Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Fundamento, tipos y aplicaciones de los arrays de ADN en la microbiología médi...
Información de la revista
Vol. 22. Núm. 1.
Páginas 46-54 (Enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 22. Núm. 1.
Páginas 46-54 (Enero 2004)
Acceso a texto completo
Fundamento, tipos y aplicaciones de los arrays de ADN en la microbiología médica
Basis, types and application of DNA arrays in clinical microbiology
Visitas
34180
Antonio Doménech-Sánchezaa,1
Autor para correspondencia
adomenech@uib.es

Correspondencia: Dr. A. Doménech-Sánchez. Unidad de Investigación. Hospital Universitario Son Dureta. Institut Universitari d’Investigacions en Ciències de la Salut (IUNICS). Andrea Doria, 55. 07014 Palma de Mallorca. España.
, Jordi Vilabb
a Unidad de Investigación. Hospital Universitario Son Dureta. Institut Universitari d’Investigacions en Ciències de la Salut (IUNICS). Palma de Mallorca. España
b Servicio de Microbiología. Hospital Clínic. Barcelona. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Los chips o arrays de ADN son una serie de sondas de ADN unidas a un soporte sólido en una disposición regular y prefijada. El ácido nucleico diana que será detectado puede ser ADN o ARN y previamente a la hibridación debe ser marcado con una sustancia fluorescente o radiactiva. La principal ventaja con respecto a las técnicas de biología molecular como la reacción en cadena de la polimerasa es que pueden detectarse en un único procesamiento miles de genes. Hasta la actualidad la aplicación de los arrays de ADN en el campo de la microbiología clínica es escasa. Dentro de las aplicaciones específicas cabe destacar: a) Investigación de la patogenia bacteriana; b) análisis de la evolución bacteriana y epidemiología; c) estudio de los mecanismos de acción y de resistencia de los antibióticos, y d) diagnóstico microbiológico de las enfermedades infecciosas.

Si bien esta metodología se encuentra todavía en fase embrionaria por lo que respecta a su aplicación en el campo del diagnóstico microbiológico, presenta una serie de ventajas que la hacen muy atractiva y en un futuro pueda ser una técnica muy válida para el diagnóstico de las enfermedades infecciosas.

Palabras clave:
Arrays de ADN
Microarrays de ADN
Microchips de ADN
Aplicaciones
Diagnóstico molecular

The DNA microarrays or microchips are sets of DNA probes bound to a solid support in a prefixed and regular disposition. The target nucleic acid that can be detected is either DNA or RNA, which is previously labeled with a fluorochrome or a radioactive compound. The main advantage with respect to other molecular biological tools, such as polymerase chain reaction, is that thousands of genes can be detected in a single procedure. The application of the DNA arrays in the field of clinical microbiology is so far scarce. Among the specific applications we can point out: 1. Investigation of bacterial pathogenesis; 2. Analysis of bacterial evolution and molecular epidemiology; 3. Study of the mechanisms of action and resistance to antimicrobial agents and 4. Microbiological diagnostic of the infectious diseases. This methodology is still in an embryonic phase with respect to its application in clinical microbiology. However, it presents a series of advantages that make it very attractive and in the future it may become a valuable tool for the diagnosis of infectious diseases.

