol 4331, pp. 370-378
[Chugo et al., 2004]
D. Chugo, K. Kawabata, H. Kaetsu, H. Asama, T. Mishima.
Vehicle control based on body configuration.
IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol 2, pp. 1493-1498
[Díaz et al., 2012]
I. Díaz, E. Pereira, M.J. Hudson, P. Reynolds.
Enhancing active vibration control of pedestrian structures using inertial actuators with local feedback control.
Engineering Structures, 41 (2012), pp. 157-166
[Dixon, 2009]
J.C. Dixon.
Suspension Geometry and Computation.
1st Edition, Antony Rowe Ltd, (2009),
[Dong et al., 2010]
X.-M. Dong, M. Yu, C.-R. Liao, W.-M. Chen.
Comparative research on semi-active control strategies for magneto-rheological suspension.
Nonlinear Dynamics, 59 (2010), pp. 433-453
[Ekoru et al., 2011]
J.E. Ekoru, O.A. Dahunsi, J.O. Pedro.
PID control of a nonlinear half-car active suspension system via force feedback.
IEEE AFRICON Conference, pp. 1-6
[Ezzine and Tedesco, 2009]
J. Ezzine, F. Tedesco.
H∞ approach control for regulation of active car suspension.
International journal of mathematical models and methods in applied sciences, 3 (2009), pp. 309-316
[Fakhari et al., 2010]
V. Fakhari, H.A. Talebi, A.R. Ohadi.
A robust active vibration control of automotive engine.
ASME 10th Biennial Conference on Engineering Systems Design and Analysis. Vol 3, pp. 219-228
[Fallah et al., 2008]
M. Fallah, R. Bhat, W. Xie.
New nonlinear model of macpherson suspension system for ride control applications.
American Control Conference, pp. 2008
[Felix-Herran et al., 2008]
L. Felix-Herran, J. Rodriguez-Ortiz, R. Soto, R. Ramirez-Mendoza.
Modeling and control for a semi-active suspension with a magnetorheological damper including the actuator dynamics.
Electronics, Robotics and Automotive Mechanics Conference,
[Fischer and Isermann, 2004]
D. Fischer, R. Isermann.
Mechatronic semi-active and active vehicle suspensions.
Control Engineering Practice, 12 (2004), pp. 1353-1367
[Fleming and Purshouse, 2002]
P.J. Fleming, R.C. Purshouse.
Evolutionary algorithms in control systems engineering: a survey.
Control Engineering Practice, 10 (2002), pp. 1223-1241
[Fruehauf et al., 1985]
F. Fruehauf, R. Kasper, J. Lueckel.
Design of an active suspension for a passenger vehicle model using input processes with time delays.
Vehicle System Dynamics, 14 (1985), pp. 115-120
[Gao et al., 2011]
R.Z. Gao, Z.Q. Xu, J.J. Zhang.
Optimization of fuzzy logic rules based on improved genetic algorithm.
Applied Mechanics and Materials, 44-47 (2011), pp. 1496-1499
[Guglielmino and Edge, 2004]
E. Guglielmino, K.A. Edge.
A controlled friction damper for vehicle applications.
Control Engineering Practice, 12 (2004), pp. 431-443
[Guo et al., 2004]
D. Guo, H. Hu, J. Yi.
Neural network control for a semi-active vehicle suspension with a magnetorheological damper.
Journal of Vibration and Control, 10 (2004), pp. 461-471
[Gysen et al., 2009]
B.L. Gysen, J.L. Janssen, J.J. Paulides, E.A. Lomonova.
Design aspects of an active electromagnetic suspension system for automotive applications.
IEEE Transactions on Industry Applications, 45 (2009), pp. 1589-1597
[Gysen et al., 2008]
B.L. Gysen, J.J. Paulides, J.L. Janssen, E.A. Lomonova.
Active electromagnetic suspension system for improved vehicle dynamics.
IEEE Vehicle Power and Propulsion Conference,
[Haibo and Jianwei, 2009]
L. Haibo, Y. Jianwei.
Study on semi-active suspension system simulation based on magnetorheological damper.
Second International Conference on Intelligent Computation Technology and Automation. Vol 2, pp. 936-939
[Hashemnia and Bahari, 2009]
S. Hashemnia, M.H. Bahari.
Genetic algorithm aided groundhook control strategy for semi-active magneto rheological damper suspension system.
