x

¿Aún no está registrado?

Cree su cuenta. Regístrese en Elsevier y obtendrá: información relevante, máxima actualización y promociones exclusivas.

Registrarme ahora
Ayuda - - Regístrese - Teléfono 902 888 740
Buscar en

Indexada en:

Index Medicus/MEDLINE, Excerpta Medica/EMBASE, SCOPUS, Science Citation Index Expanded, Journal Citation Reports/Science Edition, IBECS

Métricas

  • Factor de Impacto: 1,314(2015)
  • SCImago Journal Rank (SJR):0,28
  • Source Normalized Impact per Paper (SNIP):0,383
doi: 10.1016/S1575-0922(01)74406-3
Fundamentos de la apoptosis celular: interés en endocrinología
The basics of cellular apoptosis: interest in endocrinology
L.M. Frago, A. Arroba, J.A. Chowen,
Unidad de Investigación. Hospital Niño Jesús. Madrid.
Resumen

El número de células de un organismo está regulado por un balance entre la proliferación, la diferenciación y la muerte celular. Sin embargo, el equilibrio entre la proliferación y la muerte de una población celular puede estar alterado por un aumento o una disminución de uno de estos procesos. En particular, cuando la muerte celular ocurre en menor medida de lo normal, se observan alteraciones que conllevan acumulación de células. De igual forma, un aumento de la muerte celular podría ser responsable de la pérdida de células y sus enfermedades asociadas. A este respecto, la muerte celular se ha considerado como un mecanismo relevante que contribuye a la regulación de la vida.

Resumen

The number of cells in an organism is determined by a balance between cell proliferation, differentiation and death. However, the normal equilibrium between proliferation and death of a specific cell population is sometimes altered by an increase or decrease in either of these processes. For example, when cell death occurs to a lesser extent than required the result is an abnormal accumulation of cells. Likewise, an increase in cell death results in the loss of cells and possibly an associated disease. In this respect, cell death is considered to be an important mechanism for the regulation of life.