Key words:
DNA arrays
DNA microarrays
DNA microchips
Stroke
Molecular diagnosis
El Texto completo está disponible en PDF
Bibliografía
[1.]
R.D. Fleischmann, O. Adams, R.A. White, E.F. Clayton, A.R. Kirkness, C.J. Kerlavage.
Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.
Science, 269 (1995), pp. 496-512
[2.]
M.S. Rajeevan, I.M. Dimulescu, E.R. Unger, S.D. Vernon.
Chemiluminescent analysis of gene expression on high-density filter arrays.
J Histochem Cytochem, 47 (1999), pp. 337-342
[3.]
S.E. Chuang, D.L. Daniels, F.R. Blattner.
Global regulation of gene expression in Escherichia coli.
J Bacteriol, 175 (1993), pp. 2026-2036
[4.]
D. Descamps, V. Calvez, G. Collin, A. Cecille, C. Apetrei, F. Damond.
Line probe assay for detection of human immunodeficiency virus type 1 mutations conferring resistance to nucleoside inhibitors of reverse transcriptase: Comparison with sequence analysis.
J Clin Microbiol, 36 (1998), pp. 2143-2145
[5.]
M.D. Schena, R. Shalon, W. Davis, P.O. Brown.
Quantitative monitoring of gene expression patterns with a complementary DNA microarray.
Science, 270 (1995), pp. 467-470
[6.]
F.R. Blattner, G. Plunkett, C.A. Bloch, N.T. Perna, V. Burland, M. Riley.
The complete genome sequence of Escherichia coli K-12.
Science, 277 (1997), pp. 1453-1474
[7.]
D.A. Israel, N. Salama, C.N. Arnold, S.F. Moss, T. Ando, H.P. Wirth.
Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses.
J Clin Invest, 107 (2001), pp. 611-620
[8.]
C.E. Belcher, J. Drenkow, B. Kehoe, T.R. Gingeras, N. McNamara, H. Lemjabbar.
The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies.
Proc Natl Acad Sci USA, 97 (2000), pp. 13847-13852
[9.]
M. Kato-Maeda, J.T. Rhee, T.R. Gingeras, H. Salamon, J. Drenkow, N. Smittipat.
Comparing genomes within the species Mycobacterium tuberculosis.
Genome Res, 11 (2001), pp. 547-554
[10.]
S. Hamels, L. Gala, S. Dufour, P. Vannuffem, N. Zammatteo, J. Remaci.
Consensus PCR and microarray for diagnosis of the genus Staphylococcus, species and methicillin resistance.
Biotechniques, 31 (2001), pp. 1364-1372
[11.]
J.C. Cho, J.M. Tiedje.
Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays.
Appl Environ Microbiol, 67 (2001), pp. 3677-3682
[12.]
R.M. Anthony, T.J. Brown, G.L. French.
Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array.
J Clin Microbiol, 38 (2000), pp. 781-788
[13.]
A. Troesch, H. Nguyen, C.G. Miyada, S. Desvarenne, T.R. Gingeras, P.M. Kaplan.
Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays.
J Clin Microbiol, 37 (1999), pp. 49-55
[14.]
T.M. Straub, D.S. Daly, S. Wunshel, P.A. Rochelle, R. DeLeon, D.P. Chandler.
Genotyping Cryptosporidium parvum with an hsp70 single-nucleotide polymorphism microarray.
Appl Environ Microbiol, 68 (2002), pp. 1817-1826
[15.]
R.J. Lipshutz, D. Morris, M. Chee, E. Hubbell, M.J. Kozal, N. Shah.
Using oligonucleotide probe arrays to access genetic diversity.
BioTechniques, 19 (1995), pp. 442-447
[16.]
M. Wilson, J. DeRisi, H.H. Kristensen, P. Imboden, S. Rame, P.O. Brown.
Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization.
Proc Natl Acad Sci USA, 96 (1999), pp. 12833-12838
[17.]
N.P. Rijpens, G. Jannes, M. Van Asbroeck, R. Rossau, L.MF. Herman.
Direct detection of Brucella spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes.
Appl Environ Microbiol, 62 (1996), pp. 1683-1688
[18.]
L.J. Van Doorne, A. Verschuuren-Van Haperen, A. Burnens.
Rapid identification of thermotolerant Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter upsaliensis from various geographic locations by a GTPase.based PCR hybridization assay.
J Clin Microbiol, 37 (1999), pp. 1970-1976
[19.]
S.H. Goh, R.R. Facklam, M. Chang, J.E. Hill, G.J. Tyrrell, E.C. Burns.
Identification of Enterococcus species and phenotypically similar Lactococcus and Vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences.
J Clin Microbiol, 38 (2000), pp. 3953-3959
[20.]
V. Chizhikov, A. Rasooly, C. Chumakov, D.D. Levy.
Microarray analysis of microbial virulence factors.
Appl Environ Microbiol, 67 (2001), pp. 3258-3263
[21.]
L.J. Van Doorn, C. Figueiredo, R. Rossau, G. Jannes, M. Van Asbroek, J.C. Sousa.
Typing of Helicobacter pylori vacA gene and detection of cagA gene by PCR and reverse hybridization.
J Clin Microbiol, 36 (1998), pp. 1271-1276
[22.]
L.J. Van Doorn, Y.J. Debets-Ossenkopp, A. Marais, R. Sanna, F. Megraud, J.G. Kusters.
Rapid detection, by PCR and reverse hybridization, of mutations in the Helicobacter pylori 23S rRNA gene, associated with macrolide resistance.
Antimicrob Agents Chemother, 43 (1999), pp. 1779-1782
[23.]
N.P. Rijpens, G. Jannes, M. Van Asbroeck, L.MF. Herman, R. Rossau.