Australian Journal of Basic and Applied Sciences, 3 (2009), pp. 1136-1144
[Heath, 2005]
Heath, E.T., 2005. Vehicle active suspension system sensor reduction. Ph.D. thesis, University of Texas, Austin.
[Hrovat, 1990]
D. Hrovat.
Optimal active suspension structures for quarter-car vehicle models.
Automatica, 25 (1990), pp. 845-860
[Hrovat, 1997]
D. Hrovat.
Survey of advanced suspension developments and related optimal control applications.
Automatica, 33 (1997), pp. 1781-1817
[Huang and Fukuhara, 2006]
Q. Huang, Y. Fukuhara.
Posture and vibration control based on virtual suspension model using sliding mode control for six-legged walking robot.
IEEE International Conference on Intelligent Robots and Systems, pp. 5232-5237
[Huang and Chen, 2006]
S. Huang, H. Chen.
Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control.
Mechatronics, 16 (2006), pp. 607-622
[Hurel et al., 2012a]
J. Hurel, A. Mandow, A. García-Cerezo.
Nonlinear two-dimensional modeling of a McPherson suspension for kinematics and dynamics simulation.
The 12th IEEE International Workshop on Advanced Motion Control, pp. 1-6
[Hurel et al., 2012b]
J. Hurel, A. Mandow, A. García-Cerezo.
Tuning a fuzzy controller by particle swarm optimization for an active suspension system.
38th Annual Conference of the IEEE Industrial Electronics Society. Montréal, Canada, pp. 1-6
[Iagnemma et al., 2003]
K. Iagnemma, A. Rzepniewski, S. Dubowsky, P. Schenker.
Control of robotic vehicles with actively articulated suspensions in rough terrain.
Autonomous Robots, 14 (2003), pp. 5-16
[Jia et al., 2006]
Q.F. Jia, H.B. Xu, Y. Wang, X.J. Liu.
Vehicle suspension with magnetorheological damper under semi-active control.
Journal of Tianjin University Science and Technology, 39 (2006), pp. 768-772
[Kamel and He, 2010]
M.A. Kamel, W. He.
Active vibration control of inflated space stuctures using smart materials.
Proceedings of International Conference on Computer and Information Application, pp. 406-409
[Karnopp, 1986]
D. Karnopp.
Theoretical limitations in active vehicle suspensions.
Vehicle System Dynamics, 15 (1986), pp. 41-54
[Karnopp et al., 1974]
D. Karnopp, M.J. Crosby, R.A. Harwood.
Vibration control using semi-active force generators.
Journal Of Engineering For Industry, 96 (1974), pp. 619-625
[Karnopp and So, 1998]
D. Karnopp, S.G. So.
Energy flow in active attitude control suspensions: A bond graph analysis.
Vehicle System Dynamics, 29 (1998), pp. 69-81
[Kazerooni et al., 2007]
H. Kazerooni, A. Chu, R. Steger.
That which does not stabilize, will only make us stronger.
The International Journal of Robotics Research, 26 (2007), pp. 75-89
[Khemliche et al., 2004]
M. Khemliche, I. Dif, S. Latreche, B.O. Bouamama.
Modelling and analysis of an active suspension 1/4 of vehicule with bond graph.
International Symposium on Control, Communications and Signal Processing, (2004), pp. 811-814
[Kim et al., 1999]
C. Kim, P. Ro, H. Kim.
Effect of the suspension structure on equivalent suspension parameters.
Automobile Engineering, Proceedings of the Institution of Mechanical Engineers, 213 (1999), pp. 457-470
[Kim et al., 2008]
D. Kim, S. Hwang, H. Kim.
Vehicle stability enhancement of fourwheel-drive hybrid electric vehicle using rear motor control.
IEEE Transactions on Vehicular Technology, 57 (2008), pp. 727-735
[Kim and Hong, 2007]
R.-K. Kim, K.-S. Hong.
Skyhook control using a full-vehicle model and four relative displacement sensors.
International Conference on Control, Automation and Systems, pp. 268-272
[Koch et al., 2010]
G. Koch, O. Fritsch, B. Lohmann.
Potential of low bandwidth active suspension control with continuously variable damper.