Palabras Clave
Apoptosis, Caspasas, Hormonas, Glándulas, Hipófisis, Diabetes
Key words
Apoptosis, Caspases, Hormones, Pituitary, Diabetes
El Texto completo solo esta disponible en PDF
Bibliografía
1.
A.H. Wyllie,J.F. Kerr,A.R. Currie
Cell death: the significance of apoptosis
Int Rev Cytol, 68 (1980), pp. 251-307
2.
R.A. Lockshin,C.M. Williams
Programmed cell death: cytology of degeneration in the intersegmental muscles of silkmoth
J Insect Physiol, 11 (1965), pp. 123-133
3.
L.M. Schwartz,S. Smith,M.E.E. Jones,B.A. Osborne
Do all programmed cell death occur via apoptosis?
Proc Natl Acad Sci USA, 90 (1993), pp. 980-984
4.
M.D. Jacobson,M. Weil,M.C. Raff
Programmed cell death in animal development
Cell, 88 (1997), pp. 347-354
5.
C.B. Thompson
Apoptosis in the pathogenesis and treatment of disease
Science, 267 (1995), pp. 1456-1462
6.
C. Borner,L. Monney
Apoptosis without caspases: an inefficient molecular guillotine?
Cell Death Differ, 6 (1999), pp. 497-507
7.
S. Sen,M. D'Incalci
Apoptosis: biochemical events and relevance to cancer chemotheraphy
FEBS Lett, 307 (1992), pp. 122-127
8.
Z. Darzynkiewicz,G. Juan,X. Li,W. Gorczyca,M.A. Hotz,P. Lassota
Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis)
Cytometry, 27 (1997), pp. 1-20
9.
I. Scovassi,G.G. Poirier
Poly(ADP-ribosylation) and apoptosis
Mol Cell Biochem, 199 (1999), pp. 125-137
10.
Y. Gavrieli,Y. Sherman,S.A. Ben-Sasson
Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation
J Cell Biol, 119 (1992), pp. 493-501
11.
G.M. Cohen
ICE-like proteases (caspases): the executioners of apoptosis
Biochemical J, 326 (1997), pp. 1-16
12.
G. Núñez,M.A. Benedict,Y. Hu,N. Inohara
Caspases: the proteases of the apoptotic pathway
Oncogene, 17 (1998), pp. 3237-3245
13.
G.Y. Salvesen,V.M. Dixit
Caspase activation: the induced-proximity model
Proc Natl Acad Sci USA, 96 (1999), pp. 10964-10967
14.
Q. Zhou,G.S. Salvesen
Activation of pro-caspase-9 by serine proteases includes a non-canonical specifity
Biochem J, 324 (1997), pp. 361-364
15.
E.A. Slee,M.T. Harte,R.M. Kluck,B.B. Wolf,C.A. Casiano,D.D. Newmeyer
Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases –2, –3, –6, –7, –8 and –10 in a caspase –9– dependent manner
J Cell Biol, 144 (1999), pp. 281-292
16.
D.W. Nicholson,N.A. Thornberry
Caspases: killer proteases
Trends Biochem, 22 (1997), pp. 199-306
17.
M. Muzio,B.R. Stockwell,H.R. Stennicke,G.S. Salvesen,V.M. Dixit
An induced proximity model for caspase-8 activation
J Biol Chem, 273 (1998), pp. 2926-2930
18.
J.J. Chou,H. Matsuo,H. Duan,G. Wagner
Solution structure of the RIADD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment
Cell, 94 (1998), pp. 171-180
19.
H.R. Stennicke,J.M. Jurgensmeier,H. Shin,Q. Deveraux,B.B. Wolf,X. Yang
Pro-caspase-3 is a major physiologic target of caspase-8
J Biol Chem, 273 (1998), pp. 27084-27090
20.
H. Zou,W.J. Henzel,X. Liu,A. Lutschg,X. Wang
Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3
Cell, 90 (1997), pp. 405-413
21.
S.M. Srinivasula,M. Ahmad,T. Fernandes-Alnemri,E.S. Alnemri
Autoactivation of procaspase-9 by Apaf-1 mediated oligomerization
Mol Cell, 1 (1998), pp. 949-957
22.
P. Li,D. Nijhawan,I. Budihardjo,S.M. Srinivasula,M. Ahmad,E.S. Alnemri
Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade
Cell, 91 (1997), pp. 479-489
23.
G. Kroemer,B. Dellaporta,M. Resch-Rigon
The mitochondrial death/life regulator in apoptosis and necrosis
Annu Rev Physiol, 60 (1998), pp. 619-642
24.
D.R. Green,J.C. Reed
Mitochondria and apoptosis
Science, 281 (1998), pp. 1309-1312
25.
X. Liu,C.N. Kim,J. Yang,R. Jemmerson,X. Wang
Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c
Cell, 86 (1996), pp. 147-157
26.
R.M. Kluck,E. Bossy-Wetzel,D.R. Green,D.D. Newmeyer
The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis
Science, 275 (1997), pp. 1132-1136
27.
K. Kuida,T.F. Haydar,C.Y. Kuan,Y. Gu,C. Taya,H. Karasuyama
Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase-9
Cell, 94 (1998), pp. 325-327
28.
H. Yoshida,Y-Y Kong,R. Yoshida,A.J. Elia,A. Hakem,R. Hakem
Apaf-1 is required for mitochondrial pathways of apoptosis and brain development
Cell, 94 (1998), pp. 739-750
29.
M.O. Hengartner
Death cycle and swiss army knives
Nature, 391 (1998), pp. 441-442
30.
Q.L. Deveraux,R. Takahashi,G.H. Salvesen,J.C. Reed
X-linked IAP is a direct inhibitor of cell-death proteases