Simultaneous detection of Listeria spp. and Listeria monocytogenes by reverse hybridization with 16S-23S rRNA spacer probes.
Mol Cell Probes, 9 (1996), pp. 423-432
[24.]
H. De Beenhouwer, Z. Lhiang, G. Jannes, W. Mijs, L. Machtelinckx, R. Rossau.
Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay.
Tuber Lung Dis, 76 (1995), pp. 425-430
[25.]
T.J. Brown, G.L. French.
Genotypes associated with isoniazid resistance in Mycobacterium tuberculosis isolates seen at a London Teaching Hospital.
J Microbiol Meth, 38 (1999), pp. 226
[26.]
N. Miller, S. Infante, T. Cleary.
Evaluation of the LiPA mycobacteria assay for identification of Mycobacterial species from BACTEC 12B bottles.
J Clin Microbiol, 38 (2000), pp. 1915-1919
[27.]
J. Garaizar, S. Porwollik, A. Echeita, A. Rementeria, S. Herrera, R.M. Wong.
DNA microarray-based typing of an atypical monophasic Salmonella enterica serovar.
J Clin Microbiol, 40 (2002), pp. 2074-2078
[28.]
S.H. Goh, Z. Santucci, W.E. Kloos, M. Faltyn, C.G. George, D. Driedger.
Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridisation.
J Clin Microbiol, 35 (1997), pp. 3116-3121
[29.]
J. McCluskey, C.G. Dowson, T.J. Mitchell.
The use of microarray technology for the analysis of Streptococcus pneumoniae.
Comp Funct Genom, 3 (2002), pp. 366-368
[30.]
C.F. Edman, P. Mehta, R. Press, C. Spargo, G. Walker, M. Neremberg.
Pathogen analysis and genetic predisposition testing using microelectronic arrays and isothermal amplification.
J Invest Med, 48 (2000), pp. 93-101
[31.]
L. Westin, C. Miller, D. Vollmer, D. Canter, R. Radtkey, M. Nerenberg.
Antimicrobial resistance and bacterial identification utilizing a microelectronic chip array.
J Clin Microbiol, 39 (2001), pp. 1097-1104
[32.]
R.E. Hayward, J.L. De Risi, S. Alfadhli, D.C. Kaslow, P.O. Brown, P.K. Rathod.
Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria.
Mol Microbiol, 35 (2000), pp. 6-14
[33.]
L. Zhou, T.C. Harder, U. Ullmann, P. Rautenberg.
Rapid detection by reverse hybridization of mutations in the UL97 gen of human cytomegalovirus conferring resistance to ganciclovir.
J Clin Virol, 13 (1999), pp. 53-59
[34.]
J. Li, S. Chen, D.H. Evans.
Typing and subtyping Influenza virus using DNA microarrays and multiplex reverse transcriptase PCR.
J Clin Microbiol, 39 (2001), pp. 696-704
[35.]
V. Chizhikov, M. Wagner, A. Ivshima, Y. Hoshino, A.Z. Kapikian, K. Chumakov.
Detection and genotyping of human group A rotavirus by oligonucleotide microarray hybridization.
J Clin Microbiol, 40 (2002), pp. 2398-2407
[36.]
L. Stuyver, A. Wyseur, A. Rombout, J. Louwagie, T. Scarcez, C. Verhofstede.
Line probe assay for rapid detection of drug-selected mutations in the human immunodeficiency virus type 1 reverse transcriptase gene.
Antimicrob Agents Chemother, 41 (1997), pp. 284-291
[37.]
J.C. Schmit, L. Ruiz, L. Stuyver, K. Van Laethem, I. Vanderlinden, T. Puig.
Comparison of the LiPA HIV-1 RT test, selective PCR and direct solid phase sequencing for the detection of the HIV-1 drug resistance mutations.
J Virol Methods, 73 (1998), pp. 77-82
[38.]
M. Vahey, M.E. Nau, S. Barrick, J.D. Cooley, R. Sawyer, A.A. Sleeker.
Performance of the Affymetrix GeneChip HIV PRT 440 platform for antiretroviral drug resistance genotyping of human immunodeficiency virus type 1 clades and viral isolates with length polymorphisms.
J Clin Microbiol, 37 (1999), pp. 2533-2537
[39.]
M.J. Kozal, N. Shah, N. Shen, R. Yang, R. Fucini, T.C. Merigan.
Extensive polymorphisms observed in HIV-1 clase B protease gene using high density oligonucleotide arrays.
Nature Med, 2 (1996), pp. 753-759
[40.]
L. Blitz, F.H. Pujol, P.D. Swenson, L. Porto, R. Atencio, M. Araujo.
Antigenic diversity of hepatitis B virus strains of genotype F in Ameridians and other population groups in Venezuela.
J Clin Microbiol, 36 (1998), pp. 648-651
[41.]
B. Kleter, L.J. Van Doorn, L. Schrauwen, A. Molijn, S. Sastrowijoto, J. Ter Schegget.
Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus.
J Clin Microbiol, 37 (1999), pp. 2508-2517
[42.]
T. Livache, B. Fouque, A. Roget, J. Marchand, G. Bidan, R. Teoule.
Polypyrrole DNA chip on a silicon device: Example of hepatitis C virus genotyping.
Anal Biochem, 255 (1998), pp. 188-194
[43.]
L. Stuyer, A. Wyseur, W. Van Arnhem, F. Hernández, G. Maertens.
Second-generation line probe assay for hepatitis C virus genotyping.
J Clin Microbiol, 34 (1996), pp. 2259-2266
Copyright © 2004. Elsevier España, S.L.. Todos los derechos reservados
Opciones de artículo
Herramientas
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.eimc.2020.03.001
No mostrar más