Control Engineering Practice, (2010),
[Koch et al., 2011]
G. Koch, S. Spirk, E. Pellegrini, N. Pletschen, B. Lohmann.
Experimental validation of a new adaptive control approach for a hybrid suspension system.
American Control Conference, pp. 4580-4585
[Korkmaz, 2011]
S. Korkmaz.
A review of active structural control: challenges for engineering informatics.
Computers and Structures, 89 (2011), pp. 2113-2132
[Koulocheris and Dertimanis, 2009]
Koulocheris D.V., Dertimanis V.K., 2009. Design of a novel hybrid optimization algorithm. In: ICINCO 6th International Conference on Informatics in Control, Automation and Robotics. Vol. 1 ICSO. pp. 129-135.
[Koumboulis and Tzamtzi, 2007]
F. Koumboulis, M. Tzamtzi.
A metaheuristic approach for controller design of multivariable processes.
IEEE Conference on Emerging Technologies and Factory Automation, pp. 1429-1432
[Kowal et al., 2008]
J. Kowal, J. Pluta, J. Konieczny, A. Kot.
Energy recovering in active vibration isolation system results of experimental research.
Journal of Vibration and Control, 14 (2008), pp. 1075-1088
[Krebs et al., 2010]
A. Krebs, F. Risch, T. Thueer, J. Maye, C. Pradalier, R. Siegwart.
Rover control based on an optimal torque distribution application to 6 motorized wheels passive rover.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4372-4377
[Krüger et al., 2002]
W. Krüger, O. Vaculin, W. Kortüm.
Multi-disciplinary simulation of vehicle system dynamics.
RTO AVT Symposium on “Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modelling and Virtual Simulation”,
[Kumar, 2008]
Kumar, M.S., 2008. Development of active suspension system for automobiles using PID controller. In: Proceedings of the World Congress on Engineering. Vol. II. London, UK.
[Kuo-Jung and Jia-Yush, 2004]
L. Kuo-Jung, Y.A.K.J. Jia-Yush.
Sliding mode control for active vibration isolation of a long range scanning tunneling microscope.
Review of Scientific Instruments, 75 (2004), pp. 4367-4373
[Lee, 2004]
H. Lee.
Virtual test track.
IEEE, Transactions on Vehicular Technology, 53 (2004), pp. 1818-1826
[Lee et al., 2008]
H.J. Lee, H.J. Jung, S.W. Cho, I.W. Lee.
An experimental study of semiactive modal neuro-control scheme using MR damper for building structure.
Journal of Intelligent Material Systems and Structures, 19 (2008), pp. 1005-1015
[Lee and Choi, 2000]
H.S. Lee, S.B. Choi.
Control and response characteristics of a magnetorheological fluid damper for passenger vehicles.
Journal Intelligent Material Systems Structures, 11 (2000), pp. 80-87
[Lin et al., 2006]
Y. Lin, C. Lin, N. Shieh.
A hybrid evolutionary approach for robust active suspension design of rail vehicles.
IEEE Transactions on control systems technology, 14 (2006), pp. 695-706
[Liu et al., 2010]
D. Liu, H. Chen, R. Jiang, W. Liu.
Study of ride comfort of active suspension based on model reference neural network control system.
Sixth International Conference on Natural Computation. Vol 4, pp. 1860-1864
[Lizarraga et al., 2008]
J. Lizarraga, J.A. Sala, J. Biera.
Modelling of friction phenomena in sliding conditions in suspension shock absorbers.
Vehicle System Dynamics, 46 (2008), pp. 751-764
[Lou et al., 1994]
Z. Lou, R. Ervin, F. Filisko.
A preliminary parametric study of electrorheological dampers.
Transaction. ASME Journal Fluids Engineering, 116 (1994), pp. 570-576
[Malek and Hedrick, 1985]
K.M. Malek, J.K. Hedrick.
Decoupled active suspension design for improved automotive ride quality/handling performance.
Vehicle System Dynamics, 14 (1985), pp. 78-81
[Mantaras et al., 2004]
D.A. Mantaras, P. Luque, C. Vera.
Development and validation of a three-dimensional kinematic model for the mcpherson steering and suspension mechanisms.