Nature, 388 (1997), pp. 300-304
31.
A.G. Uren,M. Pakusch,C.J. Hawkins,K.L. Puls,D.L. Vauls
Clonning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors
Proc Natl Acad Sci USA, 93 (1996), pp. 4974-4978
32.
J. Yang,X. Liu,K. Bhalla,C.N. Kim,A.M. Ibrado,J. Cai
Prevention of apoptosis by Bcl-2: release os cychrome c from mitochondria blocked
Science, 275 (1997), pp. 1132-1136
33.
G. Pan,K. O'Rourke,V.M. Dixit
Caspase-9, Bcl-Xl, and Apaf-1 form a ternary complex
J Biol Chem, 273 (1998), pp. 5841-5845
34.
Y. Hu,M.A. Benedict,D. Wu,N. Inohara,G. Núñez
Bcl-Xl interacts with Apaf-1 and inhibits Apaf-1 dependent caspase-9 activation
Proc Natl Acad Sci USA, 95 (1998), pp. 4386-4391
35.
M.P. Boldin,T.M. Goncharov,Y.V. Goltsev,D. Wallach
Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1 and TNF receptor-induced cell death
Cell, 85 (1996), pp. 803-815
36.
H. Li,H. Zhu,C. Xu,J. Yuan
Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis
Cell, 94 (1998), pp. 491-501
37.
S. Desagher,A. Osen-Sand,A. Nichols,R. Eskes,S. Montessuit,S. Laupeer
Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis
J Cell Biol, 144 (1999), pp. 891-901
38.
C. Stroh,K. Schulze-Osthoff
Death by a thousand cuts: an ever increasing list of caspase substrates
Cell Death Differ, 5 (1998), pp. 997-1000
39.
M. Van de Craen,W. Declercq,I. Van den brande,W. Fiers,P. Vandenabeele
The proteolytic procaspase activation network: an in vitro analysis
Cell Death Differ, 6 (1999), pp. 1117-1124
40.
E.H. Cheng,D.G. Kirsch,R.J. Clem,R. Ravi,M.B. Kastan,A. Bedi
Conversion of Bcl-2 to a Bax-like death effector by caspases
Science, 278 (1997), pp. 1966-1968
41.
C. Scaffidi,S. Fulda,A. Srinivasan,C. Friesen,F. Li,K.J. Tomaselli
Two CD95 (APO-1/Fas) signaling pathway
EMBO J, 17 (1998), pp. 1675-1687
42.
Y. Jiang,J.D. Woronicz,W. Liu,D.V. Goeddel
Prevention of constitutive TNF receptor 1 signaling by silencer of death domains
Science, 283 (1999), pp. 543-546
43.
D. De Valck,D.Y. Jin,K. Heyninck,M. Van de Craen,R. Contreras,W. Fiers
The zinc finger protein A20 interacts with a novel antiapoptotic protein which is cleaved by specific caspases
Oncogene, 18 (1999), pp. 4182-4190
44.
C. Wang,M.W. Mayo,R.G. Korneluk,D.V. Goeddel,A.S. Baldwin Jr.
NFkappa B antiapoptotis: induction of TRAF1 annd TRAF2 and c-IAP 1 and c-IAP 2 to supress caspase-8 activation
Science, 281 (1998), pp. 1680-1683
45.
D. Vercammen,P. Vandenabeele,R. Beyaert,W. Declercq,W. Fiers
Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells
Cytokine, 9 (1997), pp. 801-808
46.
W. Kiess,B. Gallaher
Hormonal control of programmed cell death/apoptosis
Eur J Endocrinol, 138 (1998), pp. 482-491
47.
B.S. McEwen,P.G. Davis,B. Parsons,D.W. Pfaff
The brain as a target for steroid hormone action
Annu Rev Neurosci, 2 (1979), pp. 65-112
48.
E. Ahlbom,L. Grandison,B. Zhivotovsky,S. Ceccatelli
Termination of lactation induces apoptosis and alters the expression of the Bcl-2 family members in the rat anterior pituitary
Endocrinology, 139 (1998), pp. 2465-2471
49.
L.G. Goluboff,C. Ezrin
Effect of pregnancy on the somatotrophs and the prolactin cell of the human adenohypophysis
J Clin Endocrinol Metab, 29 (1969), pp. 1533-1538
50.
L.M. García-Segura,P. Cardona-Gómez,F. Naftolin,J.A. Chowen
Estradiol upregulates Bcl-2 expression in adult brain neurons
Neuroendocrinology, 9 (1998), pp. 593-597
51.
L.M. García-Segura,G.P. Cardona-Gómez,J.A. Chowen,I. Azcoitia
Insulin-like growth factor-I receptor and estrogen receptors interact in the promotion of neuronal survival and neuroprotection
J Neurocytol, 29 (2000), pp. 425-437
52.
H.L. Cheng,E.L. Feldman
Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by Insulin-like growth factor-I
J Biol Chem, 273 (1998), pp. 14560-14565
53.
N. Cheng,L. Dong,M. Schachner
Prevention of neuronal cell death by neural adhesion molecules L1 and CHL1
J Neurobiol, 38 (1999), pp. 428-439
54.
T. Chittenden,E.A. Harrington,R. O'Connor,C. Flemington,R.J. Lutz,G.I. Evan
Induction of apoptosis by the Bcl-2 homologue Bak
Nature, 374 (1995), pp. 733-736
55.
C.G. Print,K.L. Loveland
Germ cell suicide: new insights into apoptosis during spermatogenesis
Bioessays, 22 (2000), pp. 423-430
56.
K. Boekelheide,S.L. Fleming,K.J. Johnson,S.R. Patel,H.A. Schoenfeld
Role of Sertoli cells in injury-associated testicular germ cell apoptosis