Mechanism and Machine Theory, 39 (2004), pp. 603-619
[Margolis and Shim, 2001]
D. Margolis, T. Shim.
Bond graph model incorporating sensors, actuators, and vehicle dynamics for developing controllers for vehicle safety.
Journal of the Franklin Institute, 338 (2001), pp. 21-34
[Mei et al., 2005]
Mei, T., Foo, T., Goodall, R., 2005. Genetic algorithms for optimising active controls in railway vehicles. IEE Colloquium (Digest) 521, 10/1-10/8.
[Mei and Goodall, 2002]
T. Mei, R. Goodall.
Use of multiobjective genetic algorithms to optimize inter-vehicle active suspensions.
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 216 (2002), pp. 53-63
[Miller and Nobles, 1990]
L. Miller, C. Nobles.
Methods for eliminating jerk and noise in semiactive suspensions.
SAE (Society of Automotive Engineers) Transactions, 99 (1990), pp. 943-951
[Mudi and Pal, 1999]
R.K. Mudi, N.R. Pal.
A robust self-tuning scheme for PI and PD type fuzzy controllers.
IEEE Transactions On Fuzzy Systems, 7 (1999), pp. 2-16
[Nagai et al., 1997]
M. Nagai, A. Moran, Y. Tamura, S. Koizumi.
Identification and control of nonlinear active pneumatic suspension for railway vehicles, using neural networks.
Control Engineering Practice, 5 (1997), pp. 1137-1144
[Nan et al., 2008]
Y.-H. Nan, D.-J. Xuan, J.-W. Kim, Q. Ning, Y.-B. Kim.
Control of an active suspension based on fuzzy logic.
International Conference on Computer and Electrical Engineering,
[Nehl et al., 1996]
T.W. Nehl, J.A. Betts, L.S. Mihalko.
An integrated relative velocity sensor for real-time damping applications.
IEEE Transactions on Industry Applications, 32 (1996), pp. 873-881
[Nguyen et al., 2009]
Nguyen, L.H., Park, S., Turnip, A., Hong, K.-S., 2009. Modified skyhook control of a suspension system with hydraulic strut mount. In: ICCAS-SICE, 2009. pp. 1347-1352.
[Olsson, 2006]
C. Olsson.
Active automotive engine vibration isolation using feedback control.
Journal of Sound and Vibration, 294 (2006), pp. 162-176
[Palazzolo et al., 1993]
A.B. Palazzolo, S. Jagannathan, A.F. Kascak, T. Griffin, J. Giriunas.
Piezoelectric actuator-active vibration control of the shaft line for a gas tur-bine engine test stand.
American Society of Mechanical Engineers, pp. 1-12
[Papegay et al., 2005]
Y.A. Papegay, J.-P. Merlet, D. Daney.
Exact kinematics analysis of car's suspension mechanisms using symbolic computation and interval analysis.
Mechanism and Machine Theory, 40 (2005), pp. 395-413
[Patil et al., 2010]
N.J. Patil, R.H. Chile, L.M. Waghmare.
Fuzzy adaptive controllers for speed control of PMSM drive.
International Journal of Computer Applications, 1 (2010), pp. 84-91
[Petek, 1992]
N. Petek.
Electronically controlled shock absorber using electrorheological fluid.
SAE Special Publications, 917 (1992), pp. 67-72
[Poetsch et al., 1997]
G. Poetsch, J. Evans, R. Meisinger, W. Kortüm, W. Baldauf, A. Veitl, J. Wallaschek.
Pantograph/catenary dynamics and control.
Vehicle System Dynamics, 28 (1997), pp. 159-195
[Potau et al., 2011]
X. Potau, M. Comellas, M. Nogués, J. Roca.
Comparison of different bogie configurations for a vehicle operating in rough terrain.
Journal of Terramechanics, 48 (2011), pp. 75-84
[Raibert et al., 2008]
M. Raibert, K. Blankespoor, G. Nelson, R. Playter.
BigDog, the roughterrain quadruped robot.
17th World Congress, The International Federation of Automatic Control, pp. 10822-108252
[Rajeswari and Lakshmi, 2010]
K. Rajeswari, P. Lakshmi.
PSO optimized fuzzy logic controller for active suspension system.
International Conference on Advances in Recent Technologies in Communication and Computing, pp. 278-283
[Ramli et al., 2004]
R. Ramli, M. Pownall, M. Levesley, D.A. Crolla.
Dynamic analysis of semi-active suspension systems using a co-simulation approach.
Multi-Body Dynamics: Monitoring and Simulation Techniques-III, 32 (2004), pp. 391-399
[Rattasiri and Halgamuge, 2003]
W. Rattasiri, S. Halgamuge.
Computationally advantageous and stable hierarchical fuzzy systems for active suspension.
IEEE Transactions on Industrial Electronics, 50 (2003), pp. 48-61
[Redfield, 1990]
R. Redfield.
Low-bandwidth semi-active damping for suspension control.
Proceedings of the American Control Conference, (1990), pp. 1357-1362
[Rini et al., 2011]
D.P. Rini, S.M. Shamsuddin, S.S. Yuhaniz.
Particle swarm optimization: Technique, system and challenges.
International Journal of Computer Applications, 14 (2011), pp. 19-26
[Rivin, 1985]
E. Rivin.
Passive engine mounts some directions for further development.
SAE Technical Paper Series (850481), (1985),
[Roth and Lizell, 1996]
P.A. Roth, M. Lizell.
A lateral semi-active damping system for trains.
Vehicle System Dynamics, 25 (1996), pp. 585-598
[Samin et al., 2007]
J.C. Samin, O. Brüls, J.F. Collard, L. Sass, P. Fisette.
Multiphysics modeling and optimization of mechatronic multibody systems.
Multibody System Dynamics, 18 (2007), pp. 345-373
[Sassi et al., 2005]
S. Sassi, K. Cherif, L. Mezghani, M. Thomas, A. Kotrane.
An innovative magneto-rheological damper for automotive suspension: from design to experimental characterization.
Smart Material Structures, 14 (2005), pp. 811-822
[Savaresi et al., 2010]
S.M. Savaresi, C. Poussot-Vassal, C. Spelta, L. Dugard, O. Sename.
Semi-Active Suspension Control Design for Vehicles.
1st Edition, Elsevier Ltd, (2010),
[Schiehlen, 2007]
W. Schiehlen.
Research trends in multibody system dynamics.
Multibody System Dynamics, 18 (2007), pp. 3-13
[Schiehlen et al., 2006]
W. Schiehlen, N. Guse, R. Seifried.
Multibody dynamics in computational mechanics and engineering applications.
Computer Methods in Applied Mechanics and Engineering, 195 (2006), pp. 5509-5522
[Schoenfeld et al., 1991]
Schoenfeld, K., Hartmut, G., Hesse, 1991. Electronically controlled air suspension (ECAS) for commercial vehicles. SAE Special Publications 892, 15-24.
[Sharp and Hassan, 1986]
R. Sharp, S. Hassan.
Relative performance capabilities of passive, active and semi-active car suspension systems.
Proceedings of the Institution of Mechanical Engineers. Part D, Transport engineering, 200 (1986), pp. 219-228
[Shen et al., 2007]
Y. Shen, M.F. Golnaraghi, G.R. Heppler.
Load-leveling suspension system with a magnetorheological damper.
Journal of Vehicle Mechanics and Mobility, 45 (2007), pp. 297-312
[Shen et al., 2006]
Y. Shen, S. Yang, W. Yin.
Application of magnetorheological damper in vibration control of locomotive.
World Congress on Intelligent Control and Automation China, (2006), pp. 8113-8116
[Shi and Eberhart, 1998]
Y. Shi, R. Eberhart.
Modified particle swarm optimizer.
Proceedings of the IEEE Conference on Evolutionary Computation, pp. 69-73
[Shiao et al., 2010]
Y. Shiao, C.-C. Lai, Q.-A. Nguyen.
The analysis of a semi-active suspension system.
Proceedings of the SICE Annual Conference, pp. 2077-2082
[Shin, 2008]
K.-K. Shin.
Active vibration control of active fuel management engines using active engine mounts., 16 (2008), pp. 27-32
[Shirahatti et al., 2008]
A. Shirahatti, P. Prasad, P. Panzade, M. Kulkarni.
Optimal design of passenger car suspension for ride and road holding.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30 (2008), pp. 66-76
[Siau, 2008]
Siau, G.R., July 2008. Equivalent spring and damper for conceptual suspension modeling. Master's thesis, Eindhoven University of Technology.