Proc Soc Exp Biol Med, 225 (2000), pp. 105-115
57.
G. Dirami,N. Ravindranath,H.K. Kleinman,M. Dym
Evidence that basement membrane prevents apoptosis of Sertoli cells in vitro in the absence of known regulators of sertoli cell function
Endocrinology, 136 (1995), pp. 4439-4447
58.
F. Sinowatz,W. Amselgruber,J. Plendl,S. Kolle,C. Neumuller,G. Boos
Effects of hormones on the prostate in adult and aging men and animals
Microsc Res Tech, 30 (1995), pp. 282-292
59.
A. Amsterdam,A. Dantes,N. Selvaraj,D. Aharoni
Apoptosis in steroidogenic cells: structure-function analysis
Steroids, 62 (1997), pp. 207-211
60.
K. Reynaud,M.A. Driancourt
Oocyte attrition
Mol Cell Endocrinol, 163 (2000), pp. 1001-1108
61.
S.D. Westfall,I.R. Hendry,K.L. Obholz,B.R. Rueda,J.S. Davis
Putative role of the phosphatidylinositol 3-kinase-Akt signaling pathway in the survival of granulosa cells
Endocrine, 12 (2000), pp. 315-321
62.
Apoptosis II: the molecular basis of apoptosis in disease. Current Comminications in Cell and Molecular Biology 8,
63.
C.S. Atwood,M. Ikeda,B.K. Vonderhaar
Involution of mouse mammary glands in whole organ culture: a model for studying programmed cell death
Biochem Biophys Res Commun, 207 (1995), pp. 860-867
64.
O.D. Slayden,J.J. Hirst,R.M. Brenner
Estrogen action in the reproductive tract of rhesus monkeys during antiprogestin treatment
Endocrinology, 132 (1993), pp. 1845-1856
65.
K.C. Akcali,S.A. Khan,B.C. Moulton
Effect of decidualization on the expresion of bax and bcl-2 in the rat uterine endometrium
Endocrinology, 137 (1996), pp. 3123-3131
66.
H. Zulewski,E.J. Abraham,M.J. Gerlach,P.B. Daniel,W. Moritz,B. Muller
Multipotencial nestin-positive stem cells isolated from adult pancreatic islet differenciate ex vivo into pancreatic endocrine, exocrine and hepatic phenotypes
Diabetes, 50 (2001), pp. 521-533
67.
T. Mandrup-Poulsen
b-Cell Apoptosis
Diabetes, 50 (2001), pp. S58-S63
68.
A. Ammendrup,A. Maillard,K. Nielsen,N. Aabenhus Andersen,P. Serup,O. Dragsbaek Madsen
The c-Jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta-cells
Diabetes, 49 (2000), pp. 1468-1476
69.
T. Gurlo,K. Kawamura,H. Von Grafenstein
Role of inflammatory infiltrate in activation and effector function of cloned islet reactive nonobese diabetic CD8+ T cells. Involvement of a nitric oxide-dependent pathway
J Immunol, 163 (1999), pp. 5770-5780
70.
T. Mandrup-Poulsen
The role of interleukin-1 in the pathogenesis of IDDM
Diabetologia, 39 (1996), pp. 1005-1029
71.
C. Cailleau,A. Diu-Hercend,E. Ruuth,R. Westwood,C. Carnaud
Treatment with neutralizing antibodies specific for IL-1 beta prevents cyclophosphamide-induced diabetes in nonobese diabetic mice
Diabetes, 46 (1997), pp. 937-940
72.
M. Federici,M. Hribal,L. Perego,M. Ranalli,Z. Caradonna,C. Perego
High glucose Causes apoptosis in cultured human pancreas islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program
Diabetes, 50 (2001), pp. 1290-1301
73.
M. Shimabukuro,M.Y. Wang,Y.T. Zhou,C.B. Newgard,R.H. Unger
Protection against lipoapoptosis of beta cells through leptin-dependent manteinance of Bcl-2 expression
pp. 9558-9561
74.
I.B. Efanova,S.V. Zaitsev,B. Zhivotovsky,M. Kohler,S. Efendic,S. Orrenius
Glucose and tolbutamida induce apoptosis in pancreatic betacells: a process dependent on intracellular Ca2+ concentration
J Biol Chem, 273 (1998), pp. 33501-33507
75.
E.L. Saafi,B. Konarkowska,S. Zhang,J. Kistler,G.J. Cooper
Ultrastructural evidence that apoptosis is the mechanism by which human amylin evokes death in RINm5F pancreatic islet beta-cells
Cell Biol Int, 25 (2001), pp. 339-350
76.
M. Andrikoula,A. Tsatsoulis
The role of Fas-mediated apoptosis in thyroid disease
Eur J Endocrinol, 144 (2001), pp. 561-568
77.
N. Mitsiades,V. Poulaki,G. Mastorakos,S. Tselenis-Balafouta,V. Kotoula,D.A. Koutras
Fas ligand expression in thyroid carcinomas: a potential mechanism of inmune evasion
J Clin Endocrinol Metab, 84 (1999), pp. 2924-2932
78.
J. Feldkamp,E. Pascher,A. Perniok,V.A. Scherbaum
Fas-mediated apoptosis is inhibited by TSH and iodine in moderate concentrations in primary human thyrocytes in vitro
Horm Metab Res, 31 (1999), pp. 355-358
Correspondencia. Dra. J.A. Chowen. Unidad de Investigación. Hospital Niño Jesús. Avda. Menéndez Pelayo, 65. 28009 Madrid.
Copyright © 2001. Sociedad Española de Endocrinología y Nutrición