[Silva et al., 2008]
L. Silva, G. Magallán, C.D. Angelo, G. Garcia.
Vehicle dynamics using multi-bond graphs: Four wheel electric vehicle modeling.
34th Annual Conference of the IEEE Industrial Electronics Society. Vol. 34, pp. 2846-2851
[Spelta et al., 2009]
C. Spelta, F. Previdi, S.M. Savaresi, G. Fraternale, N. Gaudiano.
Control of magnetorheological dampers for vibration reduction in a washing machine.
Mechatronics, 19 (2009), pp. 410-421
[Spencer et al., 1997]
B.F. Spencer, S.J. Dyke, M.K. Sain, J.D. Carlson.
Phenomenological model of a magnetorheological damper.
ASCE Journal of Engineering Mechanics, 123 (1997), pp. 230-238
[Sun and Qingmei, 2007]
J. Sun, Y. Qingmei.
On vibration control methods of vehicle.
Proceedings of the 26th Chinese Control Conference, (2007), pp. 71-74
[Sun and Sun, 2007]
J. Sun, Y. Sun.
A fuzzy method improving vehicle ride comfort and road holding capability.
IEEE Conference on Industrial Electronics and Applications, 2 (2007), pp. 1361-1364
[Sun and Wang, 2010]
J. Sun, K. Wang.
Control method research of suspension system of engineering vehicle.
Seventh International Conference on Fuzzy Systems and Knowledge Discovery. Yantai, China, pp. 654-658
[Sunwoo et al., 1990]
M. Sunwoo, K.C. Cheok, N.J. Huang.
Application of model reference adaptive control to active suspension systems.
Proceedings of the American Control Conference, (1990), pp. 1340-1346
[Tamai and Sotelo, 1995]
E. Tamai, J. Sotelo.
LQG control of active suspension considering vehicle body flexibility.
Control Applications, Proceedings of the 4th IEEE Conference on. sep, pp. 143-147
[Tang and Zuo, 2010]
Tang, X., Zuo, L., 2010. Regenerative semi-active control of tall building vibration with series TMDs. No. 5530485. pp. 5094-5099.
[Tani and Shirai, 1989]
K. Tani, N. Shirai.
Active suspensión four-wheel model for a terrain robot.
International Workshop on Intelligent Robots and Systems, (1989), pp. 408-413
[Thompson and Davis, 1991]
Thompson, Davis, B., 1991. A technical note on the lotus suspension patents. Vehicle System Dynamics 20 (6), 381-383.
[Tian and Li, 2009]
D.-P. Tian, N.-Q. Li.
Fuzzy particle swarm optimization algorithm.
IEEE International Joint Conference on Artificial Intelligence, pp. 263-267
[Tsao and Chen, 2001]
Y. Tsao, R. Chen.
The design of an active suspension force controller using genetic algorithms with maximum stroke constraints.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 215 (2001), pp. 317-327
[Venugopal et al., 2002]
R. Venugopal, M. Beine, A. Ruekgauer.
Real-time simulation of adaptive suspension control using dSPACE control development tools.
International Journal of Vehicle Design, 29 (2002), pp. 128-138
[Waldron and Abdallah, 2007]
K.J. Waldron, M.E. Abdallah.
An optimal traction control scheme for off-road operation of robotic vehicles.
IEEE/ASME Transactions on Mechatronics, 12 (2007), pp. 126-133
[Wang et al., 2007]
E.-R. Wang, L. Ying, W.-J.S.R. Wang, C.-Y. Su.
Analyses of inverse model based semi-active control of vehicle suspension with magnetorheological dampers.
IEEE International Conference on Control Applications, pp. 220-225
[Wang et al., 2005]
J. Wang, Z. Fan, J. Terpenny, E. Goodman.
Knowledge interaction with genetic programming in mechatronic systems design using bond graphs.
IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 35 (2005), pp. 172-182
[Wang et al., 2008]
Q. Wang, W. Jiang, W. Chen, J. Zhao.
Simultaneous optimization of mechanical and control parameters for integrated control system of active suspension and electric power steering.
Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 44 (2008), pp. 67-72
[Wang and Chen, 2010]
Z. Wang, Z. Chen.
Semi-active control of isolated elevated highway bridge with self-powered mr damper.
Journal of Earthquake Engineering and Engineering Vibration, 30 (2010), pp. 126-133
[Wu et al., 2008]
L. Wu, Y. Cao, H. Chen.
Hierarchical modeling control of a motorcycle semi-active suspension with six degree-freedoms.
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1400-1405
[Xie et al., 2006]
H. Xie, D. Cong, B. Wang, X. Xu.
Simulation of biped robot with heterogeneous legs controlled by magnetorheological damper.
Gongneng Cailiao/Journal of Functional Materials, 37 (2006),
[Xinjie and Shengjin, 2009]
J. Xinjie, L. Shengjin.
Design of the fuzzy-PID controller for new vehicle active suspension with electro-hydrostatic actuator.
4th IEEE Conference on Industrial Electronics and Applications, pp. 3724-3727
[Xu and Fei, 2010]
J. Xu, J. Fei.
Neural network predictive control of vehicle suspension.
2nd International Conference on Information Science and Engineering,
[Xue et al., 2011]
X.D. Xue, K.W. Cheng, Z. Zhang, J.K. Lin, D.H. Wang, Y.J. Bao, M.K. Wong, N. Cheung.
Study of art of automotive active suspensions.
International Conference on Power Electronics Systems and Applications,
[Yagiz and Yuksek, 2001]
N. Yagiz, I. Yuksek.
Sliding mode control of active suspensions for a full vehicle model.
International Journal of Vehicle Design, 26 (2001), pp. 264-276
[Yang et al., 2009]
Y. Yang, W. Ren, L. Chen, M. Jiang, Y. Yang.
Study on ride comfort of tractor with tandem suspension based on multi-body system dynamics.
Applied Mathematical Modelling, 33 (2009), pp. 11-33
[Yoneda et al., 1994]
K. Yoneda, H. Iiyama, S. Hirose.
Sky-hook suspension control of a quadruped walking vehicle.
IEEE International Conference on Robotics and Automation,
[Yong-Jie et al., 2008]
L. Yong-Jie, Y. Shao-Pu, L. Hao-yu.
Dynamic analysis of semi-active vehicle suspensions using a co-simulation approach.
IEEE Vehicle Power and Propulsion Conference, pp. 1-4
[Yoshimura et al., 1999]
T. Yoshimura, K. Nakaminami, M. Kurimoto, J. Hino.
Active suspension of passenger cars using linear and fuzzy-logic controls.
Control Engineering Practice, 7 (1999), pp. 41-47
[Yu et al., 2008]
F. Yu, D.-F. Li, D. Crolla.
Integrated vehicle dynamics control -stateof-the art review.
IEEE Vehicle Power and Propulsion Conference, pp. 1-6
[Yu et al., 2009]
H. Yu, X. Qian, S. Ling.
Analysis and comparison of intelligent control methods for computer-controlled artificial leg.
ICREATE’09 International Convention on Rehabilitation Engineering and Assistive Technology,
[Zanella et al., 2001]
M. Zanella, T. Koch, F. Scharfeld.
Development and structuring of mechatronic systems exemplified by the modular vehicle X-mobile.
IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIM, 2 (2001), pp. 1059-1064
[Zapateiro et al., 2011]
M. Zapateiro, H. Karimi, N. Luo.
Semiactive vibration control of nonlinear structures through adaptive backstepping techniques with h∞ performance.
International Journal of Systems Science, 42 (2011), pp. 853-861
[Zhang et al., 2009]
H. Zhang, H. Winner, W. Li.
Comparison between skyhook and minimax control strategies for semi-active suspension system.
World Academy of Science, Engineering and Technology, 55 (2009), pp. 618-621
[Zhang et al., 2008]
Z.-N. Zhang, F. Liang, Y.-B. Wang, C.-G. Li.
Study on active suspension control of full-vehicle steering model of using DSP. In: IEEE.
Vehicle Power and Propulsion Conference., (2008), pp. 1-5
[Zhu and Tryggvason, 2004]
W.H. Zhu, B. Tryggvason.
On active acceleration control of vibration isolation systems.
IEEE Conference on Decision and Control, 4 (2004), pp. 4363-4368
Copyright © 2011. EA
Opciones de artículo
Herramientas